CN107444637A - 一种扑翼驱动器及无人飞行器、工作方法 - Google Patents

一种扑翼驱动器及无人飞行器、工作方法 Download PDF

Info

Publication number
CN107444637A
CN107444637A CN201710682620.1A CN201710682620A CN107444637A CN 107444637 A CN107444637 A CN 107444637A CN 201710682620 A CN201710682620 A CN 201710682620A CN 107444637 A CN107444637 A CN 107444637A
Authority
CN
China
Prior art keywords
pole
dynamic
flapping wing
electrostatic
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710682620.1A
Other languages
English (en)
Inventor
王雁平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN201710682620.1A priority Critical patent/CN107444637A/zh
Publication of CN107444637A publication Critical patent/CN107444637A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C33/00Ornithopters
    • B64C33/02Wings; Actuating mechanisms therefor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U10/00Type of UAV
    • B64U10/40Ornithopters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K33/00Motors with reciprocating, oscillating or vibrating magnet, armature or coil system
    • H02K33/18Motors with reciprocating, oscillating or vibrating magnet, armature or coil system with coil systems moving upon intermittent or reversed energisation thereof by interaction with a fixed field system, e.g. permanent magnets

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Power Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Remote Sensing (AREA)
  • Toys (AREA)

Abstract

本发明涉及一种扑翼驱动器及无人飞行器、工作方法,其中本扑翼驱动器包括:驱动装置、左右设置的飞行翼;其中在飞行时,所述驱动装置适于通过位于左右侧的齿条与相应齿轮啮合带动两飞行翼上下扑翼;本发明的扑翼驱动器从结构上,充分利用了电磁铁有效资源,根据动电磁极的运动规律设计对应的磁极,使受到作用的动电磁极与作用它的电磁极在作用前的空气隙接近零,这时产生的作用力理论值趋于无穷大(电磁力与8乘以空气隙的平方成反比),这时动电磁极(简称动磁极)将获得最大的排斥力离开电磁极,因此使用较小的电流就能获得较大的作用力。

