CN107395646B - A User Behavior Privacy Protection Method Against CSI Time-Frequency Domain Information Attacks - Google Patents
A User Behavior Privacy Protection Method Against CSI Time-Frequency Domain Information Attacks Download PDFInfo
- Publication number
- CN107395646B CN107395646B CN201710791353.1A CN201710791353A CN107395646B CN 107395646 B CN107395646 B CN 107395646B CN 201710791353 A CN201710791353 A CN 201710791353A CN 107395646 B CN107395646 B CN 107395646B
- Authority
- CN
- China
- Prior art keywords
- user
- malicious
- value
- csi
- malicious device
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
- 238000000034 method Methods 0.000 title claims abstract description 38
- 230000006399 behavior Effects 0.000 claims description 10
- 238000004364 calculation method Methods 0.000 claims description 7
- 125000004432 carbon atom Chemical group C* 0.000 claims 1
- 238000012360 testing method Methods 0.000 abstract description 3
- 230000001133 acceleration Effects 0.000 description 17
- 238000010586 diagram Methods 0.000 description 10
- 230000005021 gait Effects 0.000 description 6
- 239000002131 composite material Substances 0.000 description 4
- 230000003068 static effect Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 206010000117 Abnormal behaviour Diseases 0.000 description 1
- 238000012935 Averaging Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000012417 linear regression Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/04—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks
- H04L63/0428—Network architectures or network communication protocols for network security for providing a confidential data exchange among entities communicating through data packet networks wherein the data content is protected, e.g. by encrypting or encapsulating the payload
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F21/00—Security arrangements for protecting computers, components thereof, programs or data against unauthorised activity
- G06F21/60—Protecting data
- G06F21/62—Protecting access to data via a platform, e.g. using keys or access control rules
- G06F21/6218—Protecting access to data via a platform, e.g. using keys or access control rules to a system of files or objects, e.g. local or distributed file system or database
- G06F21/6245—Protecting personal data, e.g. for financial or medical purposes
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L67/00—Network arrangements or protocols for supporting network services or applications
- H04L67/50—Network services
- H04L67/52—Network services specially adapted for the location of the user terminal
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- General Engineering & Computer Science (AREA)
- Bioethics (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Signal Processing (AREA)
- Computer Hardware Design (AREA)
- Computer Networks & Wireless Communication (AREA)
- Theoretical Computer Science (AREA)
- Medical Informatics (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Computing Systems (AREA)
- Software Systems (AREA)
- Databases & Information Systems (AREA)
- Mobile Radio Communication Systems (AREA)
- Telephone Function (AREA)
Abstract
本发明公开了一种针对CSI时频域信息攻击的用户行为隐私保护方法,该方法首先通过手机检测用户行为隐私的SNR值,以判断当前所处区域是否安全,如不安全,则通过户行走过程中的数据作为已知数据,根据信号衰减模型来具体算出恶意设备的位置并且对其位置进行实时矫正;最后,根据恶意设备的分布位置,确定用户行走的方向,最终使得用户到达安全区域。本发明经过实际试验验证,证明本发明方法所估计得步数、步长以及方向都比较准确,相对于同类型利用信号衰减模型的定位方法,本方法的定位结果可以达到其同样的精度,通过对用户实时的引导,我们可证明本方法可以有效保护用户的隐私信息,并且,用户在安全区域内,并不会影响用户的上网体验。
The invention discloses a user behavior privacy protection method against CSI time-frequency domain information attack. The method firstly detects the SNR value of user behavior privacy through a mobile phone to judge whether the current area is safe, if not, the user walks The data in the process is used as known data, and the location of the malicious device is calculated according to the signal attenuation model and corrected in real time. The present invention has been verified by actual tests, and it is proved that the estimated number of steps, step lengths and directions of the present invention are relatively accurate. Compared with the same type of positioning methods using signal attenuation models, the positioning results of this method can achieve the same accuracy. For the real-time guidance of the user, we can prove that this method can effectively protect the user's private information, and the user's surfing experience will not be affected when the user is in a safe area.
