CN107441489A - 抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法及用途 - Google Patents

抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法及用途 Download PDF

Info

Publication number
CN107441489A
CN107441489A CN201710636653.2A CN201710636653A CN107441489A CN 107441489 A CN107441489 A CN 107441489A CN 201710636653 A CN201710636653 A CN 201710636653A CN 107441489 A CN107441489 A CN 107441489A
Authority
CN
China
Prior art keywords
solution
antibacterial peptide
gold nanorods
antibacterial
antiseptic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710636653.2A
Other languages
English (en)
Other versions
CN107441489B (zh
Inventor
刘磊
张�杰
冯永海
陈清玉
董明东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lanzhou Bolin Chemical Technology Co.,Ltd.
Original Assignee
Jiangsu University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu University filed Critical Jiangsu University
Priority to CN201710636653.2A priority Critical patent/CN107441489B/zh
Publication of CN107441489A publication Critical patent/CN107441489A/zh
Application granted granted Critical
Publication of CN107441489B publication Critical patent/CN107441489B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K41/00Medicinal preparations obtained by treating materials with wave energy or particle radiation ; Therapies using these preparations
    • A61K41/0052Thermotherapy; Hyperthermia; Magnetic induction; Induction heating therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/04Peptides having up to 20 amino acids in a fully defined sequence; Derivatives thereof
    • A61K38/08Peptides having 5 to 11 amino acids
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/14Treatment of metallic powder
    • B22F1/145Chemical treatment, e.g. passivation or decarburisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Nanotechnology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Medicinal Chemistry (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Immunology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Peptides Or Proteins (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)

Abstract

本发明公开了抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法及用途,属于材料制备技术领域。特指利用抗菌多肽对金纳米棒进行修饰,通过抗菌肽自身抗菌效果和在近红外光照射下产生的光热效果,协同的高效杀菌,其步骤主要包括:(1)制备金种;(2)制备金纳米棒;(3)制备抗菌多肽溶液;(4)制备抗菌肽修饰金纳米棒的复合光热剂;(5)光热抗菌。本技术发明将抗菌多肽修饰于具有强NIR吸收的金纳米棒上,并应用于光热抗菌。利用抗菌肽自身较好的抗菌效果和近红外光照射下产生的光热效果,协同的高效的,通过较低的能量输入,达到更好的抗菌效果。

