CN107450325A - CO after one kind burning2The Multi model Predictive Controllers of trapping system - Google Patents

CO after one kind burning2The Multi model Predictive Controllers of trapping system Download PDF

Info

Publication number
CN107450325A
CN107450325A CN201710795146.3A CN201710795146A CN107450325A CN 107450325 A CN107450325 A CN 107450325A CN 201710795146 A CN201710795146 A CN 201710795146A CN 107450325 A CN107450325 A CN 107450325A
Authority
CN
China
Prior art keywords
mtd
msub
mtr
mrow
mtable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710795146.3A
Other languages
Chinese (zh)
Other versions
CN107450325B (en
Inventor
吴啸
梁修凡
李益国
沈炯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710795146.3A priority Critical patent/CN107450325B/en
Publication of CN107450325A publication Critical patent/CN107450325A/en
Application granted granted Critical
Publication of CN107450325B publication Critical patent/CN107450325B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/04Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
    • G05B13/042Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators in which a parameter or coefficient is automatically adjusted to optimise the performance

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Evolutionary Computation (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

CO after being burnt the invention discloses one kind2The Multi model Predictive Controllers of trapping system, the forecast Control Algorithm is with CO after the burning based on chemisorbed2Trapping system is controlled device, and lean solution valve opening and turbine low pressure cylinder valve opening of drawing gas are system control input amount, CO2Capture rate and reboiler temperature are system output quantity;Subspace state space system identification is primarily based on, using data caused by system operation, the local state spatial model of system is established at different operating points;Then the nonlinear Distribution of controlled device is investigated using the method for gap metric;And then predictive controller is established at suitable local operating point, and membership function is designed by its weighted array, CO after foundation burning2Trapping system multiple model predictive control system.The method of the present invention has good global nonlinear Control ability, is capable of the demand of the effective a wide range of variable working condition of adaptive system, fast track CO2Capture rate setting value, improve CO2The level of trapping system depth fast and flexible operation.

