CN107424599B - 声子晶体及声波出射方位的调控方法 - Google Patents

声子晶体及声波出射方位的调控方法 Download PDF

Info

Publication number
CN107424599B
CN107424599B CN201710321019.XA CN201710321019A CN107424599B CN 107424599 B CN107424599 B CN 107424599B CN 201710321019 A CN201710321019 A CN 201710321019A CN 107424599 B CN107424599 B CN 107424599B
Authority
CN
China
Prior art keywords
phononic crystal
water
steel
crystal
density
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710321019.XA
Other languages
English (en)
Other versions
CN107424599A (zh
Inventor
吴福根
李静
姚源卫
张欣
牟中飞
李京波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guangdong University of Technology
Original Assignee
Guangdong University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guangdong University of Technology filed Critical Guangdong University of Technology
Priority to CN201710321019.XA priority Critical patent/CN107424599B/zh
Publication of CN107424599A publication Critical patent/CN107424599A/zh
Application granted granted Critical
Publication of CN107424599B publication Critical patent/CN107424599B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning
    • G10K11/30Sound-focusing or directing, e.g. scanning using refraction, e.g. acoustic lenses
    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10KSOUND-PRODUCING DEVICES; METHODS OR DEVICES FOR PROTECTING AGAINST, OR FOR DAMPING, NOISE OR OTHER ACOUSTIC WAVES IN GENERAL; ACOUSTICS NOT OTHERWISE PROVIDED FOR
    • G10K11/00Methods or devices for transmitting, conducting or directing sound in general; Methods or devices for protecting against, or for damping, noise or other acoustic waves in general
    • G10K11/18Methods or devices for transmitting, conducting or directing sound
    • G10K11/26Sound-focusing or directing, e.g. scanning

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Acoustics & Sound (AREA)
  • Multimedia (AREA)
  • Building Environments (AREA)

Abstract

本发明提供了一种声子晶体,由钢柱体在水中周期性排列组成,所述钢柱体的密度为7.67×103kg/m3。本发明还提供了一种声波出射方位的调控方法。本发明提供的声子晶体由钢柱体在水中周期性排列组成,所述钢柱体的密度为7.67×103kg/m3。所述声子晶体中,水为基质,其密度为ρ=1.0×103Kg/m3,纵波波速Cl=1.49×103m/s;钢柱体为散射体,其密度为ρ=7.67×103Kg/m3,纵波波速Cl=6.01×103m/s,横波波速Cl=3.23×103m/s。上述钢柱体在水中周期性排列组成二维声子晶体,其具有自准直效应,可以通过旋转钢柱体的角度实现声波在频率不发生变化的前提下出射方位的调控,其制作工艺简单,可设计性强。

Description

声子晶体及声波出射方位的调控方法
技术领域
本发明涉及声子晶体技术领域,尤其涉及一种声子晶体及声波出射方位的调控方法。
背景技术
声/光子晶体是近二十多年新发展起来的新型人工周期材料。其中,光子晶体的首次发现稍早于声子晶体,目前,光子晶体方面的研究已逐渐走上应用探索之路,比如光子晶体光纤、波导及纳米谐振腔等。类比于光子晶体,随后提出的能够对声波进行处理的声子晶体,更是引起了一大批科学工作者的关注。声子晶体一个重要特性是声子禁带,频率位于禁带内的声波被禁止传播,这一特性可用于减震降噪、声能俘获以及制作消声器件等等。而近年来,通带内某些频率处的声波在声子晶体中传输时,表现出一些有趣且有极大研究意义的特性,这些特性包括:声聚焦、负折射、自准直效应。
自准直效应,是指当波在晶体中传输时,能够沿着入射方向无衍射准直传输。自准直效应的产生,源于非均匀介质的特殊色散性质:即在某些频率处,等频线变的非常平坦。由于能量传播的方向垂直于等频线,所以在晶体内,具有准直频率处的波沿着等频线的法线方向,这样实现了在不引入缺陷的情况下,波在晶体中的几乎无衍射传输。能够产生自准直效应的频率,由第一布里渊内的二维等频线确定。光子晶体自准直方面的研究结果表明,可利用此效应实现光子晶体分束器、滤波器、光开关和干涉仪。且基于自准直效应的光子晶体器件非常适于应用在光集成线路中。
同样,在声子晶体中,我们可以通过设计适当的晶体结构,实现声子晶体分束器、干涉仪和声滤波器等。所以,自准直声波的研究对声子晶体的研究具有重要意义。目前,声波出射方位的调控,是通过在结构里设置线缺陷来实现。这样的调控方式,容易引入结构耦合损耗,有能量耗散。并且,对制备要求较高,不利于集成,故投入实际应用不太乐观。
发明内容
本发明的目的在于提供一种声子晶体及声波出射方位的调控方法,本发明提供的声子晶体能够保持声波频率不变的前提下调控声波出射方位,制作工艺简单,可设计性强。
本发明提供了一种声子晶体,由钢柱体在水中周期性排列组成,所述钢柱体的密度为7.67×103kg/m3
其中,所述钢柱体的纵波波速为6.01×103m/s,横波波速为3.23×103m/s。
在一个实施例中,所述钢柱体为长方体,所述长方体的长为0.7a,宽为0.35a,其中,a为晶格常数。
其中,所述晶格常数为1~10。
在本发明中,所述钢柱体在水中周期性排列的结构为长方形、正方形或六角形。
本发明还提供了一种声波出射方位的调控方法,包括:
将声波入射到声子晶体中,所述声子晶体由钢柱体在水中周期性排列组成,所述钢柱体的密度为7.67×103kg/m3
其中,所述钢柱体的纵波波速为6.01×103m/s,横波波速为3.23×103m/s。
在一个实施例中,所述钢柱体为长方体,所述长方体的长为0.7a,宽为0.35a,其中,a为晶格常数。
其中,所述晶格常数为1~10。
本发明中,所述钢柱体在水中可沿逆时针方向旋转0°~90°。
本发明提供了一种声子晶体,由钢柱体在水中周期性排列组成,所述钢柱体的密度为7.67×103kg/m3。所述声子晶体中,水为基质,其密度为ρ=1.0×103Kg/m3,纵波波速Cl=1.49×103m/s;钢柱体为散射体,其密度为ρ=7.67×103Kg/m3,纵波波速Cl=6.01×103m/s,横波波速Cl=3.23×103m/s。上述钢柱体在水中周期性排列组成二维声子晶体,其具有自准直效应,可以通过旋转钢柱体的角度实现声波在频率不发生变化的前提下出射方位的调控,其制作工艺简单,可设计性强。
附图说明
图1为本发明实施例1提供的声子晶体的横截面结构示意图;
图2为旋转0°的声子晶体最低一条能带映射在第一布里渊区内的等频线图;
图3为旋转45°的声子晶体最低一条能带映射在第一布里渊区内的等频线图;
图4为旋转90°的声子晶体最低一条能带映射在第一布里渊区内的等频线图;
图5为声波入射到旋转0°的声子晶体的声场分布图;
图6为声波入射到旋转45°的声子晶体的声场分布图;
图7为声波入射到旋转90°的声子晶体的声场分布图。
具体实施方式
为了进一步说明本发明,下面结合实施例对本发明提供的声子晶体及声波出射方位的调控方法进行详细地描述,但不能将它们理解为对本发明保护范围的限定。
实施例1
将长方体钢柱在水中周期性排列成长方形的二维晶格形成声子晶体,所述长方体钢柱密度为ρ=7.67×103Kg/m3,纵波波速Cl=6.01×103m/s,横波波速Cl=3.23×103m/s;水的密度为ρ=1.0×103Kg/m3,纵波波速Cl=1.49×103m/s;长方体钢柱的长为0.7a,宽为0.35a,a为1。
参见图1,图1为本发明实施例1提供的声子晶体的横截面结构示意图,其中,1为长方体钢柱。
分别将长方体钢柱逆时针旋转0°、45°和90°,参见图2、图3、图4、图5、图6、和图7,图2为旋转0°的声子晶体最低一条能带映射在第一布里渊区内的等频线图,图3为旋转45°的声子晶体最低一条能带映射在第一布里渊区内的等频线图,图4为旋转90°的声子晶体最低一条能带映射在第一布里渊区内的等频线图,图5为声波入射到旋转0°的声子晶体的声场分布图,图6为声波入射到旋转45°的声子晶体的声场分布图,图7为声波入射到旋转90°的声子晶体的声场分布图。
由图2、图3、图4、图5、图6和图7可知,本发明提供的声子晶体具有自准直效应,可以通过旋转钢柱体的角度实现声波在频率不发生变化的前提下出射方位的调控,其制作工艺简单,可设计性强。。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以做出若干改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (2)

1.一种声波出射方位的调控方法,其特征在于,包括:
将声波入射到声子晶体中,所述声子晶体由钢柱体在水中周期性排列组成,所述钢柱体的密度为7.67×103kg/m3
所述钢柱体为长方体,所述长方体的长为0.7a,宽为0.35a,其中,a为晶格常数;所述晶格常数为1~10;
所述钢柱体在水中可沿逆时针方向旋转0°~90°;
所述钢柱体在水中周期性排列的结构为长方形、正方形或六角形。
2.根据权利要求1所述的调控方法,其特征在于,所述钢柱体的纵波波速为6.01×103m/s,横波波速为3.23×103m/s。
CN201710321019.XA 2017-05-09 2017-05-09 声子晶体及声波出射方位的调控方法 Expired - Fee Related CN107424599B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710321019.XA CN107424599B (zh) 2017-05-09 2017-05-09 声子晶体及声波出射方位的调控方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710321019.XA CN107424599B (zh) 2017-05-09 2017-05-09 声子晶体及声波出射方位的调控方法

Publications (2)

Publication Number Publication Date
CN107424599A CN107424599A (zh) 2017-12-01
CN107424599B true CN107424599B (zh) 2021-03-16

Family

ID=60425446

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710321019.XA Expired - Fee Related CN107424599B (zh) 2017-05-09 2017-05-09 声子晶体及声波出射方位的调控方法

Country Status (1)

Country Link
CN (1) CN107424599B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111583899B (zh) * 2020-04-28 2022-08-26 江苏大学 一种线性系统下的可调单频水声单向传输器件
US11574619B2 (en) * 2020-09-29 2023-02-07 Toyota Motor Engineering & Manufacturing North America, Inc. Acoustic structure for beaming soundwaves
US20240021187A1 (en) * 2022-07-13 2024-01-18 Toyota Motor Engineering & Manufacturing North America, Inc. Beaming sound waves using phononic crystals

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546117A (zh) * 2012-07-17 2014-01-29 中国科学院声学研究所 一种二维压电声子晶体射频声波导
WO2016038327A1 (en) * 2014-09-08 2016-03-17 Sonobex Limited Apparatus and methods
US20160097410A1 (en) * 2014-07-28 2016-04-07 The Regents Of The University Of Colorado, A Body Corporate Phononic materials used to control flow behavior
CN106023982A (zh) * 2016-05-19 2016-10-12 江苏大学 一种基于波导管结构的多频带可控声波单向传输器件

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103903607B (zh) * 2014-03-05 2016-09-21 广东工业大学 一种调节声子晶体定向辐射频率的方法
CN103956159A (zh) * 2014-05-29 2014-07-30 广东工业大学 一种缺陷态可热调谐的二维声子晶体结构
CN104464715B (zh) * 2014-11-24 2017-12-29 广东工业大学 一种声子晶体分束器
CN104485098A (zh) * 2014-11-24 2015-04-01 广东工业大学 一种调节声子晶体分束效率的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103546117A (zh) * 2012-07-17 2014-01-29 中国科学院声学研究所 一种二维压电声子晶体射频声波导
US20160097410A1 (en) * 2014-07-28 2016-04-07 The Regents Of The University Of Colorado, A Body Corporate Phononic materials used to control flow behavior
WO2016038327A1 (en) * 2014-09-08 2016-03-17 Sonobex Limited Apparatus and methods
CN106023982A (zh) * 2016-05-19 2016-10-12 江苏大学 一种基于波导管结构的多频带可控声波单向传输器件

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Tuning the acoustic directional radiation by rotating square rods in two-dimensional phononic crystals;Jing Li,FugenWu,Huilin Zhong,et al;《Modern Physics Letters B》;20141231;第28卷(第23期);全文 *
高对称型声子晶体自准直弯曲及分束;宋宗根,邓科,何兆剑,赵鹤平;《物理学报》;20160505;第65卷(第9期);全文 *

Also Published As

Publication number Publication date
CN107424599A (zh) 2017-12-01

Similar Documents

Publication Publication Date Title
Xu et al. Three-dimensional acoustic double-zero-index medium with a fourfold degenerate Dirac-like point
Muhammad et al. From photonic crystals to seismic metamaterials: A review via phononic crystals and acoustic metamaterials
Hu et al. Homogenization of acoustic metamaterials of Helmholtz resonators in fluid
CN107424599B (zh) 声子晶体及声波出射方位的调控方法
Feng et al. Negative refraction of acoustic waves in two-dimensional sonic crystals
Gu et al. Experimental investigation of underwater locally multi-resonant metamaterials under high hydrostatic pressure for low frequency sound absorption
Ma et al. Acoustic energy harvesting enhanced by locally resonant metamaterials
Rubio et al. The existence of full gaps and deaf bands in two-dimensional sonic crystals
Zhu et al. Study of anomalous wave propagation and reflection in semi-infinite elastic metamaterials
CN105551476B (zh) 一种基于非对称膜类亚波长结构的低频宽带吸声材料
Liu et al. Tunable control of subwavelength topological interface modes in locally resonance piezoelectric metamaterials
CN110738979A (zh) 一种可调声超材料及包括该可调声超材料的波导模式转换器
Zeng et al. Inertially amplified seismic metamaterial with an ultra-low-frequency bandgap
Mahesh et al. Helmholtz resonator based metamaterials for sound manipulation
Yi et al. Piezoelectric metamaterials and wave control: status quo and prospects
CN106981286B (zh) 声波传导介质及声斜入射全反射的实现方法
Wang et al. Proposal for high efficiently 1× 4 power splitter based on photonic crystal waveguides
Dian-Long et al. Flexural vibration band gaps in thin plates with two-dimensional binary locally resonant structures
Chen et al. Modal analysis of flexural band gaps in a membrane acoustic metamaterial (MAM) and waveguides affected by shape characteristics
Hsu et al. Edge waves and resonances in two-dimensional phononic crystal plates
Xu et al. Parametric analysis of piezoelectric metamaterial with LC shunt circuit
Assouar et al. Sound insulation and energy harvesting based on acoustic metamaterial plate
CN107039031B (zh) 声子晶体及声斜入射全透射的实现方法
US9709736B2 (en) Right-angle waveguide based on square-cylinder-type square-lattice photonic crystal and single compensation scattering cylinder with high refractive index
Alagoz et al. Negative refractions by triangular lattice sonic crystals in partial band gaps

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20210316

CF01 Termination of patent right due to non-payment of annual fee