Description

一种扑翼驱动器及无人飞行器、工作方法
技术领域
本发明涉及一种模仿鸟类或昆虫飞行的驱动装置,更具体地说,涉及一种模仿鸟类或昆虫双翼异步扑翼驱动装置及其工作方法、无人飞行器。
背景技术
模仿和学习鸟类及昆虫的飞行方式是人类掌握飞行方法的重要途径之一。飞行翼的驱动是实现飞行重要途径。仿生翼驱动器是扑翼飞行器的核心装置,现在小型飞行器大多采用旋翼是,用电机驱动;本发明装置采用了全新的驱动方式,在飞行机理上更加接近鸟类或昆虫的飞行,而且结构简单,效率高,重量轻,承载能力更强。适用于小型和超小型飞行器的应用。
发明内容
本发明的目的是提供一种扑翼驱动器及无人飞行器、工作方法。
为了解决上述技术问题,本发明提供了一种扑翼驱动器,包括:驱动装置、左右设置的飞行翼;其中在飞行时,所述驱动装置适于通过位于左、右侧的齿条与相应齿轮啮合带动两飞行翼上下扑翼。
进一步,所述驱动装置位于一机壳内且包括:位于该机壳内且上下设置的静电磁极,两静电磁极中间形成空腔,一动电磁极位于该空腔内;其中所述静电磁极适于产生固定磁场;所述动电磁极适于产生交变磁场,且交变磁场在交变过程中动电磁极的两端与固定磁场相互作用,以使动电磁极在空腔内上、下移动,所述动电磁极的两端分别固定有齿条,齿条上下动作驱动相应的齿轮旋转,以带动两飞行翼上下扑翼。
进一步,所述静电磁极包括:U形磁芯,且U形磁芯的中部绕制有固定电磁线圈;两U形磁芯固定在所述机壳内,且两U形磁芯对称、间开设置,两U形磁的凹部相对设置;左右侧的齿轮均通过轴承配合在相应的齿轮轴上,齿轮轴安装于机壳内;其中,齿轮的外侧通过连杆连接飞行翼。
进一步,所述动电磁极包括:用于套设于条形磁芯上的工字型塑料骨架,且该工字型塑料骨架的一端部的两边沿分别安装有用于连接动电磁线圈的两接线端的两磷铜片;条形磁芯的两端部分别延伸出工字型塑料骨架的两端,条形磁芯的两端分别固定齿条;位于机壳内侧安装有一对与分别与所述两磷铜片配合导电的电刷;动电磁极驱动电路通过电刷将交变电流传输至动电磁线圈,以产生交变磁场;以及两静电磁极的电磁线圈串联设置,且连接静电磁极驱动电路;所述静电磁极驱动电路适于输出与交变电流的正负半周电流相对应的正向脉冲电流,以使两静电磁极产生彼此相吸的固定电磁场。
进一步,所述U形磁芯的两端均贴附有减震垫。
进一步,所述齿轮上设有限位缺口;该限位缺口中的立面上设有定位轴,飞行翼的连杆的近端活动配合在该定位轴上;齿轮旋转,使飞行翼在向下扑翼时,飞行翼的连杆向上摆动,所述限位缺口的上限位面抵住飞行翼的连杆并向下施力,以在飞行翼上产生升力;而在齿轮反向旋转以向上扑翼时,飞行翼的连杆与所述限位缺口的下限位面相抵,并对连杆向上施力,并使飞行翼保持一定的斜度,以减小扑翼驱动器在上升过程中飞行翼产生的阻力;所述限位缺口的上、下限位面呈八字形分布,且上、下限位面朝外分布。
又一方面,本发明还提供了一种无人飞行器。所述无人飞行器安装有所述的扑翼驱动器。
本发明还提供了一种所述的扑翼驱动器的工作方法,包括:在飞行时,所述驱动装置适于通过位于左右侧的齿条与相应齿轮啮合带动两飞行翼上下扑翼。
进一步,所述驱动装置位于一机壳内且包括:位于该机壳内的且上下设置的静电磁极,两静电磁极中间形成空腔,一动电磁极位于该空腔内;其中所述静电磁极适于产生固定磁场;所述动电磁极适于产生交变磁场,且交变磁场在交变过程中与固定磁场相斥或相吸,以使动电磁极在空腔内上、下移动,即所述动电磁极的两端适于带动左右侧的齿条上下动作。
进一步,所述静电磁极包括:U形磁芯,且U形磁芯的中部绕制有固定电磁线圈;两U形磁芯通过定位轴进行固定,且两U形磁芯的结合处设有适于动电磁极中磁芯伸出的通孔;左右侧的齿条分别安装于动电磁极中磁芯的两端;左右侧的齿轮均通过相应齿轮轴安装于机壳内;其中齿轮仅半周有齿,另半周通过连接件连接飞行翼;所述动电磁极包括:用于套设磁芯的工字型塑料骨架,且该工字型塑料骨架的一端两侧边沿分别安装有用于连接动电磁线圈两接线端的磷铜片;位于机壳内侧安装有与磷铜片配合导电的电刷;动电磁极驱动电路通过电刷将交变电流传输至动电磁线圈,以产生交变磁场;以及两静电磁极的电磁线圈串联设置,且连接静电磁极驱动电路;所述静电磁极驱动电路适于输出与交变电流的正负半周电流相对应的正向脉冲电流,以使两静电磁极产生上、下相吸的固定电磁场。