Description

CO after one kind burning2The Multi model Predictive Controllers of trapping system
Technical field
The present invention relates to forecast Control Algorithm technical field, CO after especially a kind of burning2The multi-model of trapping system is pre- Survey control method.
Background technology
With greenhouse effects and increasingly serious, the emission reduction CO of relevant climate ecological problem2International community's reply gas is turned into Wait the crucial behave of change.As the capital equipment of supply of electric power, fired power generating unit is CO2Emission source that is most stable, most concentrating, generation Boundary 30%-40%, the CO in China 40%~50%2Discharge comes from fired power generating unit.In actively development new energy technology, make great efforts to carry While high fired power generating unit generating efficiency, fired power generating unit CO2Trapping is known as realizing greatly in Future 30 Years by numerous authoritative institutions Scale CO2The most direct effective technological means of emission reduction.
In existing fired power generating unit CO2In trapping technique, CO after the burning based on chemical absorption method2Trapping technique is directly from electricity CO is separated in flue gas after factory's burning2, there is the inheritance outstanding to existing unit and the preferable adaptability of technology, be current CO2 Trap the mainstream technology that power station uses.Due to CO2Trapping needs to extract a large amount of steam from fired power generating unit, in low pressure (LP) cylinder for poor Liquid regenerates, and it implements very big for the influence of fired power generating unit generating efficiency.Therefore, CO2Trapping system must realize large-scale spirit Operation living, such as, it is urgent or electricity price higher period reduces CO in power demands2Capture rate, and environmental protection pressure is larger or carbon valency Higher period improves capture rate.However, with CO2The a wide range of variable parameter operation of catching apparatus, its system show stronger non- Linear characteristic, predictive controller control performance of the tradition based on linear model design is caused to reduce, stability decline.Therefore it is a kind of CO after combustion2The exploitation that the predictive control algorithm utilized to smoke signal is added in trapping system is necessary.
The content of the invention
The technical problems to be solved by the invention are, there is provided CO after one kind burning2The pre- observing and controlling of multi-model of trapping system Method processed, it is possible to increase CO2The regulation quality of a wide range of variable working condition of trapping system, improve the energy that its fast deep is flexibly run Power.
In order to solve the above technical problems, the present invention provides CO after a kind of burning2The multiple model predictive control side of trapping system Method, comprise the following steps:
(1) CO after burning2Trapping system is switched to manual mode, near different capture rate operating points, with poor liquid stream Measure valve opening uaDrawn gas valve opening amount signal u with turbine low pressure cylinderbTo input, to CO2Trapping system enters row energization, obtains CO2Capture rate yaWith reboiler temperature ybOpen-loop response data;
(2) sampling period Ts is selected, withTo input,For output, subspace is utilized Discrimination method, build CO at different capture rate operating points2Trapping system local state spatial model;
(3) method for using gap metric, analyzes the difference between each adjacent partial model, investigates the non-of CO2 trapping systems Linear distribution;
(4) model predictive controller is established at suitable partial duty point;In each sampling instant, each son is utilized respectively The CO of model pre-estimating system within following certain time2Capture rateAnd reboiler temperaturePart is calculated most by optimization Excellent lean solution flow valve aperture ui a-opDrawn gas valve opening amount signal u with turbine low pressure cylinderi b-op
(5) the final suitable membership function of design, each controller is exported into weighted array, obtains final poor flow quantity Valve opening ua-opDrawn gas valve opening amount signal u with turbine low pressure cylinderb-opAnd act on CO2 trapping systems;WhereinωiFor membership function corresponding to i-th of controller, It is scheduling variable, capture rate CR function, ui a-opAnd ui b-opThe optimum control signal calculated for i-th of controller;
(6) the prediction matrix ψ exported in fixed each local controlx、ψu、ψy, repeat step (3)-(4) are realized continuous Control.
Preferably, in step (2), T95/Ts=5~15, wherein T95 are the regulating time that transient process rises to 95%.
Preferably, in step (2), CO at different capture rate operating points is built2Trapping system local state spatial model, tool Body step is:
(21) output data from the 0th moment to 2N+j-2 moment that will continuously be obtained near a certain given operating point Y and input data u are arranged as Hankel matrix forms respectively:
Wherein, N is matrix line number, and N is more than CO2Trapping system order, j are matrix columns, Y and U represent respectively output with The Hankel matrixes of input data composition, YfAnd YpThe Future Data and past data of output data, U are represented respectivelyfAnd UpRespectively Represent the Future Data and past data of input data, yjRepresent j-th of output data, ujRepresent j-th of input data;
(22) W is madep=[(Yp)T (Up)T]T, QR decomposition is carried out to following matrix:
Obtain matrix L:
(23) so as to obtaining matrix Lw=L (:,1:N (m+l)), Lu=L (:,N(m+l)+1:End), m ties up for input variable Number, l are output variable dimension, L (:,1:N (m+l)) representing matrix L preceding N (m+l) row, L (:,N(m+l)+1:End square) is represented Battle array L from N (m+l)+1 row after all row;
(24) to LwMatrix does singular value decomposition:
Obtain matrix ΓN=U1(S1)1/2, and then obtain:Model parameterWhereinL rows before expression is removed ΓN,Γ NThe Γ of rear l rows is removed in expressionN,Represent Moore-Penrose pseudoinverses;Model parameter C=ΓN(1:l,:) can be from ΓNPreceding l rows in directly obtain;
(25) system of linear equations is solved:
Obtain model parameter B and D.
Preferably, in step (3), the clearence degree value between adjacent partial model is calculated, is concretely comprised the following steps:
(31) partial model P adjacent to two1、P2Orthogonal fight coprime factorization is done, is obtained:
(32) computation model P1、P2Between distance:
