CN107404271A - A kind of non-synchronous motor parameter ONLINE RECOGNITION system and method - Google Patents

A kind of non-synchronous motor parameter ONLINE RECOGNITION system and method Download PDF

Info

Publication number
CN107404271A
CN107404271A CN201710716874.0A CN201710716874A CN107404271A CN 107404271 A CN107404271 A CN 107404271A CN 201710716874 A CN201710716874 A CN 201710716874A CN 107404271 A CN107404271 A CN 107404271A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mover
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710716874.0A
Other languages
Chinese (zh)
Other versions
CN107404271B (en
Inventor
沈传文
张鹏
杨文�
张立宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xian Jiaotong University
Original Assignee
Xian Jiaotong University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian Jiaotong University filed Critical Xian Jiaotong University
Priority to CN201710716874.0A priority Critical patent/CN107404271B/en
Publication of CN107404271A publication Critical patent/CN107404271A/en
Application granted granted Critical
Publication of CN107404271B publication Critical patent/CN107404271B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02PCONTROL OR REGULATION OF ELECTRIC MOTORS, ELECTRIC GENERATORS OR DYNAMO-ELECTRIC CONVERTERS; CONTROLLING TRANSFORMERS, REACTORS OR CHOKE COILS
    • H02P21/00Arrangements or methods for the control of electric machines by vector control, e.g. by control of field orientation
    • H02P21/14Estimation or adaptation of machine parameters, e.g. flux, current or voltage

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Control Of Ac Motors In General (AREA)
  • Acyclic And Carbocyclic Compounds In Medicinal Compositions (AREA)

Abstract

The present invention provides a kind of non-synchronous motor parameter ONLINE RECOGNITION system and method, the system includes voltage acquisition unit, current acquisition unit, rotating speed collecting unit, timer unit, A/D sampling units, data storage cell and parameter calculation unit, the phase voltage of the voltage acquisition unit collection motor, and it is converted into+5~5V;The current acquisition unit will gather the line current of motor, and be converted into+5~5V;The rotating speed collecting unit by encoder by electromechanics rotating speed be converted into data signal;The timing unit sends a request every the set time to A/D sampling units and data storage cell;The A/D sampling units are converted to data signal after the request signal of timer is connected to, by the analog signal of input;The data storage cell receive timing unit transmission order after, read and store A/D sampling units and rotating speed sampling unit output data signal;The parameter calculation unit utilizes the data in data storage cell, completes the ONLINE RECOGNITION of non-synchronous motor parameter.

Description

A kind of non-synchronous motor parameter ONLINE RECOGNITION system and method
Technical field:
The present invention relates to motor control technology field, and in particular to a kind of non-synchronous motor parameter ONLINE RECOGNITION system and side Method.
Background technology:
Since vector controlled concept is suggested, non-synchronous motor parameter identification is always focus of concern.With micro- The continuous improvement of the manufacturing technology and performance of controller, motor control performance there has also been broader room for promotion.Driving at present The vector control strategy of asynchronous machine or the performance of Strategy of Direct Torque Control all depend directly on the precision of the parameter of electric machine.
At present the conventional modal identification algorithm of asynchronous machine be mostly to motor under static state or the ginseng under off-line state Number estimation, but the self-induction and rotor resistance of the actual parameter of electric machine, particularly motor, can by temperature, air humidity and A series of influence of environmental factors such as residing electromagnetic environment.Actual motor during operation, often estimate more offline by its parameter The parameter counted out changes, if the parameter used in motor control algorithms is still constant, then just can not play motor most Good performance.
Therefore in motor operation, online parameter Estimation is carried out to the parameter of electric machine will be for improving motor performance meaning weight Greatly.
The content of the invention:
The technical problem to be solved in the present invention is, can not be carried out for the frequency converter containing vector control function at present A kind of the problem of line parameter identifies, there is provided non-synchronous motor parameter ONLINE RECOGNITION system and method.
The present invention solve above-mentioned technical problem scheme be,
A kind of non-synchronous motor parameter ONLINE RECOGNITION system, including the collection of voltage acquisition unit, current acquisition unit, rotating speed are single Member, A/D sampling units, timer unit, data storage cell and parameter calculation unit, the timer unit, data are deposited Storage unit and parameter calculation unit form microcontroller;The voltage acquisition unit carries out the input phase voltage of asynchronous machine Gather and acceptable+5~-5V voltages of A/D sampling units are converted to by voltage hall sensor;The current acquisition list The input line current of asynchronous machine is acquired by member, and is converted to A/D sampling units by Hall current sensor and can be connect + 5 received~-5V voltages;The asynchronous machine mechanical separator speed of stable state is converted into numeral by the rotating speed collecting unit by encoder Signal, it is transmitted directly to microcontroller;The timing unit is sent out every the set time to A/D sampling units and data storage cell Send a request command;The A/D sampling units are after the request signal of timing unit is received, by voltage acquisition unit and electricity The analog quantity of stream collecting unit output is changed, and is converted to 16 bits, and send request signal in timing unit Afterwards, the output of conversion is sent to microcontroller;The data storage cell receive timing unit transmission request signal after, Read and store A/D sampling units and rotating speed sampling unit output data signal;The parameter calculation unit is by data storage Data in unit are calculated, and complete the On-line Estimation of non-synchronous motor parameter.
The ONLINE RECOGNITION method of the non-synchronous motor parameter ONLINE RECOGNITION system, is comprised the following steps that:
Step 1, the collection and processing of data:
The timing unit after set time T, believe by the voltage that control A/D sampling units export to voltage acquisition unit Number and the voltage signal of current acquisition unit output changed, and by the data storage read from A/D sampling units in data Memory cell, while the electromechanics rotating speed that rotating speed collecting unit measures is stored in data storage cell;
The three-phase line current i that current acquisition unit is collecteda、ibAnd icBy 3/2 conversion, it is quiet in two-phase to obtain it The only stator current of the asynchronous machine α axles under coordinate system and β axlesWith
The three-phase phase voltage u that voltage acquisition unit is collecteda、ubAnd ucBy 3/2 conversion, it is quiet in two-phase to obtain it The only stator voltage of the asynchronous machine α axles under coordinate system and β axlesWith
The electromechanics angular velocity omega that rotating speed collecting unit samples to obtain is changed into the angular rate of motor:
ωr=ω p (3)
ωrIt is the angular rate of motor, p is the number of pole-pairs of motor;
Step 2, the rate of convergence of intermediate parametersCalculating:
Shown in the finite time parameter identification equation of asynchronous machine such as equation (4);
In equationWithThe stator current of the asynchronous machine α axles and β axles under two-phase rest frame is represented respectively,WithThe stator voltage of the asynchronous machine α axles and β axles under two-phase rest frame, ω are represented respectivelyrIt is the electric angle speed of motor Degree, k1k2k3k4k5It is intermediate parameters θ five coefficients;
Remember that intermediate parameters θ is:
Remember matrix ΓT(t) it is:
Remember that matrix y (t) is:
Equation (4) is then expressed as:
Y (t)=ΓT(t)θ (8)
The discrete form of equation (8) is:
Y (N)=ΓT(N)θ (9)
Here N is iterations, and the number performed equal to step 1 is also equal to the sampling number of data;Wherein:Matrix y And Γ (N)T(N) stator current of asynchronous machine α axles and β axles under the two-phase rest frame inMatrix ΓT(N) In two-phase rest frame under asynchronous machine α axles and β axles stator voltageMatrix y (N) and ΓT(N) in Motor angular rate ωr, it is that obtained three-phase line current, three-phase phase voltage and electromechanics rotating speed, its point are sampled by n-th Do not tried to achieve by formula (1) (2) (3);N is 1 when algorithm is carried out for the first time;
According to the sampled voltage of n-th, sample rate current, sampling rotating speed and the intermediate parameters estimate tried to achieve for the N-1 timesObtain the intermediate parameters rate of convergence of n-thAs shown in (10) formula:
Wherein operatorFor:
Wherein:A represents any column vector, and A (n) represents any rational, and K is the diagonal gain matrix of 5 ranks, γ ∈ [0,1), sign (a) is sign function;
Step 3, new intermediate parameters estimateCalculating:
The intermediate parameters tried to achieve according to iv-th iteration restrain rate of changeWith the N-1 times intermediate parameters estimation tried to achieve ValueThe estimate of the intermediate parameters of iv-th iteration is calculated according to (12) formula
T represents to count the sampling time interval that the timing unit is sent;
Whether step 4, the intermediate parameters for judging to estimate restrain:
Repeat step one exceedes to step 3 until the time for estimating to useWhen algorithm carries out parameter Estimation, The estimative convergent minimum times of intermediate parameters θSuch as (13) formula:
Wherein:It is the estimate for the intermediate parameters that parameter θ is used when first time carrying out step 3In true Between parameter error, λmin(K) be gain matrix K minimal eigenvalue,It is matrix ΓT(t) γ+1 of minimum singular value Power, γ ∈ [0,1);
When the condition of (14) formula meets, it is believed that the estimate for the intermediate parameters now tried to achieveIt is exactly actual Intermediate parameters iteration terminates;
If (14) formula is invalid new value and return to step one are assigned according to (15) to iterations N;
N=N+1 (15)
Step 5, the calculating of non-synchronous motor parameter:
The estimate of the intermediate parameters obtained using estimationNon-synchronous motor parameter is sought, the intermediate parameters tried to achieve EstimateSuch as (16):
Utilize five coefficients of intermediate parametersTry to achieve the estimate of the parameter of asynchronous machine;
The estimate of the stator resistance of asynchronous machine
The estimate of stator self inductanceWith the estimate of rotor self-induction
The estimate of rotor resistanceTried to achieve by the way that (18) are updated into (19) formula:
The estimate of motor mutual inductanceTried to achieve by (20):
Step 6, the judgement of parameters revision condition:
If can accurately obtain the ratio K1 of motor mutual inductance and rotor self-induction by other method for parameter estimation, As shown in (21), then step 7 is performed;Here LmAnd LrActual mutual inductance and the actual rotor self-induction of motor are represented,;If it can not obtain Know this COEFFICIENT K 1, then algorithm to step 6 terminates;
Lm=K1Lr (21)
Step 7, the further amendment of parameter of electric machine estimate:
The motor mutual inductance estimate that step 5 is calculatedIt is modified with (22) formula, obtains its new estimate L'm
According to:
Obtain five new coefficient ks of intermediate parameters1'k'2k3'k'4k5', as new iterative initial valueSuch as (23) It is shown, N=1 is made, and return to step one continues intermediate parameters θ estimation;
N=1 when going to step 7 for the first time, a step 7 is hereafter often performed, n adds one, until meeting (24) formula During the condition of expression, algorithm terminates;
|Lr(n)-Lr(n-1)|≤0.00001 (24)
Wherein:LrAnd L (n)r(n-1) n-th is represented respectively and goes to the rotor tried to achieve during step 6 (n-1)th time Self-induction, make Lr(0)=0.
Compared to the prior art compared with the present invention possesses following advantage:
1st, the presence when present invention is by motor steady-state operation includes:Input phase voltage, input line current and electricity The actual speed of machine is detected, using these measured values, be capable of the stator resistance of ONLINE RECOGNITION asynchronous machine, motor mutual inductance, Electric machine rotor self-induction and rotor resistance this four parameters.
2nd, the method is derived based on Li Ya spectrum promise husband stability, and the gain matrix K used during iteration is constant, therefore Step amount is calculated less than currently used interative least square method either Kalman filtering algorithm.
3rd, this algorithm can be in the limited timeThe interior parameter to asynchronous machine estimates, this feature can be To the compacter of the resource allocation of microcontroller during algorithm for design, the resource utilization of microcontroller is improved.
Brief description of the drawings:
Fig. 1 is parameter ONLINE RECOGNITION system block diagram of the present invention.
Fig. 2 is the asynchronous machine finite time modal identification algorithm flow chart under mutual inductance and self-induction ratio unknown condition.
Fig. 3 is the non-synchronous motor parameter ONLINE RECOGNITION algorithm flow chart under mutual inductance and self-induction ratio known conditions.
Embodiment
The present invention is described in further details with reference to the accompanying drawings and detailed description:
When asynchronous machine runs on stable state, the input phase voltage of motor is acquired and passes through voltage by voltage acquisition unit Hall sensor is converted to A/D sampling unit acceptable+5~-5V voltages;Current acquisition unit is electric by the input line of motor Stream is acquired, and is converted to acceptable+5~-5V voltages of A/D sampling units by Hall current sensor;Rotating speed gathers The asynchronous machine mechanical separator speed of stable state is converted into data signal by unit by encoder, is transmitted directly to microcontroller;It is described Timing unit sends a request command every the set time to A/D sampling units and data storage cell;A/D sampling units exist After the request signal for receiving timing unit, the analog quantity that voltage acquisition unit and current acquisition unit export is changed, 16 bits are converted to, and after timing unit sends request signal, the output of conversion is sent to microcontroller;Number According to memory cell after the request signal of timing unit transmission is received, read and store A/D sampling units and rotating speed sampling unit The data signal of output;Parameter calculation unit is calculated the data in data storage cell, completes non-synchronous motor parameter On-line Estimation.
Parameter calculation unit specifically performs step:
Do not changed based on asynchronous machine mutual inductance and self-induction ratio with physical condition and produce this feature that varies widely, this hair Bright method can be divided into again mutual inductance and parameter Estimation under self-induction ratio unknown condition and with other offline parameter recognition methods knots Two kinds of corrected parameter estimation scheme under the mutual inductance and self-induction ratio known conditions of conjunction.
Scheme one:Asynchronous machine finite time modal identification algorithm under mutual inductance and self-induction ratio unknown condition performs step Flow chart such as Fig. 2, is comprised the following steps that:
(1) initial value of intermediate parameters is givenAnd suitable five ranks gain matrix K
(2) N groups magnitude of voltage, current value and the mechanical separator speed of motor and N-1 estimation obtained according to sampling obtains Intermediate parametersTo calculate the intermediate parameters rate of convergence at this moment
Γ thereinT(N) and y (N) such as (25) (26), γ ∈ [0,1)
Here the stator current of asynchronous machine α axles and β axles under two-phase rest frameThe static seat of two-phase The stator voltage of asynchronous machine α axles and β axles under mark system The angular rate ω of motorrIt is to sample to obtain by n-th Three-phase line current, three-phase phase voltage and electromechanics rotating speed tried to achieve by (1) (2) (3) formula.
(3) the intermediate parameters rate of convergence obtained according to (2) stepWith the intermediate parameters of the N-1 times estimation Obtain new intermediate parameters θ estimateT represents the real time interval of sampled point.
(4) intermediate parameters estimated are judged according to the operation times N of sampled data and sampling time interval T Whether restrain, if meeting (14), performed step (5), N is otherwise entered as N+1, and return to step (2)
Wherein:It is the intermediate parameters that parameter θ is used when first time carrying out step 3With true intermediate parameters Error, λmin(K) be gain matrix K minimal eigenvalue,It is matrix ΓT(t) powers of γ+1 of minimum singular value, γ ∈ [0,1)。
(5) the convergent intermediate parameters obtained according to estimationAs shown in (16).
Utilize five coefficients of intermediate parametersThe estimate of the parameter of motor can be tried to achieve.
The estimate of the stator resistance of motor
The estimate of stator self inductanceWith the estimate of rotor self-induction
The estimate of rotor resistanceTried to achieve by the way that (18) are updated into (19) formula:
The estimate of motor mutual inductanceTried to achieve by (20):
Scheme two:If can be by other method, such as offline parameter calculating method, the minimum secondary hair of iteration etc. can be accurate The mutual inductance of motor and the ratio K1 of rotor self-induction are obtained, with reference to this condition, non-synchronous motor parameter estimates the flow for performing step Figure such as Fig. 3, specific execution step are as follows:
(1) initial value of intermediate parameters is givenSuitable gain matrix K and obtained with other offline parameter recognition methods To mutual inductance and the ratio K1 of self-induction;
(2) N groups magnitude of voltage, current value and the mechanical separator speed of motor and N-1 estimation obtained according to sampling obtains Intermediate parametersTo calculate the intermediate parameters rate of convergence at this moment
Γ thereinT(N) and y (N) such as (25) (26), γ ∈ [0,1)
Here the stator current of asynchronous machine α axles and β axles under two-phase rest frameThe static seat of two-phase The stator voltage of asynchronous machine α axles and β axles under mark system The angular rate ω of motorrIt is to be sampled by n-th Obtained three-phase line current, three-phase phase voltage and electromechanics rotating speed is tried to achieve by (1) (2) (3) formula.
(3) the intermediate parameters rate of convergence obtained according to (2) stepWith the intermediate parameters of the N-1 times estimation Obtain new intermediate parameters θ estimateT represents the real time interval of sampled point.
(4) whether the estimate for judging intermediate parameters θ according to the operation times N of sampled data and sampling time interval T is received Hold back, if meeting (14), perform step (5), N is otherwise entered as N+1, and return to step (2).
Wherein:It is the intermediate parameters that parameter θ is used when first time carrying out step 3With true intermediate parameters Error, λmin(K) be gain matrix K minimal eigenvalue,It is matrix ΓT(t) powers of γ+1 of minimum singular value, γ ∈ [0,1)。
(5) the convergent intermediate parameters obtained according to estimationAs shown in (16).
Utilize five coefficients of intermediate parametersThe estimate of the parameter of motor can be tried to achieve.
The estimate of the stator resistance of motor
The estimate of stator self inductanceWith the estimate of rotor self-induction
The estimate of rotor resistanceTried to achieve by the way that (18) are updated into (19) formula:
The estimate of motor mutual inductanceTried to achieve by (20):
(6) by the estimate for the motor mutual inductance tried to achieveWith the estimate for the rotor self-induction tried to achieveEntered with (22) formula Row amendment;
According to:
Obtain five new coefficient ks of revised intermediate parameters1'k'2k3'k'4k5', as new iterative initial valueAs shown in (23), N=1 is made, and return to step one continues intermediate parameters θ estimation.
N=1 when going to step 7 for the first time, hereafter often performs a step 7, and n adds one.Until meeting (24) formula During the condition of expression, algorithm terminates.
|Lr(n)-Lr(n-1)|≤0.00001 (24)
Here LrAnd L (n)r(n-1) represent respectively and goes to the rotor tried to achieve during step 6 (n-1)th time at n-th Self-induction, make Lr(0)=0.

Claims (2)

  1. A kind of 1. non-synchronous motor parameter ONLINE RECOGNITION system, it is characterised in that:Including voltage acquisition unit, current acquisition unit, Rotating speed collecting unit, A/D sampling units, timer unit, data storage cell and parameter calculation unit, the timer list Member, data storage cell and parameter calculation unit form microcontroller;The voltage acquisition unit is by the input of asynchronous machine Phase voltage is acquired and is converted to acceptable+5~-5V voltages of A/D sampling units by voltage hall sensor;It is described The input line current of asynchronous machine is acquired by current acquisition unit, and is converted to A/D samplings by Hall current sensor Acceptable+5~-5V voltages of unit;The rotating speed collecting unit is by encoder by the asynchronous machine mechanical separator speed of stable state Data signal is converted into, is transmitted directly to microcontroller;The timing unit is every the set time to A/D sampling units and data Memory cell sends a request command;The A/D sampling units adopt voltage after the request signal of timing unit is received Collection unit and the analog quantity of current acquisition unit output are changed, and are converted to 16 bits, and send in timing unit After carrying out request signal, the output of conversion is sent to microcontroller;The data storage cell is receiving timing unit transmission After request signal, read and store A/D sampling units and rotating speed sampling unit output data signal;The parameter calculation unit Data in data storage cell are calculated, complete the On-line Estimation of non-synchronous motor parameter.
  2. 2. the ONLINE RECOGNITION method of non-synchronous motor parameter ONLINE RECOGNITION system described in claim 1, it is characterised in that:Specific steps It is as follows:
    Step 1, the collection and processing of data:
    The timing unit after set time T, the voltage signal that export to voltage acquisition unit of control A/D sampling units with The voltage signal of current acquisition unit output is changed, and by the data storage read from A/D sampling units in data storage Unit, while the electromechanics rotating speed that rotating speed collecting unit measures is stored in data storage cell;
    The three-phase line current i that current acquisition unit is collecteda、ibAnd icBy 3/2 conversion, it is obtained in the static seat of two-phase The stator current of asynchronous machine α axles and β axles under mark systemWith
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>i</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>i</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
    The three-phase phase voltage u that voltage acquisition unit is collecteda、ubAnd ucBy 3/2 conversion, it is obtained in the static seat of two-phase The stator voltage of asynchronous machine α axles and β axles under mark systemWith
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msqrt> <mn>3</mn> </msqrt> <mn>2</mn> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mi>a</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mi>b</mi> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
    The electromechanics angular velocity omega that rotating speed collecting unit samples to obtain is changed into the angular rate of motor:
    ωr=ω p (3)
    ωrIt is the angular rate of motor, p is the number of pole-pairs of motor;
    Step 2, the rate of convergence of intermediate parametersCalculating:
    Shown in the finite time parameter identification equation of asynchronous machine such as equation (4);
    <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msup> <mi>dt</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <mfrac> <mrow> <msubsup> <mi>di</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mfrac> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msup> <mi>dt</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <mfrac> <mrow> <msubsup> <mi>di</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mtd> <mtd> <mrow> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> </mtd> <mtd> <msubsup> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mtd> <mtd> <mrow> <mfrac> <mrow> <msubsup> <mi>du</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msubsup> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> </mtd> <mtd> <mfrac> <mrow> <msubsup> <mi>di</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> </mtd> <mtd> <msubsup> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mtd> <mtd> <mrow> <mfrac> <mrow> <msubsup> <mi>du</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msubsup> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> </mtd> <mtd> <mfrac> <mrow> <msubsup> <mi>di</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>k</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mn>5</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
    In equationWithThe stator current of the asynchronous machine α axles and β axles under two-phase rest frame is represented respectively,WithThe stator voltage of the asynchronous machine α axles and β axles under two-phase rest frame, ω are represented respectivelyrIt is the angular rate of motor, k1k2k3k4k5It is intermediate parameters θ five coefficients;
    Remember that intermediate parameters θ is:
    <mrow> <mi>&amp;theta;</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>k</mi> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>k</mi> <mn>5</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
    Remember matrix ΓT(t) it is:
    <mrow> <msup> <mi>&amp;Gamma;</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mtd> <mtd> <mrow> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> </mtd> <mtd> <msubsup> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mtd> <mtd> <mrow> <mfrac> <mrow> <msubsup> <mi>du</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msubsup> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> </mtd> <mtd> <mfrac> <mrow> <msubsup> <mi>di</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mtd> <mtd> <mrow> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> </mtd> <mtd> <msubsup> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mtd> <mtd> <mrow> <mfrac> <mrow> <msubsup> <mi>du</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <msubsup> <mi>u</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> </mtd> <mtd> <mfrac> <mrow> <msubsup> <mi>di</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
    Remember that matrix y (t) is:
    <mrow> <mi>y</mi> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msup> <mi>dt</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <mfrac> <mrow> <msubsup> <mi>di</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <msup> <mi>d</mi> <mn>2</mn> </msup> <msubsup> <mi>i</mi> <mrow> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <msup> <mi>dt</mi> <mn>2</mn> </msup> </mrow> </mfrac> <mo>-</mo> <msub> <mi>&amp;omega;</mi> <mi>r</mi> </msub> <mfrac> <mrow> <msubsup> <mi>di</mi> <mrow> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mi>s</mi> </msubsup> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
    Equation (4) is then expressed as:
    Y (t)=ΓT(t)θ (8)
    The discrete form of equation (8) is:
    Y (N)=ΓT(N)θ (9)
    Here N is iterations, and the number performed equal to step 1 is also equal to the sampling number of data;Wherein:Matrix y (N) And ΓT(N) stator current of asynchronous machine α axles and β axles under the two-phase rest frame inMatrix ΓT(N) in The stator voltage of asynchronous machine α axles and β axles under two-phase rest frameMatrix y (N) and ΓT(N) motor in Angular rate ωr, it is that obtained three-phase line current, three-phase phase voltage and electromechanics rotating speed is sampled by n-th, it leads to respectively Cross what formula (1) (2) (3) was tried to achieve;N is 1 when algorithm is carried out for the first time;
    According to the sampled voltage of n-th, sample rate current, sampling rotating speed and the intermediate parameters estimate tried to achieve for the N-1 timesAsk Go out the intermediate parameters rate of convergence of n-thAs shown in (10) formula:
    Wherein operatorFor:
    Wherein:A represents any column vector, and A (n) represents any rational, and K is the diagonal gain matrix of 5 ranks, γ ∈ [0, 1), sign (a) is sign function;
    Step 3, new intermediate parameters estimateCalculating:
    The intermediate parameters tried to achieve according to iv-th iteration restrain rate of changeWith the N-1 times intermediate parameters estimate tried to achieveThe estimate of the intermediate parameters of iv-th iteration is calculated according to (12) formula
    <mrow> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>+</mo> <mi>T</mi> <mo>&amp;CenterDot;</mo> <mover> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mo>(</mo> <mi>N</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>12</mn> <mo>)</mo> </mrow> </mrow>
    T represents to count the sampling time interval that the timing unit is sent;
    Whether step 4, the intermediate parameters for judging to estimate restrain:
    Repeat step one exceedes to step 3 until the time for estimating to useWhen algorithm carries out parameter Estimation, estimated The convergent minimum times of intermediate parameters θ of meterSuch as (13) formula:
    <mrow> <mi>T</mi> <msub> <mrow> <mo>(</mo> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mo>(</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <mo>|</mo> <mo>|</mo> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>|</mo> <msup> <mo>|</mo> <mrow> <mn>1</mn> <mo>-</mo> <mi>&amp;gamma;</mi> </mrow> </msup> </mrow> <mrow> <msubsup> <mi>&amp;sigma;</mi> <msub> <mi>&amp;Gamma;</mi> <mi>min</mi> </msub> <mrow> <mi>&amp;gamma;</mi> <mo>+</mo> <mn>1</mn> </mrow> </msubsup> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>K</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
    Wherein:It is the estimate for the intermediate parameters that parameter θ is used when first time carrying out step 3With true middle ginseng Several errors, λmin(K) be gain matrix K minimal eigenvalue,It is matrix ΓT(t) powers of γ+1 of minimum singular value, γ∈[0,1);
    When the condition of (14) formula meets, it is believed that the estimate for the intermediate parameters now tried to achieveIt is exactly actual middle ginseng Number iteration terminates;
    <mrow> <mi>N</mi> <mo>&amp;CenterDot;</mo> <mi>T</mi> <mo>&gt;</mo> <mi>T</mi> <msub> <mrow> <mo>(</mo> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mo>(</mo> <mn>1</mn> <mo>)</mo> <mo>)</mo> </mrow> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
    If (14) formula is invalid new value and return to step one are assigned according to (15) to iterations N;
    N=N+1 (15)
    Step 5, the calculating of non-synchronous motor parameter:
    The estimate of the intermediate parameters obtained using estimationNon-synchronous motor parameter is sought, the estimate for the intermediate parameters tried to achieveSuch as (16):
    <mrow> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mi>N</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>4</mn> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>5</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>16</mn> <mo>)</mo> </mrow> </mrow>
    Utilize five coefficients of intermediate parametersTry to achieve the estimate of the parameter of asynchronous machine;
    The estimate of the stator resistance of asynchronous machine
    <mrow> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>17</mn> <mo>)</mo> </mrow> </mrow>
    The estimate of stator self inductanceWith the estimate of rotor self-induction
    <mrow> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <mo>=</mo> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mrow> <mo>(</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>-</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>4</mn> </msub> <mo>)</mo> </mrow> <msubsup> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> <mn>2</mn> </msubsup> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>18</mn> <mo>)</mo> </mrow> </mrow>