Description
技术领域technical field
本发明涉及信息安全技术领域,具体涉及一种针对CSI时频域信息攻击的用户行为隐私保护方法。The invention relates to the technical field of information security, in particular to a method for protecting user behavior privacy against CSI time-frequency domain information attacks.
背景技术Background technique
WiFi现在是物联网的重要组成部分,最近几年WiFi更是用来做室内定位、目标追踪、手势识别、按键检测、唇语识别等。但是,WiFi也可能泄露用户的隐私。WiFi is now an important part of the Internet of Things. In recent years, WiFi has been used for indoor positioning, target tracking, gesture recognition, key detection, lip recognition, etc. However, WiFi can also leak users' privacy.
现在大部分手机使用的是图形以及数字密码解锁,安全领域发现这种方法解锁并不安全,非常容易通过一对收发器获取信道状态信息,并在用户不知情的情况下破解用户所输入的密码,进而对用户隐私造成极大的威胁,尤其是在使用支付宝或者微信支付时,若密码被破解识别,将会造成严重的经济财产损失。例如WiPass系统,该系统无需对用户手机进行控制即可以通过WiFi信号识别用户手势破解用户所输入的密码,即使是在没有光线的场景下。WiHear系统使残疾人仅仅通过语言指令就可以和设备进行交互,让设备做他想要做的事情,极大地方便了残疾人的生活。因为WiHear系统用当前的无线信号发射器就可以实现,所以,当WiHear系统被用在一些隐私的场所时,比如在公司会议有一个无线路由器,那么公司开会的内容很有可能被攻击者获取,进而攻击者可能会获取到公司的商业机密,如果这些商业机密被泄露了,对公司会造成不可估量的经济损失。WiKey系统实现了细粒度的按键检测,如果攻击者在公司高层领导办公室安装一个无线信号发射端,那么领导在电脑上输入的信息很有可能被攻击者获取。Nowadays, most mobile phones use graphics and digital passwords to unlock. The security field finds that this method is not safe to unlock. It is very easy to obtain channel status information through a pair of transceivers, and to crack the password entered by the user without the user's knowledge. , and then pose a great threat to user privacy, especially when using Alipay or WeChat payment, if the password is cracked and identified, it will cause serious economic and property losses. For example, the WiPass system, which can identify the user's gesture through the WiFi signal without controlling the user's mobile phone, can crack the password entered by the user, even in a scene without light. The WiHear system enables the disabled to interact with the device only through language commands, allowing the device to do what he wants, which greatly facilitates the life of the disabled. Because the WiHear system can be implemented with the current wireless signal transmitter, when the WiHear system is used in some private places, such as a wireless router in a company meeting, the content of the company meeting is likely to be obtained by attackers. Then the attacker may obtain the company's trade secrets. If these trade secrets are leaked, it will cause immeasurable economic losses to the company. The WiKey system implements fine-grained key detection. If an attacker installs a wireless signal transmitter in the company's senior leadership office, the information entered by the leader on the computer is likely to be obtained by the attacker.
现在几乎所有的手机都内置了加速度传感器和方向传感器,并且基于Android开放开源的特点,开发者可以方便的开发软件来获取传感器数据并将其进行实时存储。利用智能手机中的加速度计、磁力计、陀螺仪等运动传感器能够测得目标的运动信息,通过这些信息可以算出目标的航向和距离,结合其初始位置,便可以推算出目标的位置。Almost all mobile phones now have built-in acceleration sensors and orientation sensors, and based on the open and open source features of Android, developers can easily develop software to obtain sensor data and store it in real time. The motion information of the target can be measured by motion sensors such as accelerometers, magnetometers, and gyroscopes in the smartphone. Through this information, the heading and distance of the target can be calculated. Combined with its initial position, the position of the target can be calculated.
发明内容SUMMARY OF THE INVENTION
针对现有技术中存在的问题,本发明的目的在于,提供一种针对CSI时频域信息攻击的用户行为隐私保护方法,引导用户到达安全区域后再通过手机输入隐私信息,以避免隐私信息被窃取。Aiming at the problems existing in the prior art, the purpose of the present invention is to provide a user behavior privacy protection method for CSI time-frequency domain information attack, and guide the user to enter the privacy information through the mobile phone after arriving at the safe area, so as to avoid the privacy information from being steal.