Wherein, HFor a special Hardy normed spaces:σmax(G (j ω)) represents G The maximum singular value of (j ω);Q is HArbitrary function in space;
Gap metric between (33) two systems
Preferably, in step (4), the CO of the system within following a period of time is estimated using formula (1)2Capture rate and boil again Device temperature
Wherein, prediction matrix ψx、ψu、ψyRespectively:
Respectively k moment CO2Estimated state, input and the output of trapping system, F are observer gain, ufFor The input data at following Nu moment, It is following NyWhen etching system estimate it is defeated Go out,
Using equation below calculation of performance indicators function J:
Wherein, QfAnd RfIt is the weight matrix for adjusting input and output Control platform,rfIt is Following N1When etching system CO2Capture rate and reboiler temperature setting value sequence,
Represent the k+1 moment to k+N respectively1When etching system CO2Capture rate raWith reboiler temperature rbSetting value, It is following NyWhen etching system CO2Capture rate and reboiler temperature estimate value sequence,
Represent the k+1 moment to k+N respectivelyyWhen etching system CO2Capture rate yaWith reboiler temperature ybEstimate Value,
ΔufIt is following NuThe lean solution flow valve opening amount signal u at momentaDrawn gas valve opening amount signal u with low pressure (LP) cylinderbSequenceIncrement;
Wherein
CO2 trapping system lean solution flow valves and low pressure (LP) cylinder draw gas valve opening amount signal u Filters with Magnitude Constraints (umin,umax) and Increment restriction (Δ umin,Δumax) be:
Wherein, umin,umaxRepresent respectively lean solution flow valve and low pressure (LP) cylinder draw gas valve opening amount signal u minimum value with most Big value, Δ umin,ΔumaxRepresent respectively lean solution flow valve and low pressure (LP) cylinder draw gas valve opening amount signal u smallest incremental with it is maximum Increment;
Each sampling instant, formula (1) is substituted into formula (2), and minimized in the case where meeting formula (3) and (4) Performance index function J, obtain optimal controlling increment sequence uf
Extract optimum control increment sequence ufIn first piece of uk+1, taken out as optimal lean solution flow valve and low pressure (LP) cylinder Steam valve door opening amount signal
Beneficial effects of the present invention are:The Multi model Predictive Controllers of the present invention have good global nonlinear Control Ability, CO after being burnt applied to thermal power station2Trapping system is capable of the demand of the effective a wide range of variable working condition of adaptive system, fast track CO2Capture rate setting value, improve CO2The level of trapping system depth fast and flexible operation.
Brief description of the drawings
Fig. 1 is the Method And Principle schematic diagram of the present invention.
Fig. 2 is the non-linear finding schematic diagram of the present invention.
Fig. 3 is the membership function schematic diagram designed by the present invention.
Fig. 4 is that multiple model predictive control of the present invention (solid line) controls (dotted line) in CO with conventional proportional integral differential2Trapping Control effect contrast schematic diagram under the change of rate setting value small range (dotted line is setting value).
Fig. 5 is multiple model predictive control of the present invention (solid line) and conventional linear PREDICTIVE CONTROL (dotted line) in CO2Capture rate is set Control effect contrast schematic diagram under definite value wide variation (dotted line is setting value).
Embodiment
The Multi model Predictive Controllers of the present invention are applied to CO after certain 1MW fired power generating unit is burnt2Trapping system system In simulation model, the target of control is under conditions of input constraint is met, makes CO2Capture rate and reboiler temperature tracking setting Value, realizes CO2The a wide range of variable parameter operation of trapping system.
CO after the burning of the present invention2Trapping system Multi model Predictive Controllers, the forecast Control Algorithm is with based on chemistry CO after the burning of absorption2Trapping system is controlled device, and lean solution valve opening and turbine low pressure cylinder draw gas valve opening to be System control input amount, CO2Capture rate and reboiler temperature are system output quantity, are primarily based on subspace state space system identification, utilize system Data caused by system operation, the local state spatial model of system is established at different operating points;Then using gap metric Method investigates the nonlinear Distribution of controlled device, and then establishes predictive controller at suitable local operating point, and designs person in servitude Category degree function is by its weighted array, CO after foundation burning2Trapping system multiple model predictive control system.Phase is controlled with Classical forecast Than the present invention improves CO2The Control platform of a wide range of variable parameter operation of trapping system, enhance its ability flexibly run.
As shown in figure 1, CO after the burning of the present invention2Trapping system Multi model Predictive Controllers, specifically include following step Suddenly:
Step 1, near a certain given capture rate operating point, design change in 30 seconds once, continue the poor liquid stream of 30000 seconds Measure valve opening signal uaDrawn gas valve opening amount signal u with steam turbine low pressure (LP) cylinderb, row energization is entered to system, obtains a series of CO2Catch Collection rate yaWith reboiler temperature ybOpen-loop response data;
Step 2, sampling period T is selecteds=30s, withTo input,For output, profit With subspace state space system identification, CO at different capture rate operating points is built2Trapping system local state spatial model, specific steps For:
A:Continuously obtain 1000 groups of output data Y and amplification input data U are arranged as Hankel matrix forms respectively (2N+j-2=1000):
Wherein, N is matrix line number, take N=10;N is more than CO2Trapping system order, j is matrix columns, in hardware condition It is the bigger the better in the case of permission, Y and U represent output and the Hankel matrixes of input data composition, Y respectivelyfAnd YpRepresent respectively The Future Data and past data of output data, UfAnd UpThe Future Data and past data of input data, y are represented respectivelyjRepresent J-th of output data, ujRepresent j-th of input data;
B:Make Wp=[(Yp)T (Up)T]T, QR decomposition is carried out to following matrix:
Obtain matrix L:
C:Obtain matrix Lw=L (:,1:N (m+l)), Lu=L (:,N(m+l)+1:End), m=2, m tie up for input variable Number, l=2, l are input/output variable dimension, L (:,1:N (m+l)) represent that L preceding N (m+l) is arranged, L (:,N(m+l)+1:end) Represent L from all row after the row of N (m+l)+1;
D:To LwMatrix does singular value decomposition:
Obtain matrix ΓN=U1(S1)1/2, and then obtain:Model parameterWhereinL rows before expression is removed ΓN,Γ NThe Γ of rear l rows is removed in expressionN,Represent Moore-Penrose pseudoinverses;Model parameter C=ΓN(1:l,:) can be from ΓN Preceding l rows in directly obtain.
Subspace matrices lw=Lw(1:l,:),lu=Lu(1:l,1:m);
E:Solve system of linear equations:
Obtain model parameter B and D.
Step 3, using the method for gap metric, the difference between each adjacent partial model is analyzed, investigation CO2 trapping systems Nonlinear Distribution, concretely comprise the following steps:
A:Partial model P adjacent to two1、P2Orthogonal fight coprime factorization is done, is obtained:
B:Computation model P1、P2Between distance:
Wherein, HFor a special Hardy normed spaces:σmax(G (j ω)) represents G The maximum singular value of (j ω);Q is HArbitrary function in space, takes Q=1.
C:Gap metric between two systems
D:Local operating point is selected according to the result of gap metric and designs membership function.In this example, its clearence degree is adjusted It is as shown in Figure 2 to grind result, it is seen that, in low capture rate and high capture rate section, mission nonlinear is stronger, and degree of membership letter is designed for this Number is as shown in Figure 3.
Step 4:Model predictive controller is established at suitable partial duty point.Each sampling instant, using formula (1) Estimate the CO of the system within following a period of time2Capture rate and reboiler temperature
Wherein, prediction matrix ψx、ψu、ψyRespectively:
Respectively k moment CO2Estimated state, input and the output of trapping system, F are observer gain.ufFor Following NuThe input data at individual moment, It is following NyWhen etching system estimate it is defeated Go out,In this example, N is takenu=2, Ny=100.
Modus ponens (2) is used as performance index function formula:
Wherein,It is the weight matrix for adjusting input and output Control platform,
rfIt is following NyWhen etching system CO2 capture rates and reboiler temperature setting value Sequence, Represent the k+1 moment to k+N respectivelyyWhen etching system CO2Capture rate raWith reboiler temperature rbSetting value,
Etching system CO when being following Ny2Capture rate and reboiler temperature estimate value sequence,
Represent the k+1 moment to k+N respectivelyyWhen etching system CO2Capture rate yaWith reboiler temperature ybEstimate Value,It can be described by formula (1), take Ny=10;ΔufIt is following NuThe lean solution flow valve opening amount signal at quarter and Low pressure (LP) cylinder draws gas valve opening amount signal sequenceIncrement, wherein Nu=2.
Consider CO2Filters with Magnitude Constraints (the u of trapping system valve opening signalmin=[0.4 0.02]T,umax=[1 0.075 ]T) and increment restriction (Δ umin=[- 0.007-0.001]T,Δumax=[0.007 0.001]T):
Each sampling instant, (1) is substituted into performance indications formula (2), and minimized in the case where meeting to constrain (3) and (4) (2) local controlling increment sequence u, is obtainedfExtract Partial controll increment sequence ufIn First piece of uk+1, lean solution flow valve and low pressure (LP) cylinder as part draw gas valve opening amount signal
Step 5, using membership function, each controller is exported into weighted array, final lean solution flow valve is obtained and opens Spend ua-opDrawn gas valve opening amount signal u with turbine low pressure cylinderb-opAnd act on CO2 trapping systems.WhereinωiFor membership function corresponding to i-th of controller, It is scheduling variable, capture rate CR function, ui a-opAnd ui b-opThe optimum control signal calculated for i-th of controller.
Step 6, the prediction matrix ψ exported in fixed each local controlx、ψu、ψy, repeat step 3~4 is with the company of realization Continuous control.
The present embodiment is for CO after the burning in more of the invention2Trapping system Multi model Predictive Controllers, conventional ratio The control effect of example integral differential control method and general forecast control method, has done two groups of l-G simulation tests:Emulation experiment 1, CO2 The initial capture rate of trapping system is stable at 80%, in t=15min and 115min, CO2Capture rate setting value is slow respectively from 80% 70% and 75% are changed to, it is constant that reboiler temperature setting value is maintained at 383K;Emulation experiment 2, CO2Trapping system initially traps Rate is stable at 80%, t=15min and 115min, CO2Capture rate setting value is slowly varying to 90% and 55% respectively from 80%, It is constant that reboiler temperature setting value is maintained at 383K.
As shown in figure 4, in CO2In the case of capture rate setting value increaseds or decreases, the present invention is to CO after burning2Trapping system Optimal control effect curve be substantially better than conventional proportional plus integral controller, there is satisfied setting value tracking and regulation energy Power.As shown in figure 5, in CO2In the case of capture rate setting value wide variation, optimal control method of the invention can be more preferable Ground is coordinated to draw gas and poor flow quantity using reboiler, realizes the fast track control to capture rate, while it is possible to prevente effectively from big The controller concussion that scope variable parameter operation Linear Model with Side mismatch is brought, has more stably control effect, improves CO2Catch The riding quality of collecting system.
CO after present invention burning2Trapping system Multi model Predictive Controllers, CO is established using subspace state space system identification2Catch Model of the collecting system under different operating points, on the basis of to the non-linear investigation of trapping system, select partial model, establish in advance Survey controller and design membership function, it is big to greatly improve system on the premise of all advantages of conventional linear PREDICTIVE CONTROL are possessed Scope variable parameter operation is horizontal, so as to further improve CO2The ability that trapping system fast deep is flexibly run.
Although the present invention is illustrated and described with regard to preferred embodiment, it is understood by those skilled in the art that Without departing from scope defined by the claims of the present invention, variations and modifications can be carried out to the present invention.