本发明的无人飞行器,采用所述扑翼驱动器的工作方法。
本发明的有益效果如下:
(1)本发明的扑翼驱动器从结构上,充分利用了电磁铁有效资源,根据动电磁极的运动规律设计对应的磁极,使受到作用的动电磁极与作用它的电磁极在作用前的空气隙接近零,这时产生的作用力理论值趋于无穷大(电磁力与8乘以空气隙的平方成反比),这时动电磁极将获得最大的排斥力离开电磁极,因此使用较小的电流就能获得较大的作用力;并且,当动电磁极受排斥作用离开电磁极后排斥力虽然减小,但是又受到另一静电磁极的吸力作用而迅速移动,在动作过程中,每个磁极都在发挥作用,一面产生斥力,对过就产生吸力,动电磁极始终在合力作用下。
(2)本发明的扑翼驱动器中动磁极无论在那个位置,在移动的过程中,开始移动和结束移动之前都可以获得最大的作用力,使得运动过程比利用电机旋转通过偏心轮变成往复运动更合理,更节省能源,结构也更简单,能量损失更小;而对比文件通过传动机构作用。
(3)本发明的扑翼驱动器能在驱动电流较小的情况下就能够获得很大的推进力,减少了电感线圈的充放电时间,因此可以实现更高频率的往复运动,更接近昆虫的扑翼频率;
(4)本发明的扑翼驱动器其动电磁极与静电磁极之间的间隙接近零,移动行程只有2-3mm,动电磁极在整个移动过程始终受到较大的电磁力作用,利用小电流即可产生大的作用力,飞行翼的扑翼幅度通过不同的齿轮半径确定,而不是靠改变动电磁极的行程,保证了最大限度的利用电磁资源。
附图说明
下面结合附图和实施例对本发明进一步说明。
图1是本发明的扑翼驱动器的结构示意图;
图2是本发明的扑翼驱动器的俯视图;
图3是图1中A-A剖面图;
图4是工字型塑料骨架的结构示意图;
图5(a)是扑翼驱动器中飞行翼向下动作时,齿轮与飞行翼配合示意图;
图5(b)是扑翼驱动器中飞行翼向上动作时,齿轮与飞行翼配合示意图;
图6(a)是扑翼驱动器中飞行翼向上动作示意图;
图6(b)是扑翼驱动器中飞行翼向下动作示意图;
图7(a)是动电磁极的驱动电流波形图;
图7(b)是静电磁极的驱动电流波形图;
图中:驱动装置1、机壳101、齿条102、齿轮103、限位缺口103a、静电磁极110、U形磁芯111、固定电磁线圈112、定位轴113、动电磁极120、磁芯121、动电磁线圈122、工字型塑料骨架123、磷铜片124、电刷125;飞行翼2。
具体实施方式
现在结合附图对本发明作进一步详细的说明。这些附图均为简化的示意图,仅以示意方式说明本发明的基本结构,因此其仅显示与本发明有关的构成。
一个理想的模仿生物飞行的扑翼驱动器应具备如下特点:(1)在保证驱动能力的基础上,尽量减轻自重;(2)在保证驱动能力的基础上,尽量减少能耗;这种飞行器才有较好的持续飞行能力;基于上述特点,本发明的目的是设计一款能够尽可能满足上述条件的扑翼驱动器及其工作方法;其采用与传统方式不同的电磁驱动结构,利用电磁驱动特性,充分挖掘动力资源,在提高能源利用率,提高承载能力的基础上减轻装置的重量,以提高小型和超小型仿生飞行器续航能力;本发明采用的技术方案,合理设计磁极,合理运用电磁资源,优化静电磁极110和动电磁极120的结构组合,使利用较小的电力资源达到驱动力的最大化,从而使飞行器在有限能源的基础上远距离飞行。
以下通过实施例1、实施例2和实施例3对本发明进行详细阐述。
实施例1
如图1至图3所示,本发明的一种扑翼驱动器,包括:驱动装置1、左右设置的飞行翼2;其中在飞行时,所述驱动装置1适于通过位于左右侧的齿条102与相应齿轮103啮合带动两飞行翼2上下扑翼。
具体的,所述驱动装置1位于一机壳101内且包括:位于该机壳101内的且上下设置的静电磁极110,两静电磁极110中间形成空腔,一动电磁极120位于该空腔内;其中所述静电磁极110适于产生固定磁场;所述动电磁极120适于产生交变磁场,且交变磁场在交变过程中与固定磁场相斥或相吸,以使动电磁极120在空腔内上、下移动,即所述动电磁极120的两端适于带动左右侧的齿条102上下动作。
所述静电磁极110包括:U形磁芯111,且U形磁芯111的中部绕制有固定电磁线圈112;两U形磁芯111通过定位轴113进行固定,且两U形磁芯的结合处设有适于动电磁极120中磁芯121伸出的通孔;左右侧的齿条102分别安装于动电磁极120中磁芯121的两端;左右侧的齿轮103均通过相应齿轮103轴安装于机壳101内;其中齿轮103仅半周有齿,另半周通过连接件连接飞行翼2。