为了实现上述任务,本发明采用以下技术方案:In order to realize the above-mentioned tasks, the present invention adopts the following technical solutions:
一种针对CSI时频域信息攻击的用户行为隐私保护方法,包括以下步骤:A method for protecting user behavior privacy against CSI time-frequency domain information attack, comprising the following steps:
步骤一,判断当前所处位置是否安全区域
用户行走进入公共场所并到达某个位置后,通过以下公式计算当前所处位置的SNR值:After the user walks into a public place and reaches a certain location, the SNR value of the current location is calculated by the following formula:
上式中,csim为用户通过手指在屏幕上向右滑屏时手机采集的CSI的平均值,csic为用户在滑屏前一段时间内手机采集的CSI的平均值,noise为csim中包含的噪声值;In the above formula, csi m is the average value of the CSI collected by the mobile phone when the user swipes the screen to the right on the screen, csi c is the average value of the CSI collected by the mobile phone within a period of time before the user swipes the screen, and noise is in csi m Included noise value;
判断通过上述公式计算出的SNR值是否大于设定的阈值,若大于阈值,则当前位置并非安全区域,执行下一步;否则用户可以在当前位置通过手机输入隐私信息;Determine whether the SNR value calculated by the above formula is greater than the set threshold. If it is greater than the threshold, then the current location is not a safe area, and the next step is performed; otherwise, the user can input privacy information through the mobile phone at the current location;
步骤二,定位恶意设备
记用户刚进入到公共场所时的位置为初始位置,通过用户从初始位置行走至所述的所处位置这段时间内手机内置的传感器采集到的信息,计算用户的步数、步长和每一步的位置坐标;Record the user's position when he first entered the public place as the initial position, and calculate the user's steps, step length and each step through the information collected by the built-in sensor of the mobile phone during the period when the user walked from the initial position to the stated position. the position coordinates of one step;
根据用户在第i步的位置处获取的RSSI值计算恶意设备距离该步位置处的比例计算公式为:According to the RSSI value obtained by the user at the position of the i-th step, calculate the proportion of the malicious device from the position of this step The calculation formula is:
上式中,rssi为用户在第i步位置处获取到的RSSI值,为恶意设备到第i步位置处的距离,n为路径损耗参数,取值为2~9;In the above formula, rss i is the RSSI value obtained by the user at the i-th step, is the distance from the malicious device to the i-th step, n is the path loss parameter, which ranges from 2 to 9;
将用户每一步的位置记作一个已知参考点,根据已知参考点的坐标,计算出恶意设备在第i步位置处的一系列位置坐标;然后根据已知参考点和恶意设备的位置坐标,重新计算恶意设备距离第i步位置处的比例d1/di;Record the position of each step of the user as a known reference point, and calculate a series of position coordinates of the malicious device at the i-th step according to the coordinates of the known reference point; then according to the known reference point and the position coordinates of the malicious device , recalculate the ratio d 1 /d i of the malicious device from the i-th step;
根据和d1/di,从所述的一系列位置坐标中确定恶意设备的实际位置坐标;according to and d 1 /d i , determine the actual location coordinates of the malicious device from the series of location coordinates;
步骤三,安全区域实时引导Step 3, real-time guidance in the safe area
计算用户当前所处位置与恶意设备之间的角度θ;Calculate the angle θ between the user's current location and the malicious device;
确定用户的行走方向的角度范围,即:[θ+90°,θ+270°]Determine the angular range of the user's walking direction, namely: [θ+90°, θ+270°]
引导用户向所述的角度范围行走,即可到达安全区域。Guide the user to walk toward the stated angle range to reach the safe area.
进一步地,当存在多个恶意设备时,分别计算每个恶意设备和用户当前所处位置的角度,然后计算每个恶意设备对应的所述角度范围的交集,再引导用户向交集的角度范围行走。Further, when there are multiple malicious devices, calculate the angle between each malicious device and the current location of the user, then calculate the intersection of the angle ranges corresponding to each malicious device, and then guide the user to walk toward the angle range of the intersection. .