Claims (5)

1. CO after one kind burning2The Multi model Predictive Controllers of trapping system, it is characterised in that comprise the following steps:
(1) CO after burning2Trapping system is switched to manual mode, near different capture rate operating points, with lean solution flow valve Aperture uaDrawn gas valve opening amount signal u with turbine low pressure cylinderbTo input, to CO2Trapping system enters row energization, obtains CO2Trapping Rate yaWith reboiler temperature ybOpen-loop response data;
(2) sampling period Ts is selected, withTo input,For output, Subspace Identification is utilized Method, build CO at different capture rate operating points2Trapping system local state spatial model;
(3) method for using gap metric, analyzes the difference between each adjacent partial model, investigates CO2Non-linear point of trapping system Cloth;
(4) model predictive controller is established at suitable partial duty point;In each sampling instant, each submodel is utilized respectively Estimate the CO of the system within following certain time2Capture rateAnd reboiler temperatureLocal optimum is calculated by optimization Lean solution flow valve apertureDrawn gas valve opening amount signal with turbine low pressure cylinder
(5) the final suitable membership function of design, each controller is exported into weighted array, obtains final lean solution flow valve Aperture ua-opDrawn gas valve opening amount signal u with turbine low pressure cylinderb-opAnd act on CO2Trapping system;
WhereinωiFor person in servitude corresponding to i-th of controller Category degree function, it is scheduling variable, capture rate CR function,WithThe optimum control calculated for i-th of controller Signal;
(6) the prediction matrix ψ exported in fixed each local controlx、ψu、ψy, continuous control is realized in repeat step (3)-(4).
2. CO after burning as claimed in claim 12The Multi model Predictive Controllers of trapping system, it is characterised in that step (2) in, T95/Ts=5~15, wherein T95 are the regulating time that transient process rises to 95%.
3. CO after burning as claimed in claim 12The Multi model Predictive Controllers of trapping system, it is characterised in that step (2) in, CO at different capture rate operating points is built2Trapping system local state spatial model, is concretely comprised the following steps:(21) will be at certain The output data y and input data u from the 0th moment to 2N+j-2 moment that one given operating point nearby continuously obtains are arranged respectively It is classified as Hankel matrix forms:
<mrow> <mi>Y</mi> <mo>=</mo> <mo>&amp;lsqb;</mo> <mfrac> <msup> <mi>Y</mi> <mi>p</mi> </msup> <msup> <mi>Y</mi> <mi>f</mi> </msup> </mfrac> <mo>&amp;rsqb;</mo> <mo>=</mo> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mi>y</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>y</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>y</mi> <mi>j</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>y</mi> <mi>N</mi> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mi>N</mi> <mo>+</mo> <mi>j</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mtable> <mtr> <mtd> <msub> <mi>y</mi> <mi>N</mi> </msub> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mi>N</mi> <mo>+</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mi>N</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mi>N</mi> <mo>+</mo> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>y</mi> <mrow> <mn>2</mn> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>y</mi> <mrow> <mn>2</mn> <mi>N</mi> <mo>+</mo> <mi>j</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mo>,</mo> </mrow> 1
<mrow> <mi>U</mi> <mo>=</mo> <mo>&amp;lsqb;</mo> <mfrac> <msup> <mi>U</mi> <mi>p</mi> </msup> <msup> <mi>U</mi> <mi>f</mi> </msup> </mfrac> <mo>&amp;rsqb;</mo> <mo>=</mo> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mn>0</mn> </msub> </mtd> <mtd> <msub> <mi>u</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>u</mi> <mrow> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>u</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>u</mi> <mi>j</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>u</mi> <mi>N</mi> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mo>+</mo> <mi>j</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mi>N</mi> </msub> </mtd> <mtd> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mo>+</mo> <mi>j</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mo>+</mo> <mn>2</mn> </mrow> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mo>+</mo> <mi>j</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <mn>...</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mn>2</mn> <mi>N</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>u</mi> <mrow> <mn>2</mn> <mi>N</mi> </mrow> </msub> </mtd> <mtd> <mn>...</mn> </mtd> <mtd> <msub> <mi>u</mi> <mrow> <mn>2</mn> <mi>N</mi> <mo>+</mo> <mi>j</mi> <mo>-</mo> <mn>2</mn> </mrow> </msub> </mtd> </mtr> </mtable> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mo>,</mo> </mrow>
Wherein, N is matrix line number, and N is more than CO2Trapping system order, j are matrix columns, and Y and U represent output and input number respectively According to the Hankel matrixes of composition, YfAnd YpThe Future Data and past data of output data, U are represented respectivelyfAnd UpRepresent respectively defeated Enter the Future Data and past data of data, yjRepresent j-th of output data, ujRepresent j-th of input data;
(22) W is madep=[(Yp)T (Up)T]T, QR decomposition is carried out to following matrix:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msup> <mi>W</mi> <mi>p</mi> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>U</mi> <mi>f</mi> </msup> </mtd> </mtr> <mtr> <mtd> <msup> <mi>Y</mi> <mi>f</mi> </msup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>R</mi> <mn>11</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>21</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>22</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mi>R</mi> <mn>31</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>32</mn> </msub> </mtd> <mtd> <msub> <mi>R</mi> <mn>33</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>Q</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>Q</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow>
Obtain matrix L:
(23) so as to obtaining matrix Lw=L (:,1:N (m+l)), Lu=L (:,N(m+l)+1:End), m is input variable dimension, l For output variable dimension, L (:,1:N (m+l)) representing matrix L preceding N (m+l) row, L (:,N(m+l)+1:End) representing matrix L All row from after the row of N (m+l)+1;
(24) to LwMatrix does singular value decomposition:
<mrow> <msub> <mi>L</mi> <mi>w</mi> </msub> <mo>=</mo> <mo>&amp;lsqb;</mo> <mtable> <mtr> <mtd> <msub> <mi>U</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mi>U</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> <mo>&amp;rsqb;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>S</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>S</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>V</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>V</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;ap;</mo> <msub> <mi>U</mi> <mn>1</mn> </msub> <msub> <mi>S</mi> <mn>1</mn> </msub> <msub> <mi>V</mi> <mn>1</mn> </msub> </mrow>
Obtain matrix ΓN=U1(S1)1/2, and then obtain:Model parameterWhereinRepresent l rows before removing ΓN,Γ NThe Γ of rear l rows is removed in expressionN,Represent Moore-Penrose pseudoinverses;Model parameter C=ΓN(1:l,:) can be from ΓN Preceding l rows in directly obtain;
(25) system of linear equations is solved:
Obtain model parameter B and D.
4. CO after burning as claimed in claim 12The Multi model Predictive Controllers of trapping system, it is characterised in that step (3) in, the clearence degree value between adjacent partial model is calculated, is concretely comprised the following steps:
(31) partial model P adjacent to two1、P2Orthogonal fight coprime factorization is done, is obtained:
(32) computation model P1、P2Between distance:
<mrow> <mover> <mi>&amp;delta;</mi> <mo>&amp;RightArrow;</mo> </mover> <mrow> <mo>(</mo> <msub> <mi>P</mi> <mn>1</mn> </msub> <mo>,</mo> <msub> <mi>P</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <munder> <mrow> <mi>i</mi> <mi>n</mi> <mi>f</mi> </mrow> <mrow> <mi>Q</mi> <mo>&amp;Element;</mo> <msub> <mi>H</mi> <mi>&amp;infin;</mi> </msub> </mrow> </munder> <mo>|</mo> <mo>|</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>N</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>D</mi> <mn>1</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>N</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>D</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mi>Q</mi> <mo>|</mo> <msub> <mo>|</mo> <mi>&amp;infin;</mi> </msub> <mo>,</mo> </mrow>
Wherein, HFor a special Hardy normed spaces:σmax(G (j ω)) represents G (j Maximum singular value ω);Q is HArbitrary function in space;
Gap metric between (33) two systems
5. CO after burning as claimed in claim 12The Multi model Predictive Controllers of trapping system, it is characterised in that step (4) in, the CO of the system within following a period of time is estimated using formula (1)2Capture rate and reboiler temperature
Wherein, prediction matrix ψx、ψu、ψyRespectively:
<mrow> <msub> <mi>&amp;psi;</mi> <mi>x</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>C</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>C</mi> <mi>A</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>CA</mi> <mrow> <msub> <mi>N</mi> <mi>y</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mrow> <mo>(</mo> <mi>A</mi> <mo>+</mo> <mi>F</mi> <mi>C</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>&amp;psi;</mi> <mi>y</mi> </msub> <mo>=</mo> <mo>-</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mi>C</mi> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>C</mi> <mi>A</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>CA</mi> <mrow> <msub> <mi>N</mi> <mi>y</mi> </msub> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>F</mi> <mo>,</mo> </mrow>
Respectively k moment CO2Estimated state, input and the output of trapping system, F are observer gain, ufFor future The input data at Nu moment, It is following NyWhen etching system estimate output,
Using equation below calculation of performance indicators function J:
<mrow> <mi>J</mi> <mo>=</mo> <msup> <mrow> <mo>(</mo> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>r</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mi>T</mi> </msup> <msub> <mi>Q</mi> <mi>f</mi> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>f</mi> </msub> <mo>-</mo> <msub> <mi>r</mi> <mi>f</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msubsup> <mi>&amp;Delta;u</mi> <mi>f</mi> <mi>T</mi> </msubsup> <msub> <mi>R</mi> <mi>f</mi> </msub> <msub> <mi>&amp;Delta;u</mi> <mi>f</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>;</mo> </mrow>
Wherein, QfAnd RfIt is the weight matrix for adjusting input and output Control platform,rfIt is future NyWhen etching system CO2Capture rate and reboiler temperature setting value sequence,
<mrow> <msub> <mi>r</mi> <mi>f</mi> </msub> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>r</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>r</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <msubsup> <mi>r</mi> <mrow> <mi>k</mi> <mo>+</mo> <mi>N</mi> <mi>y</mi> </mrow> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> 3
Represent the k+1 moment to k+N respectivelyyWhen etching system CO2Capture rate raWith reboiler temperature rbSetting value, It is following NyWhen etching system CO2Capture rate and reboiler temperature estimate value sequence,
<mrow> <msub> <mover> <mi>y</mi> <mo>^</mo> </mover> <mi>f</mi> </msub> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <msubsup> <mover> <mi>y</mi> <mo>^</mo> </mover> <mrow> <mi>k</mi> <mo>+</mo> <mi>N</mi> <mi>y</mi> </mrow> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow>
Represent the k+1 moment to k+N respectivelyyWhen etching system CO2Capture rate yaWith reboiler temperature ybDiscreet value,
ΔufIt is following NuThe lean solution flow valve opening amount signal u at momentaDrawn gas valve opening amount signal u with low pressure (LP) cylinderbSequenceIncrement;
<mrow> <msub> <mi>&amp;Delta;u</mi> <mi>f</mi> </msub> <mo>=</mo> <mi>&amp;psi;</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> <mi>&amp;psi;</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>I</mi> <mi>m</mi> </msub> </mrow> </mtd> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mo>...</mo> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>I</mi> <mi>m</mi> </msub> </mrow> </mtd> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mo>...</mo> </mtd> </mtr> <mtr> <mtd> <mo>...</mo> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mo>...</mo> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>I</mi> <mi>m</mi> </msub> </mrow> </mtd> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>,</mo> </mrow>
Wherein
CO2 trapping system lean solution flow valves and low pressure (LP) cylinder draw gas valve opening amount signal u Filters with Magnitude Constraints (umin,umax) and increment Constrain (Δ umin,Δumax) be:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>u</mi> <mi>min</mi> </msub> <mo>&amp;le;</mo> <msub> <mi>u</mi> <mi>f</mi> </msub> <mo>&amp;le;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>u</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>&amp;Delta;u</mi> <mi>min</mi> </msub> <mo>&amp;le;</mo> <mi>&amp;psi;</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mi>k</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mi>f</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>&amp;le;</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>I</mi> <mi>m</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <msub> <mi>&amp;Delta;u</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
Wherein, umin,umaxRepresent respectively lean solution flow valve and low pressure (LP) cylinder draw gas valve opening amount signal u minimum value with it is maximum Value, Δ umin,ΔumaxRepresent respectively lean solution flow valve and low pressure (LP) cylinder draw gas valve opening amount signal u smallest incremental with most increasing Amount;
Each sampling instant, formula (1) is substituted into formula (2), and performance is minimized in the case where meeting formula (3) and (4) Target function J, obtain optimal controlling increment sequence uf
<mrow> <msub> <mi>u</mi> <mi>f</mi> </msub> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>u</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>u</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> <mi>T</mi> </msubsup> </mtd> <mtd> <mo>...</mo> </mtd> <mtd> <msubsup> <mi>u</mi> <mrow> <mi>k</mi> <mo>+</mo> <msub> <mi>N</mi> <mi>u</mi> </msub> </mrow> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>;</mo> </mrow>
Extract optimum control increment sequence ufIn first piece of uk+1, drawn gas valve as optimal lean solution flow valve and low pressure (LP) cylinder Opening amount signal
CN201710795146.3A 2017-09-06 2017-09-06 CO after a kind of burning2The Multi model Predictive Controllers of trapping system Active CN107450325B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710795146.3A CN107450325B (en) 2017-09-06 2017-09-06 CO after a kind of burning2The Multi model Predictive Controllers of trapping system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710795146.3A CN107450325B (en) 2017-09-06 2017-09-06 CO after a kind of burning2The Multi model Predictive Controllers of trapping system