Description

抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法及用途
技术领域
本发明涉及一种光热抗菌剂的制备方法及其用途,特指利用抗菌多肽对金纳米棒进行修饰,通过抗菌肽自身抗菌效果和在近红外光照射下产生的光热效果,协同的高效杀菌,属于材料制备技术领域。
背景技术
目前,全球抗生素滥用问题日益严重,特别是发展中国家。据统计,2013年全球抗生素消耗量约33万吨;我国抗生素消耗量达16.2万吨,约占全球消耗量的一半。由于抗生素大剂量使用和滥用,在过去的20年出现了许多新的多重耐药(Multidrug-resistant,MDR)的“超级细菌”,例如,耐甲氧西林金黄色葡萄球菌(Methicillin-resistantStaphylococcus aureus,MRSA),抗万古霉素肠球菌(Vancomycin-resistantEnterococcus,VRE)和NDM-1超级细菌等。目前,细菌治疗的主要途径是通过抗生素治疗。但是,多重耐药菌对多种抗生素耐药,且产生耐新药性需时较短。其次,新型抗生素研发需时长、成本高。此外,其它抗菌方法如杀菌剂氯气、银、强氧化剂的使用,低温等离子体技术和光催化降解等,由于自身存在的缺点和潜在危害限制其在活体内(In vivo)抗菌感染的应用研究。
光热治疗法(Photothermal therapy,PTT)又称为光热分解(Photothermolysis),作为治疗肿瘤细胞新方法得到了广泛的关注和研究。它是利用具有较高光热转换效率的光热剂,在易穿透组织的近红外(NIR)光照射下,将光能转化为热能通过细胞热消融途径来实现不可逆细胞破坏的一种治疗方法。近年来,其在杀菌领域的应用也备受关注。其中,对光热治疗的研究主要着重于光热剂的研究。目前,研究中的光热材料主要有贵金属纳米颗粒(优点:强NIR吸收,易与生物分子结合;缺点:细菌选择性差),碳纳米材料(优点:较大的光热转换面积;缺点:近红外区吸收能力差),金属非金属化合物(优点:成本低,合成方便;缺点:光热转换效率较低),聚合物纳米材料(优点:易于形成抗菌涂层,薄膜;缺点:光热转换效率低、生物相容性较差),无机生物复合材料(优点:对细菌具有识别性;缺点:自身不具备杀菌性能)等。从中我们可以看出,金纳米棒(AuNRs)是理想的光热材料,但是由于细菌识别差,在光热杀死细菌的同时,正常细胞也受到伤害。生物分子修饰的金纳米棒本身不具备抗菌性能,故在无近红外光作用的情况下,残余耐药菌可能会继续生长。因此,我们寻求一种更好是生物体用来修饰金纳米棒,以期得到更好的复合光热剂。
抗菌多肽(Antimicrobial Peptides,AMPs):是广泛存在于生物体内,由特定基因编码产生,具有抵御外界微生物侵害及清除体内突变细胞作用的一类小分子多肽,是生物天然免疫防御系统的重要组成部分。抗菌肽自身具有较好的抗菌效果,但单一存在的抗菌肽容易被体内的酶消化降解。因此,我们将抗菌肽修饰于金棒上,使得抗菌多肽形成团聚体,这样既发挥了其自身的优点,也避免了其缺点。
发明内容
本发明将抗菌多肽修饰于具有强NIR吸收的金纳米棒上,并应用于光热抗菌。其优点在于利用抗菌肽自身较好的抗菌效果和近红外光照射下产生的光热效果,协同的高效的,通过较低的能量输入,达到更好的抗菌效果。
本发明采用的技术方案是:
一种抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法,按照以下步骤进行:
步骤1、制备金种(Au seeds):首先将氯金酸(HAuCl4)溶液加入到十六烷基三甲基溴化铵(CTAB)溶液中,搅拌均匀,然后滴加冰水配置的硼氢化钠(NaBH4)溶液,轻晃混匀,放置于30℃水浴保温3h以上,得到金种。
步骤2、制备金纳米棒(AuNRs):取步骤1中金种溶液,加入到含有十六烷基三甲基溴化铵(CTAB)溶液,氯金酸(HAuCl4)溶液,硝酸银(AgNO3)溶液和抗坏血酸(AA)溶液的生长液中,搅拌均匀,放置于30℃水浴中反应3h以上,得到金纳米棒溶液。金纳米棒使用前离心(12000rmp,10min)两次提纯。
步骤3、制备抗菌多肽(Antimicrobial Peptides,AMPs)溶液:将抗菌肽粉末溶于六氟异丙醇溶液中,室温摇晃溶解过夜,得到六氟异丙醇分散的多肽溶液。取一定体积的六氟异丙醇分散的多肽溶液于离心管中,用封口膜封住离心管的口,并用针头在封口膜上扎几个小孔,随后放置于真空干燥箱中干燥,得到一定量的多肽粉末。向干燥后的含有多肽粉末的离心管中加入0.1mL去离子水,超声3秒,振荡3秒,并重复3次,得到抗菌肽水溶液。
步骤4、制备抗菌肽修饰金纳米棒的复合光热剂(Au@AMPs):将步骤3中所得到的抗菌肽水溶液加到一定量的AuNRs溶液中,轻轻振荡30s,放置于30℃水浴中反应3h以上,使多肽所带的巯基与金纳米棒通过A-S键结合,得到Au@AMPs。
步骤1中,HAuCl4溶液的浓度为0.01mol/L,CTAB溶液浓度为0.1mol/L,NaBH4溶液的浓度为0.01mol/L。HAuCl4溶液、CTAB溶液和NaBH4溶液的体积比为1:30:2.4。
步骤2中,CTAB溶液浓度为0.1mol/L,HAuCl4溶液的浓度为0.01mol/L,AgNO3溶液的浓度为0.01mol/L,AA溶液的浓度为0.1mol/L。CTAB溶液、HAuCl4溶液、AgNO3、AA溶液和金种溶液的体积比为475:20:3:3.2:1。
步骤3中,抗菌肽粉末与六氟异丙醇的比值为1mg:1mL。所用抗菌肽的氨基酸序列为RIWVIERRC(SEQ ID NO.1)或CRIWVIERR(SEQ ID NO.2)中的一种。