如图4所示,所述动电磁极120包括:用于套设磁芯121的工字型塑料骨架123,且该工字型塑料骨架123的一端两侧边沿分别安装有用于连接动电磁线圈122两接线端的磷铜片124;位于机壳101内侧安装有与磷铜片124配合导电的电刷125;动电磁极驱动电路通过电刷125将交变电流传输至动电磁线圈122,以产生交变磁场;以及两静电磁极110的电磁线圈串联设置,且连接静电磁极驱动电路;所述静电磁极驱动电路适于输出与交变电流的正负半周电流相对应的正向脉冲电流,以使两静电磁极110产生上、下相吸的固定电磁场。优选的,所述U形磁芯111的两端均贴附有减震垫,以降低扑翼时的振动噪音。
进一步,如图5(a)和图5(b)所示,所述齿轮103与飞行翼2的连接处设有转轴,以及所述齿轮103还设有限位缺口103a;在向下扑翼时,所述限位缺口103a的上限位抵住飞行翼2向下动作受力,产生升力,即转轴位于上限位附近;并在向上扑翼时,飞行翼2在限位缺口103a转动后与下限位相抵,使飞行翼2保持一定的斜度,以减小扑翼驱动器在上升过程中飞行翼2产生的阻力。
实施例2
在实施例1基础上,本实施例2提供了一种无人飞行器。
所述飞行器安装有如实施例1所述的扑翼驱动器。
实施例3
在实施例1基础上,本实施例3提供了一种扑翼驱动器的工作方法,包括:在飞行时,所述驱动装置1适于通过位于左右侧的齿条102与相应齿轮103啮合带动两飞行翼2上下扑翼。
所述驱动装置1位于一机壳101内且包括:位于该机壳101内的且上下设置的静电磁极110,两静电磁极110中间形成空腔,一动电磁极120位于该空腔内;其中所述静电磁极110适于产生固定磁场;所述动电磁极120适于产生交变磁场,且交变磁场在交变过程中与固定磁场相斥或相吸,以使动电磁极120在空腔内上、下移动,即所述动电磁极120的两端适于带动左右侧的齿条102上下动作。
所述静电磁极110包括:U形磁芯111,且U形磁芯111的中部绕制有固定电磁线圈112;两U形磁芯111通过定位轴113进行固定,且两U形磁芯的结合处设有适于动电磁极120中磁芯121伸出的通孔;左右侧的齿条102分别安装于动电磁极120中磁芯121的两端;左右侧的齿轮103均通过相应齿轮103轴安装于机壳101内;其中齿轮103仅半周有齿,另半周通过连接件连接飞行翼2;所述动电磁极120包括:用于套设磁芯121的工字型塑料骨架123,且该工字型塑料骨架123的一端两侧边沿分别安装有用于连接动电磁线圈122两接线端的磷铜片124;位于机壳101内侧安装有与磷铜片124配合导电的电刷125;动电磁极驱动电路通过电刷125将交变电流传输至动电磁线圈122,以产生交变磁场;以及两静电磁极110的电磁线圈串联设置,且连接静电磁极驱动电路;所述静电磁极驱动电路适于输出与交变电流的正负半周电流相对应的正向脉冲电流,以使两静电磁极110产生上、下相吸的固定电磁场。
工作原理说明如下,假定初始状态在图6(a)的位置,当线圈中没有电流流过时,此状态是稳定的;当动电磁线圈122中通入正向电流,静电磁极110的磁极方向如图6(a)所示,这时由于产生同性磁场的相斥作用,左右两侧产生向上的力F,动电磁极120将受力的作用而到达图6(b)所示位置,这时,撤除正向电流,由于静电磁极110本身的磁力作用,动电磁极120将停留在图6(b)的位置上。
进一步地,将动电磁线圈122通入反向电流,静电磁极110的方向将如图6(b)所示,由于静电磁极110再次产生与动电磁极120相反的磁场,在排斥力作用下,动电磁极120将离开原磁极的位置返回到图6(a)的位置上;
对于动电磁极120,如果在动电磁线圈122上加上如图7(a)所示的交变电流,动电磁极120会周而复始的上下运动,驱动飞行翼2上下振动。调节控制电流脉宽和幅值控制驱动器的输出功率。
静电磁极110两种状态,通入电流,电磁铁状态,另一个状态是线圈无电流,不产生磁力作用;动电磁极120三个状态,通入正向和反向电流,磁极方向变化,或动电磁线圈122无电流,不产生磁力作用。
以上述依据本发明的理想实施例为启示,通过上述的说明内容,相关工作人员完全可以在不偏离本项发明技术思想的范围内,进行多样的变更以及修改。本项发明的技术性范围并不局限于说明书上的内容,必须要根据权利要求范围来确定其技术性范围。

Claims (9)

1.一种扑翼驱动器,其特征在于,包括:
驱动装置、左右设置的飞行翼;其中
在飞行时,所述驱动装置适于通过位于左、右侧的齿条与相应齿轮啮合带动两飞行翼上下扑翼。
2.根据权利要求1所述的扑翼驱动器,其特征在于,
所述驱动装置位于一机壳内且包括:位于该机壳内且上下设置的静电磁极,两静电磁极中间形成空腔,一动电磁极位于该空腔内;其中
所述静电磁极适于产生固定磁场;
所述动电磁极适于产生交变磁场,且交变磁场在交变过程中动电磁极的两端与所述固定磁场相互作用,以使动电磁极在空腔内上、下移动;
所述动电磁极的两端分别固定有齿条,齿条上下动作驱动相应的齿轮旋转,以带动两飞行翼上下扑翼。
3.根据权利要求2所述的扑翼驱动器,其特征在于,
所述静电磁极包括:U形磁芯,且U形磁芯的中部绕制有固定电磁线圈;
两U形磁芯固定在所述机壳内,且两U形磁芯对称、间开设置,两U形磁的凹部相对设置;
左右侧的齿轮均通过轴承配合在相应的齿轮轴上,齿轮轴安装于机壳内;其中
齿轮的外侧通过连杆连接飞行翼。
4.根据权利要求3所述的扑翼驱动器,其特征在于,
所述动电磁极包括:用于套设于条形磁芯上的工字型塑料骨架,且该工字型塑料骨架的一端部的两边沿分别安装有用于连接动电磁线圈的两接线端的两磷铜片;条形磁芯的两端部分别延伸出工字型塑料骨架的两端,条形磁芯的两端分别固定齿条;
位于机壳内侧安装有一对与分别与所述两磷铜片配合导电的电刷;
动电磁极驱动电路通过电刷将交变电流传输至动电磁线圈,以产生交变磁场;以及
两静电磁极的电磁线圈串联设置,且连接静电磁极驱动电路;
所述静电磁极驱动电路适于输出与交变电流的正负半周电流相对应的正向脉冲电流,以使两静电磁极产生彼此相吸的固定电磁场。
5.根据权利要求4所述的扑翼驱动器,其特征在于,
所述齿轮上设有限位缺口;该限位缺口中的立面上设有定位轴,飞行翼的连杆的近端活动配合在该定位轴上;
齿轮旋转,使飞行翼在向下扑翼时,飞行翼的连杆向上摆动,所述限位缺口的上限位面抵住飞行翼的连杆并向下施力,以在飞行翼上产生升力;而在齿轮反向旋转以向上扑翼时,飞行翼的连杆与所述限位缺口的下限位面相抵,并对连杆向上施力,并使飞行翼保持一定的斜度,以减小扑翼驱动器在上升过程中飞行翼产生的阻力;
所述限位缺口的上、下限位面呈八字形分布,且上、下限位面朝外分布。
6.一种无人飞行器,其特征在于,安装有如权利要求1-5任一项所述的扑翼驱动器。
7.一种如权利要求1所述的扑翼驱动器的工作方法,其特征在于,包括:
在飞行时,所述驱动装置适于通过位于左右侧的齿条与相应齿轮啮合带动两飞行翼上下扑翼。
8.根据权利要求7所述的扑翼驱动器的工作方法,其特征在于,
所述驱动装置位于一机壳内且包括:位于该机壳内的且上下设置的静电磁极,两静电磁极中间形成空腔,一动电磁极位于该空腔内;其中
所述静电磁极适于产生固定磁场;
所述动电磁极适于产生交变磁场,且交变磁场在交变过程中与固定磁场相斥或相吸,以使动电磁极在空腔内上、下移动,即
所述动电磁极的两端适于带动左右侧的齿条上下动作。
9.根据权利要求8所述的扑翼驱动器的工作方法,其特征在于,
所述静电磁极包括:U形磁芯,且U形磁芯的中部绕制有固定电磁线圈;
两U形磁芯通过定位轴进行固定,且两U形磁芯的结合处设有适于动电磁极中磁芯伸出的通孔;
左右侧的齿条分别安装于动电磁极中磁芯的两端;
左右侧的齿轮均通过相应齿轮轴安装于机壳内;其中
齿轮仅半周有齿,另半周通过连接件连接飞行翼;
所述动电磁极包括:用于套设磁芯的工字型塑料骨架,且该工字型塑料骨架的一端两侧边沿分别安装有用于连接动电磁线圈两接线端的磷铜片;
位于机壳内侧安装有与磷铜片配合导电的电刷;
动电磁极驱动电路通过电刷将交变电流传输至动电磁线圈,以产生交变磁场;以及
两静电磁极的电磁线圈串联设置,且连接静电磁极驱动电路;
所述静电磁极驱动电路适于输出与交变电流的正负半周电流相对应的正向脉冲电流,以使两静电磁极产生上、下相吸的固定电磁场。
CN201710682620.1A 2017-08-10 2017-08-10 一种扑翼驱动器及无人飞行器、工作方法 Pending CN107444637A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710682620.1A CN107444637A (zh) 2017-08-10 2017-08-10 一种扑翼驱动器及无人飞行器、工作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710682620.1A CN107444637A (zh) 2017-08-10 2017-08-10 一种扑翼驱动器及无人飞行器、工作方法

Publications (1)

Publication Number Publication Date
CN107444637A true CN107444637A (zh) 2017-12-08

Family

ID=60491672

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710682620.1A Pending CN107444637A (zh) 2017-08-10 2017-08-10 一种扑翼驱动器及无人飞行器、工作方法

Country Status (1)

Country Link
CN (1) CN107444637A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107834802A (zh) * 2017-12-11 2018-03-23 王梓力 一种用于扑翼飞行器的谐振电机

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1765702A (zh) * 2005-11-09 2006-05-03 中国科学技术大学 一种电磁驱动翼面的微型扑翼系统
CN201690338U (zh) * 2010-04-01 2010-12-29 戴珊珊 电磁产生机械往复双稳态运动的装置
JP2012140038A (ja) * 2010-12-28 2012-07-26 Uha Mikakuto Co Ltd 羽ばたき型小型飛翔体
CN205574276U (zh) * 2016-04-26 2016-09-14 巢湖学院 一种凸轮式扑翼飞行器

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1765702A (zh) * 2005-11-09 2006-05-03 中国科学技术大学 一种电磁驱动翼面的微型扑翼系统
CN201690338U (zh) * 2010-04-01 2010-12-29 戴珊珊 电磁产生机械往复双稳态运动的装置
JP2012140038A (ja) * 2010-12-28 2012-07-26 Uha Mikakuto Co Ltd 羽ばたき型小型飛翔体
CN205574276U (zh) * 2016-04-26 2016-09-14 巢湖学院 一种凸轮式扑翼飞行器

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107834802A (zh) * 2017-12-11 2018-03-23 王梓力 一种用于扑翼飞行器的谐振电机

Similar Documents

Publication Publication Date Title
CN104760697B (zh) 一种电磁驱动的微型扑翼机
JP5521120B2 (ja) 垂直軸タービン及びこれを備える両方向積層式垂直軸タービン
CN203698663U (zh) 一种机翼可折叠式扑翼机
CN110525647B (zh) 一种适用于微型四扑翼飞行器的传动机构
CN107867397B (zh) 一种直线超声电机驱动的微型扑翼飞行器
CN102933843A (zh) 利用旋转运动向线性运动的转换的发电机
CN103337938A (zh) 一种12/4极单绕组无轴承开关磁阻电机及其控制方法
CN104875884B (zh) 振动型致动器及扑翼飞行器
CN107444636A (zh) 一种环境监测用无人机及其工作方法
CN107444637A (zh) 一种扑翼驱动器及无人飞行器、工作方法
CN204548504U (zh) 一种电磁驱动的微型扑翼机
CN107161340B (zh) 仿生扑翼飞行器及其飞行控制方法
CN107733143B (zh) 一种基于屈曲梁的双稳态永磁舵机及作动方法
CN107310723B (zh) 无尾扑翼飞行器及其飞行控制方法
CN107380432A (zh) 一种无人机用驱动器及其工作方法、以及无人机
CN107370326A (zh) 一种电磁振动机
CN115027670A (zh) 仿昆虫双翼可变拍动幅值的机械扑翼飞行器
CN107911002A (zh) 一种基于e形铁轭的双稳态电磁舵机及作动方法
CN111911349B (zh) 基于动态平衡扑翼的高空风能发电系统
CN212423466U (zh) 一种由电子型人工肌肉驱动的微扑翼机构
KR102239379B1 (ko) 자력을 이용한 회전운동장치
CN210405057U (zh) 一种直线往返直流变频发电装置
CN107444635A (zh) 北斗导航的无人机用拍式仿生翼驱动器及其工作方法
CN203284560U (zh) 综框纵向运动传动装置
CN102857148B (zh) 一种磁电混合直轴驱动方法及动力装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171208