Publications (2)

Publication Number Publication Date
CN107450325A true CN107450325A (en) 2017-12-08
CN107450325B CN107450325B (en) 2019-11-12

Family

ID=60494970

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710795146.3A Active CN107450325B (en) 2017-09-06 2017-09-06 CO after a kind of burning2The Multi model Predictive Controllers of trapping system

Country Status (1)

Country Link
CN (1) CN107450325B (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508748A (en) * 2018-03-28 2018-09-07 东南大学 CO after a kind of effective photo-thermal auxiliary combustion2Trapping system progress control method
CN108710356A (en) * 2018-06-19 2018-10-26 东南大学 CO after the effective burning of one kind2Trap coal generating system progress control method
CN108958031A (en) * 2018-07-19 2018-12-07 东南大学 CO after burning2Trap coal generating system predictive coordinated control method
CN109100940A (en) * 2018-09-28 2018-12-28 河海大学常州校区 A kind of Multi model Predictive Controllers based on gap metric weighting function
CN109188911A (en) * 2018-09-28 2019-01-11 东南大学 One kind is for CO after burning2The improvement INA feed forward control method of trapping system
CN110286593A (en) * 2019-07-02 2019-09-27 东南大学 It is a kind of based on multi-objective predictive control chemisorption burning after CO2Trapping system control method
CN110442027A (en) * 2019-08-16 2019-11-12 河海大学常州校区 A kind of gap multi-model weighting function methods of self-tuning
CN110658722A (en) * 2019-10-18 2020-01-07 河海大学常州校区 Self-equalization multi-model decomposition method and system based on gap
CN110687792A (en) * 2019-11-04 2020-01-14 东南大学 CO after chemical adsorption combustion2Anti-smoke disturbance fuzzy control method of trapping system
CN110737198A (en) * 2019-10-09 2020-01-31 东南大学 Large-scale coal-fired power plant CO based on BP neural network2Capture system prediction control method
CN110764419A (en) * 2019-11-15 2020-02-07 江苏方天电力技术有限公司 CO of large coal-fired power station2Capture global scheduling and predictive control system and method
CN111045327A (en) * 2019-11-28 2020-04-21 中国大唐集团科学技术研究院有限公司华东电力试验研究院 Automatic manual switching method based on generalized predictive control
CN111694279A (en) * 2020-06-30 2020-09-22 河海大学常州校区 Multi-variable nonlinear system self-adaptive balanced multi-model decomposition and control method
CN113110030A (en) * 2021-04-20 2021-07-13 兰州理工大学 CO (carbon monoxide)2Trapped DMC-PID cascading system and control method thereof
CN114397922A (en) * 2021-09-29 2022-04-26 北京百利时能源技术股份有限公司 Temperature control system of carbon dioxide capture reboiler of coal-fired power plant

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841539A (en) * 2012-09-10 2012-12-26 广东电网公司电力科学研究院 Subcritical coordinative control method based on multiple model predictive control
CN105404144A (en) * 2014-08-20 2016-03-16 上海交通大学 Multi-model adaptive control method and system of continuous stirred tank reactor
CN105955021A (en) * 2016-05-11 2016-09-21 杭州电子科技大学 Multi-level and multi-model weighted predictive functional control method for electric heating furnace
CN106610587A (en) * 2016-12-28 2017-05-03 中国电力科学研究院 Temperature multi-model prediction function control method and device
CN106842955A (en) * 2017-03-15 2017-06-13 东南大学 CO after burning with exhaust gas volumn Disturbance Rejection2Trapping system forecast Control Algorithm
CN106842962A (en) * 2017-04-13 2017-06-13 东南大学 Based on the SCR denitration control method for becoming constraint multiple model predictive control

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102841539A (en) * 2012-09-10 2012-12-26 广东电网公司电力科学研究院 Subcritical coordinative control method based on multiple model predictive control
CN105404144A (en) * 2014-08-20 2016-03-16 上海交通大学 Multi-model adaptive control method and system of continuous stirred tank reactor
CN105955021A (en) * 2016-05-11 2016-09-21 杭州电子科技大学 Multi-level and multi-model weighted predictive functional control method for electric heating furnace
CN106610587A (en) * 2016-12-28 2017-05-03 中国电力科学研究院 Temperature multi-model prediction function control method and device
CN106842955A (en) * 2017-03-15 2017-06-13 东南大学 CO after burning with exhaust gas volumn Disturbance Rejection2Trapping system forecast Control Algorithm
CN106842962A (en) * 2017-04-13 2017-06-13 东南大学 Based on the SCR denitration control method for becoming constraint multiple model predictive control

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
崔东艳 等: "基于模糊加权的多模型预测控制在过热汽温系统中的仿真研究", 《兰州石化职业技术学院学报》 *
张智焕: "复杂系统预测控制算法及其应用研究", 《中国博士学位论文全文数据库 信息科技辑》 *
陶响元: "基于间隙度量的非线性系统多模型预测控制", 《中国优秀硕士学位论文全文数据库 信息科技辑》 *