    The estimate of rotor resistanceTried to achieve by the way that (18) are updated into (19) formula:
    <mrow> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> </mrow> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>19</mn> <mo>)</mo> </mrow> </mrow>
    The estimate of motor mutual inductanceTried to achieve by (20):
    <mrow> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>m</mi> </msub> <mo>=</mo> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <msqrt> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msubsup> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> <mn>2</mn> </msubsup> <mrow> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mrow> <mo>(</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>1</mn> </msub> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>3</mn> </msub> <mo>-</mo> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>2</mn> </msub> <msub> <mover> <mi>k</mi> <mo>^</mo> </mover> <mn>4</mn> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>)</mo> </mrow> </msqrt> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>20</mn> <mo>)</mo> </mrow> </mrow>
    Step 6, the judgement of parameters revision condition:
    If the ratio K1 of motor mutual inductance and rotor self-induction can be accurately obtained by other method for parameter estimation, such as (21) shown in, then step 7 is performed;Here LmAnd LrActual mutual inductance and the actual rotor self-induction of motor are represented,;If it can not learn This COEFFICIENT K 1, then algorithm to step 6 is to terminate;
    Lm=K1Lr (21)
    Step 7, the further amendment of parameter of electric machine estimate:
    The motor mutual inductance estimate that step 5 is calculatedIt is modified with (22) formula, obtains its new estimate L'm
    <mrow> <msubsup> <mi>L</mi> <mi>m</mi> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mi>K</mi> <mn>1</mn> <mo>&amp;CenterDot;</mo> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>22</mn> <mo>)</mo> </mrow> </mrow>
    According to:
    <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>k</mi> <mn>1</mn> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mo>-</mo> <mfrac> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <mrow> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>k</mi> <mn>2</mn> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mo>-</mo> <mfrac> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <mrow> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>k</mi> <mn>3</mn> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>k</mi> <mn>4</mn> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>k</mi> <mn>5</mn> <mo>&amp;prime;</mo> </msubsup> <mo>=</mo> <mo>-</mo> <mrow> <mo>(</mo> <mfrac> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <mrow> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> </mrow> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <mo>=</mo> <mn>1</mn> <mo>-</mo> <mfrac> <msubsup> <mi>L</mi> <mi>m</mi> <msup> <mn>2</mn> <mo>&amp;prime;</mo> </msup> </msubsup> <mrow> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> </mrow> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>&amp;eta;</mi> <mo>^</mo> </mover> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mi>m</mi> </msub> <mrow> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mrow> <mi>s</mi> <mi>r</mi> </mrow> </msub> <mi>L</mi> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <mover> <mi>&amp;xi;</mi> <mo>^</mo> </mover> <mo>=</mo> <mfrac> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <mrow> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> </mrow> </mfrac> <mo>+</mo> <mfrac> <mrow> <msup> <msubsup> <mi>L</mi> <mi>m</mi> <mn>2</mn> </msubsup> <mo>&amp;prime;</mo> </msup> </mrow> <mrow> <mover> <mi>&amp;sigma;</mi> <mo>^</mo> </mover> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>s</mi> </msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <msub> <mi>r</mi> </msub> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> </mrow> </mfrac> </mrow> </mtd> <mtd> <mrow> <msub> <mover> <mi>T</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <msub> <mover> <mi>L</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> <msub> <mover> <mi>R</mi> <mo>^</mo> </mover> <mi>r</mi> </msub> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> 4
    Obtain five new coefficient ks of intermediate parameters '1k′2k′3k′4k′5, as new iterative initial valueSuch as (23) institute Show, make N=1, and return to step one continues intermediate parameters θ estimation;
    <mrow> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>k</mi> <mn>1</mn> <mo>&amp;prime;</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>k</mi> <mn>2</mn> <mo>&amp;prime;</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>k</mi> <mn>3</mn> <mo>&amp;prime;</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>k</mi> <mn>4</mn> <mo>&amp;prime;</mo> </msubsup> </mtd> </mtr> <mtr> <mtd> <msubsup> <mi>k</mi> <mn>5</mn> <mo>&amp;prime;</mo> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>23</mn> <mo>)</mo> </mrow> </mrow>
    N=1 when going to step 7 for the first time, a step 7 is hereafter often performed, n adds one, until meeting that (24) formula represents Condition when, algorithm terminates;
    |Lr(n)-Lr(n-1)|≤0.00001 (24)
    Wherein:LrAnd L (n)r(n-1) n-th is represented respectively and goes to the rotor self-induction tried to achieve during step 6 for (n-1)th time, Make Lr(0)=0.
CN201710716874.0A 2017-08-21 2017-08-21 A kind of non-synchronous motor parameter online recognition system and method Expired - Fee Related CN107404271B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710716874.0A CN107404271B (en) 2017-08-21 2017-08-21 A kind of non-synchronous motor parameter online recognition system and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710716874.0A CN107404271B (en) 2017-08-21 2017-08-21 A kind of non-synchronous motor parameter online recognition system and method

Publications (2)

Publication Number Publication Date
CN107404271A true CN107404271A (en) 2017-11-28
CN107404271B CN107404271B (en) 2019-11-26

Family

ID=60398315

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710716874.0A Expired - Fee Related CN107404271B (en) 2017-08-21 2017-08-21 A kind of non-synchronous motor parameter online recognition system and method

Country Status (1)

Country Link
CN (1) CN107404271B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512477A (en) * 2018-05-25 2018-09-07 北京新能源汽车股份有限公司 A kind of diagnostic method, device and the equipment of motor rotor position sampling
CN110098773A (en) * 2019-05-15 2019-08-06 华中科技大学 A kind of permanent magnet synchronous motor parameter identification method using least square method
CN114335628A (en) * 2021-12-29 2022-04-12 上海重塑能源科技有限公司 Non-storage type online iterative estimation method of polarization curve and fuel cell system

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103944481A (en) * 2014-04-28 2014-07-23 中南大学 AC asynchronous motor vector control system model parameter online modifying method
CN106452241A (en) * 2016-07-07 2017-02-22 中国第汽车股份有限公司 Induction motor parameter identification method
EP2026460A3 (en) * 2007-07-27 2017-03-01 Sanyo Electric Co., Ltd. Motor control device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2026460A3 (en) * 2007-07-27 2017-03-01 Sanyo Electric Co., Ltd. Motor control device
CN103944481A (en) * 2014-04-28 2014-07-23 中南大学 AC asynchronous motor vector control system model parameter online modifying method
CN106452241A (en) * 2016-07-07 2017-02-22 中国第汽车股份有限公司 Induction motor parameter identification method

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108512477A (en) * 2018-05-25 2018-09-07 北京新能源汽车股份有限公司 A kind of diagnostic method, device and the equipment of motor rotor position sampling
CN108512477B (en) * 2018-05-25 2020-06-02 北京新能源汽车股份有限公司 Diagnosis method, device and equipment for motor rotor position sampling
CN110098773A (en) * 2019-05-15 2019-08-06 华中科技大学 A kind of permanent magnet synchronous motor parameter identification method using least square method
CN110098773B (en) * 2019-05-15 2020-05-19 华中科技大学 Permanent magnet synchronous motor parameter identification method using least square method
CN114335628A (en) * 2021-12-29 2022-04-12 上海重塑能源科技有限公司 Non-storage type online iterative estimation method of polarization curve and fuel cell system
CN114335628B (en) * 2021-12-29 2023-11-14 上海重塑能源科技有限公司 Non-storage type online iterative estimation method of polarization curve and fuel cell system

Also Published As

Publication number Publication date
CN107404271B (en) 2019-11-26

Similar Documents

Publication Publication Date Title
CN104639003B (en) A kind of method for identification of rotational inertia of AC servo
CN104267261B (en) On-line secondary battery simplified impedance spectroscopy model parameter estimating method based on fractional order united Kalman filtering
CN107404271A (en) A kind of non-synchronous motor parameter ONLINE RECOGNITION system and method
CN104283479B (en) Permanent magnet synchronous motor load torque monitoring system based on three-dimensional motor parameter tables
CN104378038B (en) Permanent magnet synchronous motor parameter identification method based on artificial neural network
CN105610369B (en) A kind of asynchronous machine Flux Observation Method based on sliding mode observer
CN108092567A (en) A kind of Speed control of permanent magnet synchronous motor system and method
CN101917150A (en) Robust controller of permanent magnet synchronous motor based on fuzzy-neural network generalized inverse and construction method thereof
CN110071667B (en) Doubly-fed wind generator parameter identification method
CN107425775A (en) A kind of permagnetic synchronous motor parameter identification system based on improvement least square method
CN102779238A (en) Brushless DC (Direct Current) motor system identification method on basis of adaptive Kalman filter
CN107171612A (en) Fuzzy score rank PID switched reluctance machines method for controlling torque and system
CN108696210A (en) Direct current generator current loop controller methods of self-tuning based on parameter identification
CN110112974A (en) Motor control method, controller, storage medium and motor driven systems
CN101526823B (en) Control method of constant torque of switched reluctance motor
CN109873587A (en) A kind of permanent magnet synchronous motor multi-parameter automatic identification method
CN106712618A (en) Method and system for identifying rotational inertia of permanent magnet synchronous motor
CN109687792B (en) Online identification optimization method for traction motor rotor parameters facing vector control system
CN103281031A (en) Squirrel cage asynchronous motor equivalent circuit parameter identification method based on measurable electrical capacity
CN107681937A (en) A kind of ultrahigh speed permagnetic synchronous motor speed observation procedure based on neutral net
CN105024612A (en) Parameter identification-based motor current control method and system
CN106788030B (en) A kind of calculation method and device of motor driven systems mechanical parameter
CN109039208A (en) A kind of switched reluctance machines incremental inductance characteristic online test method
CN106533285B (en) Permanent magnet DC motor method for controlling number of revolution based on Kriging model
CN115392110A (en) Data model hybrid drive wind power plant modeling method based on PPO algorithm

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20191126