步骤3中,所取用的六氟异丙醇分散是多肽溶液的体积为0.012-0.06mL,及最终的抗菌肽溶液浓度为0.168-0.84mM。
步骤4中,所用的AuNRs溶液的体积为1mL,即最终抗菌肽水溶液与AuNRs溶液的体积比为1:10。
一种抗菌肽修饰金纳米棒的复合光热抗菌剂的应用,用于光热抗菌:按照以下步骤进行:
将体积比为1:4的细菌溶液和Au@AMPs溶液混合,静置0.5h。在一定功率的近红外光照射下照射后,用磷酸盐缓冲液稀释10000倍,取100μL稀释后的悬浮液涂到LuriaBertani固体培养基上,在37℃培养箱中培养12h,计算菌落数,以此计算杀菌率。
所用的细菌为革兰氏阳性菌金黄色葡萄球菌(S.aureus,ATCC 25923),由江苏大学生命科学研究院提供。
所用功率为0.1-1W,照射时间为5-15min。
上述的技术方案中所述的HAuCl4溶液,其作用为提供Au3+
上述的技术方案中所述的CTAB溶液,其作用为表面活性剂。
上述的技术方案中所述的NaBH4溶液,其作用为还原剂。
上述的技术方案中所述的六氟异丙醇,其作用分散剂,将抗菌多肽粉末溶解分散,以便提取出不同质量的多肽粉末。
本技术发明将抗菌多肽修饰于具有强NIR吸收的金纳米棒上,并应用于光热抗菌。其优点在于利用抗菌肽自身较好的抗菌效果和近红外光照射下产生的光热效果,协同的高效的,通过较低的能量输入,达到更好的抗菌效果。
具体实施方式
上述技术方案所制备的Au@AMPs溶液应用于光热杀菌,下面结合具体实施实例对本发明做进一步说明。
实施例1
(1)AuNRs的制备:首先将0.25mL HAuCl4溶液加入到7.5mL CTAB溶液中,搅拌均匀,然后滴加0.6mL冰水配置的NaBH4溶液,轻晃混匀,放置于30℃水浴保温3h以上,得到金种。取0.05mL金种溶液,加入到含有23.75mL CTAB溶液,1mL HAuCl4溶液,0.15mL AgNO3溶液和0.16mLAA溶液的生长液中,搅拌均匀,放置于30℃水浴中反应3h以上,得到AuNRs溶液。AuNRs使用前离心(12000rmp,10min)两次提纯。
(2)AMPs溶液的制备:将1mg氨基酸序列为RIWVIERRC的抗菌肽粉末溶于1mL六氟异丙醇溶液中,室温摇晃溶解过夜,得到六氟异丙醇分散的多肽溶液。取0.012mL的六氟异丙醇分散的多肽溶液于离心管中,用封口膜封住离心管的口,并用针头在封口膜上扎几个小孔,随后放置于真空干燥箱中干燥,得到一定量的多肽粉末。向干燥后的含有多肽粉末的离心管中加入0.1mL去离子水,超声3秒,振荡3秒,并重复3次,得到抗菌肽水溶液。
(3)Au@AMPs的制备:将步骤(2)中所得到的抗菌肽水溶液加到1mL的AuNRs溶液中,轻轻振荡30s,放置于30℃水浴中反应3h以上,使多肽所带的巯基与金纳米棒通过A-S键结合,得到Au@AMPs,最终AuNRs溶液与AMPs溶液的摩尔比为50:1。
(4)光热杀菌:取0.1mL金黄色葡萄球菌溶液加入到0.4mL Au@AMPs溶液中,静置0.5h。在0.2W的近红外光照射下照射5min,用磷酸盐缓冲液稀释10000倍,取100μL稀释后的悬浮液涂到Luria Bertani固体培养基上,在37℃培养箱中培养12h,计算菌落数,以此计算杀菌率。所得到的杀菌率见表1。
实施例2
同实施例1,仅改变实施例1步骤(2)中用于干燥的六氟异丙醇分散的抗菌肽的体积为0.02mL,0.06mL。及最终AuNRs溶液与AMPs溶液的摩尔比为20:1,10:1。所制备的Au@AMPs的杀菌效率见表1。结果表明,随着AuNRs与AMPs的摩尔比值的降低,即所修饰的抗菌肽的量的增加,所制备的Au@AMPs的杀菌效率随之提高。这说明抗菌在其中提供了很好的杀菌效果。
表1不同抗菌肽修饰量对所制备的材料的杀菌效率的影响
AuNRs与AMPs的摩尔比 杀菌效率(%)
10:1 78
20:1 70
50:1 55
实施例3
同实施例1,仅改变实施例1步骤(4)中所用近红外光的功率为0.6W,0.8W,1W通过改变照射功率来研究其光热抗菌效果。所得杀菌效率见表2。结果表明,随着功率的增加,Au@AMPs的光热杀菌效率逐渐提高。
表2不同照射功率对所制备的材料的杀菌效率的影响
照射功率(W) 杀菌效率(%)
0.2 55
0.6 68
0.8 76
1 83
实施例4
同实施例1,仅改变实施例1步骤(4)中近红外光照射的时间为10min,15min,通过延长照射时间,来研究该光热剂的光热抗菌效果。所得杀菌效率见表3。结果表明,随着光照时间的延长,Au@AMPs的光热杀菌效率随之提高。
表3不同照射时间对所制备的材料的杀菌效率的影响
照射时间(min) 杀菌效率(%)
5 55
10 73
15 89
SEQUENCE LISTING
<110>江苏大学
<120>抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法及用途
<160>2
<170> Patent In version 3.3
<210>SEQ ID NO.1
<211>9
<212>PRT
<213>人工序列
<220>
<221>
<222>
<400>1
Arg Ile Trp Val Ile Gln Arg Arg Cys
1 5
<110>江苏大学
<210>SEQ ID NO.2
<211>9
<212>PRT
<213>人工序列
<220>
<221>
<222>
<400>2
Cys Arg Ile Trp Val Ile Gln Arg Arg
1 5

Claims (9)

1.一种抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法,其特征在于按照以下步骤进行:
步骤1、制备金种(Au seeds):首先将氯金酸(HAuCl4)溶液加入到十六烷基三甲基溴化铵(CTAB)溶液中,搅拌均匀,然后滴加冰水配置的硼氢化钠(NaBH4)溶液,轻晃混匀,放置于30℃水浴保温3h以上,得到金种;
步骤2、制备金纳米棒(AuNRs):取步骤1中金种溶液,加入到含有十六烷基三甲基溴化铵(CTAB)溶液,氯金酸(HAuCl4)溶液,硝酸银(AgNO3)溶液和抗坏血酸(AA)溶液的生长液中,搅拌均匀,放置于30℃水浴中反应3h以上,得到金纳米棒溶液;金纳米棒使用前离心(12000rmp,10min)两次提纯;
步骤3、制备抗菌多肽(Antimicrobial Peptides,AMPs)溶液:将抗菌肽粉末溶于六氟异丙醇溶液中,室温摇晃溶解过夜,得到六氟异丙醇分散的多肽溶液;取一定体积的六氟异丙醇分散的多肽溶液于离心管中,用封口膜封住离心管的口,并用针头在封口膜上扎几个小孔,随后放置于真空干燥箱中干燥,得到一定量的多肽粉末;向干燥后的含有多肽粉末的离心管中加入0.1mL去离子水,超声3秒,振荡3秒,并重复3次,得到抗菌肽水溶液;
步骤4、制备抗菌肽修饰金纳米棒的复合光热剂(Au@AMPs):将步骤3中所得到的抗菌肽水溶液加到一定量的AuNRs溶液中,轻轻振荡30s,放置于30℃水浴中反应3h以上,使多肽所带的巯基与金纳米棒通过A - S键结合,得到Au@AMPs。
2.根据权利要求1所述的一种抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法,其特征在于步骤1中,HAuCl4溶液的浓度为0.01mol/L,CTAB溶液浓度为0.1mol/L,NaBH4溶液的浓度为0.01mol/L;HAuCl4溶液、CTAB溶液和NaBH4溶液的体积比为1:30:2.4。
3.根据权利要求1所述的一种抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法,其特征在于步骤2中,CTAB溶液浓度为0.1mol/L,HAuCl4溶液的浓度为0.01mol/L,AgNO3溶液的浓度为0.01mol/L,AA溶液的浓度为0.1mol/L;CTAB溶液、HAuCl4溶液、AgNO3、AA溶液和金种溶液的体积比为475:20:3:3.2:1。
4.根据权利要求1所述的一种抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法,其特征在于步骤3中,抗菌肽粉末与六氟异丙醇的比值为1mg:1mL;所用抗菌肽的氨基酸序列为RIWVIERRC或CRIWVIERRC中的一种。
5.根据权利要求1所述的一种抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法,其特征在于步骤3中,所取用的六氟异丙醇分散是多肽溶液的体积为0.012 - 0.06mL,及最终的抗菌肽溶液浓度为0.168 - 0.84mM。
6.根据权利要求1所述的一种抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法,其特征在于步骤4中,所用的AuNRs溶液的体积为1mL,即最终抗菌肽水溶液与AuNRs溶液的体积比为1:10。
7.一种抗菌肽修饰金纳米棒的复合光热抗菌剂的应用,用于光热抗菌:按照以下步骤进行:
将体积比为1:4的细菌溶液和Au@AMPs溶液混合,静置0.5h;在一定功率的近红外光照射下照射后,用磷酸盐缓冲液稀释10000倍,取100 μL稀释后的悬浮液涂到Luria Bertani固体培养基上,在37 ℃培养箱中培养12 h,计算菌落数,以此计算杀菌率。
8.根据权利要求1所述的一种抗菌肽修饰金纳米棒的复合光热抗菌剂的应用,其特征在于所用的细菌为革兰氏阳性菌金黄色葡萄球菌(S.aureus,ATCC 25923)。
9.根据权利要求1所述的一种抗菌肽修饰金纳米棒的复合光热抗菌剂的应用,其特征在于所用功率为0.1 - 1W,照射时间为5 - 15min。
CN201710636653.2A 2017-07-31 2017-07-31 抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法及用途 Active CN107441489B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710636653.2A CN107441489B (zh) 2017-07-31 2017-07-31 抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法及用途

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710636653.2A CN107441489B (zh) 2017-07-31 2017-07-31 抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法及用途

Publications (2)

Publication Number Publication Date
CN107441489A true CN107441489A (zh) 2017-12-08
CN107441489B CN107441489B (zh) 2020-11-20

Family

ID=60489799

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710636653.2A Active CN107441489B (zh) 2017-07-31 2017-07-31 抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法及用途

Country Status (1)

Country Link
CN (1) CN107441489B (zh)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108815519A (zh) * 2018-05-07 2018-11-16 江苏大学 一种银纳米纤维光热剂的制备方法及用途
CN109530719A (zh) * 2018-12-10 2019-03-29 江苏大学 一种双功能的金@多肽纳米复合材料及其制备方法和用途
CN110749582A (zh) * 2019-10-25 2020-02-04 中南大学 碳化硅@bsa-抗菌肽纳米探针的制备方法及其应用
CN112316136A (zh) * 2020-09-23 2021-02-05 南京斯泰尔医药科技有限公司 一种抗菌纳米敷料AuNS-AMP-PEG的制备方法和应用
CN112933226A (zh) * 2021-02-07 2021-06-11 常州大学 一种靶向抗菌纳米材料AuNS-PEG-AMP的制备及其应用
CN113712044A (zh) * 2021-08-18 2021-11-30 华南理工大学 一种改性金纳米棒光热抑菌制剂及其制备方法与应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150247803A1 (en) * 2014-02-28 2015-09-03 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Tunable Resonances from Conductively Coupled Plasmonic Nanorods
CN106141201A (zh) * 2016-08-26 2016-11-23 首都师范大学 一种提高金纳米棒光热性能和光热稳定性的方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150247803A1 (en) * 2014-02-28 2015-09-03 The Government Of The United States Of America, As Represented By The Secretary Of The Navy Tunable Resonances from Conductively Coupled Plasmonic Nanorods
CN106141201A (zh) * 2016-08-26 2016-11-23 首都师范大学 一种提高金纳米棒光热性能和光热稳定性的方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
BRANDY J. JOHNSON等: ""Porphyrin-modified antimicrobial peptide indicators for detection of bacteria"", 《SENSING AND BIO-SENSING RESEARCH》 *
车媛媛等: ""抗菌肽的研究进展及其应用"", 《广东饲料》 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108815519A (zh) * 2018-05-07 2018-11-16 江苏大学 一种银纳米纤维光热剂的制备方法及用途
CN109530719A (zh) * 2018-12-10 2019-03-29 江苏大学 一种双功能的金@多肽纳米复合材料及其制备方法和用途
CN110749582A (zh) * 2019-10-25 2020-02-04 中南大学 碳化硅@bsa-抗菌肽纳米探针的制备方法及其应用
CN110749582B (zh) * 2019-10-25 2021-09-07 中南大学 碳化硅@bsa-抗菌肽纳米探针的制备方法及其应用
CN112316136A (zh) * 2020-09-23 2021-02-05 南京斯泰尔医药科技有限公司 一种抗菌纳米敷料AuNS-AMP-PEG的制备方法和应用
CN112933226A (zh) * 2021-02-07 2021-06-11 常州大学 一种靶向抗菌纳米材料AuNS-PEG-AMP的制备及其应用
CN113712044A (zh) * 2021-08-18 2021-11-30 华南理工大学 一种改性金纳米棒光热抑菌制剂及其制备方法与应用

Also Published As

Publication number Publication date
CN107441489B (zh) 2020-11-20

Similar Documents

Publication Publication Date Title
CN107441489A (zh) 抗菌肽修饰金纳米棒的复合光热抗菌剂的制备方法及用途
Chen et al. Recent advances in Ti-based MOFs in biomedical applications
Liu et al. Silver nanoparticle-embedded hydrogel as a photothermal platform for combating bacterial infections
Lin et al. Polyphenol-driving assembly for constructing chitin-polyphenol-metal hydrogel as wound dressing
Chu et al. Near-infrared carbon dot-based platform for bioimaging and photothermal/photodynamic/quaternary ammonium triple synergistic sterilization triggered by single NIR light source
Yu et al. Ag-Conjugated graphene quantum dots with blue light-enhanced singlet oxygen generation for ternary-mode highly-efficient antimicrobial therapy
Pulit et al. Nanosilver-making difficult decisions
Xu et al. Mild heat-assisted polydopamine/alginate hydrogel containing low-dose nanoselenium for facilitating infected wound healing
Chen et al. A janus Au–polymersome heterostructure with near‐field enhancement effect for implant‐associated infection phototherapy
Zhang et al. A nanoplatform with oxygen self-supplying and heat-sensitizing capabilities enhances the efficacy of photodynamic therapy in eradicating multidrug-resistant biofilms
Chu et al. Silica-supported near-infrared carbon dots and bicarbonate nanoplatform for triple synergistic sterilization and wound healing promotion therapy
Li et al. Nano–Bio Interactions: Biofilm‐Targeted Antibacterial Nanomaterials
CN109820838A (zh) 一种光热控释氢气纳米材料及其制备方法与应用
Li et al. Cytocompatible amphipathic carbon quantum dots as potent membrane-active antibacterial agents with low drug resistance and effective inhibition of biofilm formation
Yang et al. A biofilm microenvironment-responsive one-for-all bactericidal nanoplatform for photothermal-augmented multimodal synergistic therapy of pathogenic bacterial biofilm infection
Qi et al. Facile synthesis of ε-poly-L-lysine-conjugated ZnO@ PDA as photothermal antibacterial agents for synergistic bacteria killing and biofilm eradication
Yan et al. Nanomaterials for the treatment of bacterial infection by photothermal/photodynamic synergism
Zhang et al. Engineering of near-infrared-activated lignin–Polydopamine–Nanosilver composites for highly efficient sterilization
Hou et al. Synergistic antibacterial therapy for multidrug-resistant bacterial infections using multifunctional nanozymes
Qi et al. Reactive Oxygen Species Responsive Nitric Oxide Release for Enhanced Photodynamic Antibacterial Therapy of Scaffolds
He et al. Nanomaterials in Antibacterial Photodynamic Therapy and Antibacterial Sonodynamic Therapy
Jia et al. A self-supplied hydrogen peroxide and nitric oxide-generating nanoplatform enhances the efficacy of chemodynamic therapy for biofilm eradication
Wu et al. Precise antibacterial therapeutics based on stimuli-responsive nanomaterials
Thampi et al. Biogenic synthesis and characterization of silver nanoparticles using Syzygium samarangense (Wax Apple) leaves extract and their antibacterial activity
CN111803695A (zh) 一种基于银掺杂碳点的no释放型伤口敷料的制备方法及其产品和应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Liu Lei

Inventor after: Zhang Jie

Inventor after: Feng Yonghai

Inventor after: Chen Qingyu

Inventor before: Liu Lei

Inventor before: Zhang Jie

Inventor before: Feng Yonghai

Inventor before: Chen Qingyu

Inventor before: Dong Mingdong

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20220801

Address after: 730000 Room 411, No. 1346, daxiahe street, Lanzhou New District, Lanzhou City, Gansu Province

Patentee after: Lanzhou Bolin Chemical Technology Co.,Ltd.

Address before: Zhenjiang City, Jiangsu Province, 212013 Jingkou District Road No. 301

Patentee before: JIANGSU University