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108508748A (en) * 2018-03-28 2018-09-07 东南大学 CO after a kind of effective photo-thermal auxiliary combustion2Trapping system progress control method
CN108508748B (en) * 2018-03-28 2020-11-03 东南大学 Effective operation control method for photo-thermal auxiliary combustion post-CO 2 capture system
CN108710356A (en) * 2018-06-19 2018-10-26 东南大学 CO after the effective burning of one kind2Trap coal generating system progress control method
CN108710356B (en) * 2018-06-19 2021-01-26 东南大学 Effective post-combustion CO2Operation control method for trapping coal-fired power generation system
CN108958031A (en) * 2018-07-19 2018-12-07 东南大学 CO after burning2Trap coal generating system predictive coordinated control method
CN108958031B (en) * 2018-07-19 2021-02-09 东南大学 Post combustion CO2Coordinated prediction control method for trapping coal-fired power generation system
CN109100940A (en) * 2018-09-28 2018-12-28 河海大学常州校区 A kind of Multi model Predictive Controllers based on gap metric weighting function
CN109188911A (en) * 2018-09-28 2019-01-11 东南大学 One kind is for CO after burning2The improvement INA feed forward control method of trapping system
CN109188911B (en) * 2018-09-28 2019-07-23 东南大学 One kind is for CO after burning2The improvement INA feed forward control method of trapping system
CN110286593A (en) * 2019-07-02 2019-09-27 东南大学 It is a kind of based on multi-objective predictive control chemisorption burning after CO2Trapping system control method
CN110286593B (en) * 2019-07-02 2022-04-26 东南大学 Multi-target prediction control-based control method for carbon dioxide capture system after chemisorption combustion
CN110442027A (en) * 2019-08-16 2019-11-12 河海大学常州校区 A kind of gap multi-model weighting function methods of self-tuning
CN110737198A (en) * 2019-10-09 2020-01-31 东南大学 Large-scale coal-fired power plant CO based on BP neural network2Capture system prediction control method
CN110737198B (en) * 2019-10-09 2022-11-18 东南大学 Large-scale coal-fired power plant CO based on BP neural network 2 Capture system prediction control method
CN110658722B (en) * 2019-10-18 2022-04-26 河海大学常州校区 Self-equalization multi-model decomposition method and system based on gap
CN110658722A (en) * 2019-10-18 2020-01-07 河海大学常州校区 Self-equalization multi-model decomposition method and system based on gap
CN110687792A (en) * 2019-11-04 2020-01-14 东南大学 CO after chemical adsorption combustion2Anti-smoke disturbance fuzzy control method of trapping system
CN110687792B (en) * 2019-11-04 2022-04-26 东南大学 Anti-smoke disturbance fuzzy control method for carbon dioxide capture system after chemical adsorption combustion
CN110764419A (en) * 2019-11-15 2020-02-07 江苏方天电力技术有限公司 CO of large coal-fired power station2Capture global scheduling and predictive control system and method
CN110764419B (en) * 2019-11-15 2022-06-10 江苏方天电力技术有限公司 CO of large coal-fired power plant2Capture global scheduling and predictive control system and method
CN111045327A (en) * 2019-11-28 2020-04-21 中国大唐集团科学技术研究院有限公司华东电力试验研究院 Automatic manual switching method based on generalized predictive control
CN111694279A (en) * 2020-06-30 2020-09-22 河海大学常州校区 Multi-variable nonlinear system self-adaptive balanced multi-model decomposition and control method
CN111694279B (en) * 2020-06-30 2022-09-23 河海大学常州校区 Multivariable nonlinear system self-adaptive equalization multi-model decomposition control method
CN113110030A (en) * 2021-04-20 2021-07-13 兰州理工大学 CO (carbon monoxide)2Trapped DMC-PID cascading system and control method thereof
CN113110030B (en) * 2021-04-20 2022-06-28 兰州理工大学 CO (carbon monoxide)2Trapped DMC-PID cascading system and control method thereof
CN114397922A (en) * 2021-09-29 2022-04-26 北京百利时能源技术股份有限公司 Temperature control system of carbon dioxide capture reboiler of coal-fired power plant

Also Published As

Publication number Publication date
CN107450325B (en) 2019-11-12

Similar Documents

Publication Publication Date Title
CN107450325A (en) CO after one kind burning2The Multi model Predictive Controllers of trapping system
CN105629736B (en) The fired power generating unit SCR denitration Disturbance Rejection forecast Control Algorithm of data-driven
CN106842955B (en) CO after burning with exhaust gas volumn Disturbance Rejection2Trapping system forecast Control Algorithm
CN110764419B (en) CO of large coal-fired power plant2Capture global scheduling and predictive control system and method
CN108710356B (en) Effective post-combustion CO2Operation control method for trapping coal-fired power generation system
CN106933778A (en) A kind of wind power combination forecasting method based on climbing affair character identification
CN104776446A (en) Combustion optimization control method for boiler
CN104408534A (en) Simultaneous equation model-based running optimization method for tower type solar thermoelectric generation system
Zhang et al. The application of slide technology in PV maximum power point tracking system
Mofidipour et al. New procedure in solar system dynamic simulation, thermodynamic analysis, and multi-objective optimization of a post-combustion carbon dioxide capture coal-fired power plant
CN108958031B (en) Post combustion CO2Coordinated prediction control method for trapping coal-fired power generation system
CN105116957A (en) Maximum power point tracking method of photovoltaic power generation system
CN103399491A (en) Parameter identification method for photovoltaic module mechanism model of photovoltaic power generation system
CN104749958B (en) Model relies on the asynchronous fuzzy control method of average residence time switched nonlinear systems
CN108038340A (en) One proton exchanging film fuel battery fractional order Stute space model identification method
CN111552175A (en) Overall optimization scheduling and rapid variable load control method for supercritical coal-fired power plant-carbon capture system after chemical adsorption combustion
Arabi Nowdeh et al. A new hybrid moth flame optimizer-perturb and observe method for maximum power point tracking in photovoltaic energy system
CN110737198B (en) Large-scale coal-fired power plant CO based on BP neural network 2 Capture system prediction control method
CN106707756A (en) Extended state observer-integrated supercritical thermal power unit turbine-boiler coordinated control method
CN112711294A (en) Photovoltaic array global maximum power point tracking method under local shielding
Mirlekar et al. A Biologically-Inspired Optimal Control Strategy (BIO-CS) for Hybrid Energy Systems
CN103413052A (en) Process stable-state modeling variable screening method based on correlation analysis of heat-engine plant
CN108508748B (en) Effective operation control method for photo-thermal auxiliary combustion post-CO 2 capture system
CN106777466A (en) High sulfur-containing natural gas based on ST UPFNN algorithms purify the dynamic evolutionary modeling method of technique
CN105700357A (en) Boiler combustion system control method based on multivariable PID-PFC

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant