CN107424416A - 基于无人机的路段交通流量监测系统 - Google Patents

基于无人机的路段交通流量监测系统 Download PDF

Info

Publication number
CN107424416A
CN107424416A CN201710465904.5A CN201710465904A CN107424416A CN 107424416 A CN107424416 A CN 107424416A CN 201710465904 A CN201710465904 A CN 201710465904A CN 107424416 A CN107424416 A CN 107424416A
Authority
CN
China
Prior art keywords
mrow
msub
flow monitoring
node
traffic flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
CN201710465904.5A
Other languages
English (en)
Inventor
李健斌
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen City Creative Industry Technology Co Ltd
Original Assignee
Shenzhen City Creative Industry Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen City Creative Industry Technology Co Ltd filed Critical Shenzhen City Creative Industry Technology Co Ltd
Priority to CN201710465904.5A priority Critical patent/CN107424416A/zh
Publication of CN107424416A publication Critical patent/CN107424416A/zh
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/065Traffic control systems for road vehicles by counting the vehicles in a section of the road or in a parking area, i.e. comparing incoming count with outgoing count
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G5/00Traffic control systems for aircraft, e.g. air-traffic control [ATC]
    • G08G5/0073Surveillance aids
    • G08G5/0078Surveillance aids for monitoring traffic from the aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Traffic Control Systems (AREA)

Abstract

本发明提供了基于无人机的路段交通流量监测系统,包括无人机、航空摄影机、交通流量监测模块和监测中心,所述的航空摄影机、交通流量监测模块与监测中心通信连接;所述交通流量监测模块基于无线传感器网络进行交通流量监测数据的收发,交通流量监测模块包括一个移动汇聚节点和多个静态传感器节点,所述的航空摄影机以及移动汇聚节点设置于无人机上,静态传感器节点固定设置于设定的交通流量监测区域内;所述的监测中心用于对交通流量监测模块获取的交通流量监测数据、航空摄影机拍摄的路段图像进行分析和显示。利用本发明的基于无人机的路段交通流量监测系统,用户可实时获取道路车流量信息,实现了交通车流量状况的实时监控。

Description

基于无人机的路段交通流量监测系统
技术领域
本发明涉及交通技术领域,具体涉及基于无人机的路段交通流量监测系统。
背景技术
在日益拥堵的城市交通环境中,如何提供质量高的交通流量信息,为车辆驾驶员提供重要参考数据,合理对城市车辆进行自动分流,是困扰城市交管部门的一道难题。相关技术中的交通流量监测系统无法做到对交通流量的实时采集。
发明内容
针对上述问题,本发明提供基于无人机的路段交通流量监测系统。
本发明的目的采用以下技术方案来实现:
提供了基于无人机的路段交通流量监测系统,包括无人机、航空摄影机、交通流量监测模块和监测中心,所述的航空摄影机、交通流量监测模块与监测中心通信连接;所述交通流量监测模块基于无线传感器网络进行交通流量监测数据的收发,交通流量监测模块包括一个移动汇聚节点和多个静态传感器节点,所述的航空摄影机以及移动汇聚节点设置于无人机上,静态传感器节点固定设置于设定的交通流量监测区域内;所述的监测中心用于对交通流量监测模块获取的交通流量监测数据、航空摄影机拍摄的路段图像进行分析和显示。
本发明的有益效果为:利用本发明的基于无人机的路段交通流量监测系统,用户可实时获取道路车流量信息,实现了交通车流量状况的实时监控。
附图说明
利用附图对本发明作进一步说明,但附图中的实施例不构成对本发明的任何限制,对于本领域的普通技术人员,在不付出创造性劳动的前提下,还可以根据以下附图获得其它的附图。
图1本发明的框图示意图;
图2是本发明监测中心的框图示意图。
附图标记:
无人机1、航空摄影机2、交通流量监测模块3、监测中心4、数据存储模块10、数据分析模块20、数据显示模块30。
具体实施方式
结合以下实施例对本发明作进一步描述。
参见图1、图2,本实施例提供的基于无人机的路段交通流量监测系统,包括无人机1、航空摄影机2、交通流量监测模块3和监测中心4,所述的航空摄影机2、交通流量监测模块3与监测中心4通信连接;所述交通流量监测模块3基于无线传感器网络进行交通流量监测数据的收发,交通流量监测模块3包括一个移动汇聚节点和多个静态传感器节点,所述的航空摄影机2以及移动汇聚节点设置于无人机1上,静态传感器节点固定设置于设定的交通流量监测区域内;所述的监测中心4用于对交通流量监测模块3获取的交通流量监测数据、航空摄影机2拍摄的路段图像进行分析和显示。
优选地,所述监测中心4包括数据存储模块10、数据分析模块20、数据显示模块30;所述的数据存储模块10用于存储接收的交通流量监测数据和路段图像;数据分析模块20用于对交通流量监测数据进行异常分析处理,并对路段图像进行图像处理,获取路段图像中的车辆类型;所述数据显示模块30用于对交通流量监测数据进行显示。
优选地,所述的数据分析模块20包括特征存储单元、路段划分单元、车辆类型识别单元;所述的特征存储单元预先存储了路段上限灰度阈值、路段下限灰度阈值和车辆特征数据库,所述车辆特征数据库内保存有各个类型车辆模板图像;所述的路段划分单元,与所述航空摄影机2和所述特征存储单元分别连接,接收所述路段图像,将所述路段图像中灰度值在路段上限灰度阈值和路段下限灰度阈值之间的像素识别并组成路段目标子图像;所述的车辆类型识别单元,与所述路段划分单元和所述特征存储单元分别连接,接收所述路段目标子图像,基于所述车辆特征数据库识别所述路段目标子图像中各种车辆的类型。
优选地,所述的无人机在每一轮的交通流量监测数据收集时从起始位置出发,按照设定的访问路径运动,移动汇聚节点收集完静态传感器节点的交通流量监测数据后,无人机再返回起始位置,移动汇聚节点准备下一轮的交通流量监测数据收集。
利用本发明上述实施例的基于无人机的路段交通流量监测系统,用户可实时获取道路车流量信息,实现了交通车流量状况的实时监控。
所述的访问路径的设定,具体为:
(1)将设定的交通流量监测区域划分多个大小相等的方形子区域,方形子区域的边长l为:
式中,Ψ为监测区域的面积,Pi表示第i个静态传感器节点失效的概率,Φ为静态传感器节点的个数;
(2)按照下列公式计算方形子区域内的静态传感器节点的位置优选值,对每个方形子区域,选择其中位置优选值最大的一个静态传感器节点作为该方形子区域的位置参考节点:
式中,表示第k个方形子区域中的第j个静态传感器节点,表示的位置优选值,表示具有的在第k个方形子区域内的邻居节点数目,到移动汇聚节点初始位置的距离,到第k个方形子区域的中心点Ok的距离,d0为设定的距离参考值,ω1、ω2为设定的权重系数,且ω12=1;
(3)按照与移动汇聚节点初始位置的距离由小到大的顺序,将各位置参考节点直线连接形成的路径设定为移动汇聚节点的访问路径,各位置参考节点所处的位置为移动汇聚节点进行数据收集时停留的站点。
本优选实施例设定了无人机的访问路径,使得移动汇聚节点随着无人机的运动停留在位置参考节点所处的位置上进行交通流量监测数据的收集,而不需要停留在每个静态传感器节点的位置进行交通流量监测数据的收集,节省了移动汇聚节点进行交通流量监测数据收集的能耗,整体上相对缩短了移动汇聚节点的停留时间,从而能够降低交通流量监测系统的能耗成本。
优选地,移动汇聚节点按照设定的访问路径运动到位置参考节点所在的位置后停留一段时间,通过调整发射功耗调整通信距离为设定的通信距离阈值,然后进行交通流量监测数据的收集,其中设第k个方形子区域的位置参考节点的坐标为(xk,yk),第k个方形子区域的第θ个静态传感器节点(除位置参考节点)的坐标为(aθbθ),通信距离阈值按照下述公式设定:
式中,Dk表示移动汇聚节点在第k个方形子区域时设定的通信距离阈值,nk为第k个方形子区域具有的除位置参考节点之外的静态传感器节点数目,为设定的调整因子。
本优选实施例使得移动汇聚节点进行交通流量监测数据收集时,能够根据方形子区域的静态传感器节点的分布特性调整自身的通信距离,从而确保移动汇聚节点能够收集方形子区域内所有静态传感器节点的交通流量监测数据,避免交通流量监测数据的遗漏,保障交通流量监测数据收集的可靠性。
优选地,按照下列公式设定移动汇聚节点在位置参考节点所在位置处的停留时间:
式中,Tk表示移动汇聚节点在第k个方形子区域对应的位置参考节点所在位置处的停留时间,表示第k个方形子区域中的第λ个静态传感器节点到位置参考节点sk之间的跳数,nk为第k个方形子区域具有的除位置参考节点之外的静态传感器节点数目,Pλ为第k个方形子区域中的第λ个静态传感器节点失效的概率,Vλ为第k个方形子区域中的第λ个静态传感器节点的丢包率,ξ为设定的调整系数,T0为设定的单位数据包发送时间阈值。
本优选实施例在进行移动汇聚节点在位置参考节点所在位置处的停留时间的设置时,考虑了方形子区域中静态传感器节点的失效概率和丢包率,对不同的方形子区域的停留时间进行适当地约束,从而能够缩短移动汇聚节点的整体停留时间,进一步延长交通流量监测模块3中无线传感器网络的生命周期,降低基于无人机的路段交通流量监测系统的整体能耗。
最后应当说明的是,以上实施例仅用以说明本发明的技术方案,而非对本发明保护范围的限制,尽管参照较佳实施例对本发明作了详细地说明,本领域的普通技术人员应当理解,可以对本发明的技术方案进行修改或者等同替换,而不脱离本发明技术方案的实质和范围。

Claims (7)

1.基于无人机的路段交通流量监测系统,其特征是,包括无人机、航空摄影机、交通流量监测模块和监测中心,所述的航空摄影机、交通流量监测模块与监测中心通信连接;所述交通流量监测模块基于无线传感器网络进行交通流量监测数据的收发,交通流量监测模块包括一个移动汇聚节点和多个静态传感器节点,所述的航空摄影机以及移动汇聚节点设置于无人机上,静态传感器节点固定设置于设定的交通流量监测区域内;所述的监测中心用于对交通流量监测模块获取的交通流量监测数据、航空摄影机拍摄的路段图像进行分析和显示。
2.根据权利要求1所述的基于无人机的路段交通流量监测系统,其特征是,所述监测中心包括数据存储模块、数据分析模块和数据显示模块;所述的数据存储模块用于存储接收的交通流量监测数据和路段图像;数据分析模块用于对交通流量监测数据进行异常分析处理,并对路段图像进行图像处理,获取路段图像中的车辆类型;所述数据显示模块用于对交通流量监测数据进行显示。
3.根据权利要求2所述的基于无人机的路段交通流量监测系统,其特征是,所述的数据分析模块包括特征存储单元、路段划分单元、车辆类型识别单元;所述的特征存储单元预先存储了路段上限灰度阈值、路段下限灰度阈值和车辆特征数据库,所述车辆特征数据库内保存有各个类型车辆模板图像;所述的路段划分单元,与所述航空摄影机和所述特征存储单元分别连接,接收所述路段图像,将所述路段图像中灰度值在路段上限灰度阈值和路段下限灰度阈值之间的像素识别并组成路段目标子图像;所述的车辆类型识别单元,与所述路段划分单元和所述特征存储单元分别连接,接收所述路段目标子图像,基于所述车辆特征数据库识别所述路段目标子图像中各种车辆的类型。
4.根据权利要求1所述的基于无人机的路段交通流量监测系统,其特征是,所述的无人机在每一轮的交通流量监测数据收集时从起始位置出发,按照设定的访问路径运动,移动汇聚节点收集完静态传感器节点的交通流量监测数据后,无人机再返回起始位置,移动汇聚节点准备下一轮的交通流量监测数据收集。
5.根据权利要求4所述的基于无人机的路段交通流量监测系统,其特征是,所述的访问路径的设定,具体为:
(1)将设定的交通流量监测区域划分多个大小相等的方形子区域,方形子区域的边长l为:
<mrow> <mi>l</mi> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mi>&amp;Psi;</mi> <mrow> <mi>&amp;Phi;</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <mi>&amp;Phi;</mi> </mfrac> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>&amp;Phi;</mi> </msubsup> <msub> <mi>P</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>1</mn> <mo>/</mo> <mn>2</mn> </mrow> </msup> </mrow>
式中,Ψ为监测区域的面积,Pi表示第i个静态传感器节点失效的概率,Φ为静态传感器节点的个数;
(2)按照下列公式计算方形子区域内的静态传感器节点的位置优选值,对每个方形子区域,选择其中位置优选值最大的一个静态传感器节点作为该方形子区域的位置参考节点:
<mrow> <msub> <mi>Y</mi> <msubsup> <mi>S</mi> <mi>j</mi> <mi>k</mi> </msubsup> </msub> <mo>=</mo> <msub> <mi>&amp;omega;</mi> <mn>1</mn> </msub> <msub> <mi>m</mi> <msubsup> <mi>S</mi> <mi>j</mi> <mi>k</mi> </msubsup> </msub> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mn>2</mn> </msub> <mfrac> <mrow> <mi>d</mi> <mrow> <mo>(</mo> <msubsup> <mi>S</mi> <mi>j</mi> <mi>k</mi> </msubsup> <mo>,</mo> <msub> <mi>S</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mi>d</mi> <mrow> <mo>(</mo> <msubsup> <mi>S</mi> <mi>j</mi> <mi>k</mi> </msubsup> <mo>,</mo> <msub> <mi>O</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> </mrow> <msub> <mi>d</mi> <mn>0</mn> </msub> </mfrac> </mrow> 1
式中,表示第k个方形子区域中的第j个静态传感器节点,表示的位置优选值,表示具有的在第k个方形子区域内的邻居节点数目,到移动汇聚节点初始位置的距离,到第k个方形子区域的中心点Ok的距离,d0为设定的距离参考值,ω1、ω2为设定的权重系数,且ω12=1;
(3)按照与移动汇聚节点初始位置的距离由小到大的顺序,将各位置参考节点直线连接形成的路径设定为移动汇聚节点的访问路径,各位置参考节点所处的位置为移动汇聚节点进行数据收集时停留的站点。
6.根据权利要求5所述的基于无人机的路段交通流量监测系统,其特征是,移动汇聚节点按照设定的访问路径运动到位置参考节点所在的位置后停留一段时间,通过调整发射功耗调整通信距离为设定的通信距离阈值,然后进行交通流量监测数据的收集,其中设第k个方形子区域的位置参考节点的坐标为(xk,yk),第k个方形子区域的第θ个静态传感器节点(除位置参考节点)的坐标为(aθbθ),通信距离阈值按照下述公式设定:
式中,Dk表示移动汇聚节点在第k个方形子区域时设定的通信距离阈值,nk为第k个方形子区域具有的除位置参考节点之外的静态传感器节点数目,为设定的调整因子。
7.根据权利要求6所述的基于无人机的路段交通流量监测系统,其特征是,按照下列公式设定移动汇聚节点在位置参考节点所在位置处的停留时间:
<mrow> <msub> <mi>T</mi> <mi>k</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>n</mi> <mi>k</mi> </msub> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>&amp;lambda;</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>k</mi> </msub> </munderover> <msub> <mi>P</mi> <mi>&amp;lambda;</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mn>1</mn> <msub> <mi>n</mi> <mi>k</mi> </msub> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>&amp;lambda;</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>k</mi> </msub> </munderover> <msub> <mi>V</mi> <mi>&amp;lambda;</mi> </msub> <mo>)</mo> </mrow> <mo>&amp;times;</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>&amp;lambda;</mi> <mo>=</mo> <mn>1</mn> </mrow> <msub> <mi>n</mi> <mi>k</mi> </msub> </munderover> <msubsup> <mi>N</mi> <mrow> <mi>&amp;lambda;</mi> <mo>&amp;RightArrow;</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> </mrow> <mi>k</mi> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <mi>&amp;xi;</mi> </mrow> </msup> <mo>&amp;times;</mo> <msub> <mi>T</mi> <mn>0</mn> </msub> </mrow>
式中,Tk表示移动汇聚节点在第k个方形子区域对应的位置参考节点所在位置处的停留时间,表示第k个方形子区域中的第λ个静态传感器节点到位置参考节点sk之间的跳数,nk为第k个方形子区域具有的除位置参考节点之外的静态传感器节点数目,Pλ为第k个方形子区域中的第λ个静态传感器节点失效的概率,Vλ为第k个方形子区域中的第λ个静态传感器节点的丢包率,ξ为设定的调整系数,T0为设定的单位数据包发送时间阈值。
CN201710465904.5A 2017-06-19 2017-06-19 基于无人机的路段交通流量监测系统 Withdrawn CN107424416A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710465904.5A CN107424416A (zh) 2017-06-19 2017-06-19 基于无人机的路段交通流量监测系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710465904.5A CN107424416A (zh) 2017-06-19 2017-06-19 基于无人机的路段交通流量监测系统

Publications (1)

Publication Number Publication Date
CN107424416A true CN107424416A (zh) 2017-12-01

Family

ID=60429775

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710465904.5A Withdrawn CN107424416A (zh) 2017-06-19 2017-06-19 基于无人机的路段交通流量监测系统

Country Status (1)

Country Link
CN (1) CN107424416A (zh)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108399745A (zh) * 2018-03-01 2018-08-14 北京航空航天大学合肥创新研究院 一种基于无人机的分时段城市路网状态预测方法
CN109286912A (zh) * 2018-10-29 2019-01-29 中建科技有限公司深圳分公司 一种传感器网络的无人检测装置及其故障诊断方法
CN109448365A (zh) * 2018-10-16 2019-03-08 北京航空航天大学 一种跨尺度空基平台区域道路交通系统综合监视方法
CN110689720A (zh) * 2019-10-10 2020-01-14 成都携恩科技有限公司 基于无人机的实时动态车流量检测方法
CN112212881A (zh) * 2020-12-14 2021-01-12 成都飞航智云科技有限公司 一种基于北斗应用的飞行导航仪
CN112542050A (zh) * 2020-12-23 2021-03-23 重庆市市政设计研究院有限公司 基于无人倾斜摄影的复杂立交交通分析装置及方法
CN113837590A (zh) * 2021-09-18 2021-12-24 北京联合大学 一种地铁站域交通流量检测无人机协同调度优化方法
CN115188186A (zh) * 2022-06-28 2022-10-14 公安部交通管理科学研究所 一种区域内交通流量监测方法

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108399745A (zh) * 2018-03-01 2018-08-14 北京航空航天大学合肥创新研究院 一种基于无人机的分时段城市路网状态预测方法
CN109448365A (zh) * 2018-10-16 2019-03-08 北京航空航天大学 一种跨尺度空基平台区域道路交通系统综合监视方法
CN109286912A (zh) * 2018-10-29 2019-01-29 中建科技有限公司深圳分公司 一种传感器网络的无人检测装置及其故障诊断方法
CN110689720A (zh) * 2019-10-10 2020-01-14 成都携恩科技有限公司 基于无人机的实时动态车流量检测方法
CN112212881A (zh) * 2020-12-14 2021-01-12 成都飞航智云科技有限公司 一种基于北斗应用的飞行导航仪
CN112212881B (zh) * 2020-12-14 2021-03-12 成都飞航智云科技有限公司 一种基于北斗应用的飞行导航仪
CN112542050A (zh) * 2020-12-23 2021-03-23 重庆市市政设计研究院有限公司 基于无人倾斜摄影的复杂立交交通分析装置及方法
CN112542050B (zh) * 2020-12-23 2024-03-22 重庆市市政设计研究院有限公司 基于无人倾斜摄影的复杂立交交通分析装置及方法
CN113837590A (zh) * 2021-09-18 2021-12-24 北京联合大学 一种地铁站域交通流量检测无人机协同调度优化方法
CN113837590B (zh) * 2021-09-18 2023-09-08 北京联合大学 一种地铁站域交通流量检测无人机协同调度优化方法
CN115188186A (zh) * 2022-06-28 2022-10-14 公安部交通管理科学研究所 一种区域内交通流量监测方法
CN115188186B (zh) * 2022-06-28 2024-02-20 公安部交通管理科学研究所 一种区域内交通流量监测方法

Similar Documents

Publication Publication Date Title
CN107424416A (zh) 基于无人机的路段交通流量监测系统
CN105160934B (zh) 一种适用于大型停车场的智能停车系统
CN109889326A (zh) 一种基于区块链的物联网架构以及已验证数据证明共识方法
CN107301369A (zh) 基于航拍图像的道路交通拥堵分析方法
CN107103754A (zh) 一种道路交通状况预测方法及系统
CN103929782B (zh) 一种适用于工业无线传感器网络的资源均衡多径路由方法
Li et al. Uav assisted smart parking solution
CN107808123A (zh) 图像可行域检测方法、电子设备、存储介质、检测系统
WO2020082910A1 (zh) 路面等级确定方法、装置、存储介质及汽车
Iqbal et al. Intelligent remote monitoring of parking spaces using licensed and unlicensed wireless technologies
CN109584552A (zh) 一种基于网络向量自回归模型的公交到站时间预测方法
CN103686922A (zh) 一种多Sink节点移动的无线传感网生存时间优化方法
CN106897677B (zh) 一种车辆特征分类检索系统和方法
CN108337685B (zh) 基于分簇dgm的无线传感器网络数据融合方法
CN108108831A (zh) 一种目的地预测方法及装置
CN107679764A (zh) 一种集装箱港口集卡的动态调度方法
US11862016B1 (en) Multi-intelligence federal reinforcement learning-based vehicle-road cooperative control system and method at complex intersection
Collotta et al. A novel road monitoring approach using wireless sensor networks
CN108108897A (zh) 一种轨道交通客流清分方法、系统及电子设备
CN205827677U (zh) 一种基于物联网的新型车辆检测装置
CN113627326B (zh) 一种基于可穿戴设备和人体骨架的行为识别方法
CN106292645B (zh) 一种新能源车辆故障数据采集系统
CN107066501A (zh) 一种基于道路相似性的机动车尾气遥测设备布点方法
CN106290772A (zh) 一种污水监测系统
CN108334079A (zh) 无人驾驶汽车路况信息实时获取方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
WW01 Invention patent application withdrawn after publication

Application publication date: 20171201

WW01 Invention patent application withdrawn after publication