进一步地,步骤二中的位置坐标所相对的坐标系是以用户的初始位置为原点,向东为X轴正方向,向北为Y轴正方向,垂直于XY平面且远离地面的方向为Z轴的坐标系。Further, the coordinate system relative to the position coordinates in
进一步地,所述的步骤二中,根据已知参考点的坐标,计算出恶意设备在第i步位置处的一系列位置坐标的公式为:Further, in the second step, according to the coordinates of the known reference point, the formula for calculating a series of position coordinates of the malicious device at the i-th position is:
Aθ=B 式3Aθ=B Equation 3
其中:in:
上面的式子中,(X,Y,Z)为恶意设备的位置坐标,(xi,yi,zi)为用户在第i步的位置坐标,i∈(2,m);n为路径损耗参数,取值为2~9;In the above formula, (X, Y, Z) are the location coordinates of the malicious device, (x i , y i , z i ) is the position coordinate of the user at the i-th step, i∈(2,m); n is the path loss parameter, ranging from 2 to 9;
当式3中的n取不同值时,可计算出一系列的恶意设备的位置坐标(Xn,Yn,Zn)。When n in Equation 3 takes different values, a series of location coordinates (X n , Y n , Z n ) of malicious devices can be calculated.
进一步地,所述的步骤二中,重新计算恶意设备距离第i步位置处的比例d1/di的公式为:Further, in the second step, the formula for recalculating the ratio d 1 /d i from the malicious device to the i-th position is:
进一步地,所述的恶意设备的实际位置坐标的确定方法为:Further, the method for determining the actual location coordinates of the malicious device is:
在第i步位置处,当n取不同的值时,式2和式4分别计算出不同的值,然后根据下面的公式确定最优n值nopt:At the i-th step, when n takes different values,
则最优n值所对应的恶意设备的坐标位置即为恶意设备的实际位置。Then the coordinate position of the malicious device corresponding to the optimal n value is the actual position of the malicious device.
本发明具有以下技术特点:The present invention has the following technical characteristics:
本发明经过实际试验验证,证明本发明方法所估计得步数、步长以及方向都比较准确,相对于同类型利用信号衰减模型的定位方法,本方法的定位结果可以达到其同样的精度,通过对用户实时的引导,我们可证明本方法可以有效保护用户的隐私信息,并且,用户在安全区域内,并不会影响用户的上网体验。The present invention has been verified by actual tests, and it is proved that the estimated number of steps, step lengths and directions of the present invention are relatively accurate. Compared with the same type of positioning methods using signal attenuation models, the positioning results of this method can achieve the same accuracy. For the real-time guidance of the user, we can prove that this method can effectively protect the user's private information, and the user's surfing experience will not be affected when the user is in a safe area.
附图说明Description of drawings
图1为环境中存在恶意设备时用户使用手机存在隐私泄露风险的几种情况,其中(a)为带内信号攻击的示意图,(b)为带外信号攻击的示意图,(c)为户外场景恶意设备攻击的示意图,(d)为多恶意设备攻击时的示意图;Figure 1 shows several situations in which there is a risk of privacy leakage when users use mobile phones when malicious devices exist in the environment, wherein (a) is a schematic diagram of an in-band signal attack, (b) is a schematic diagram of an out-of-band signal attack, and (c) is an outdoor scene A schematic diagram of a malicious device attack, (d) is a schematic diagram of an attack by multiple malicious devices;
图2为SNR值和攻击成功率的曲线关系图;Figure 2 is a graph of the curve relationship between the SNR value and the attack success rate;
图3为合成加速度随时间变化的曲线图;Fig. 3 is the curve diagram of synthetic acceleration with time;
图4为恶意设备位置确定时用户行走至不同位置时的示意图;Fig. 4 is the schematic diagram when the user walks to different positions when the malicious device position is determined;
图5为用户在不同位置计算出的恶意设备实际位置的示意图;FIG. 5 is a schematic diagram of the actual location of the malicious device calculated by the user at different locations;
图6为存在多个恶意设备时引导用户行走范围的示意图;6 is a schematic diagram of guiding a user to walk within a range when there are multiple malicious devices;
图7为安全区域引导时的示意图;FIG. 7 is a schematic diagram when the safe area is guided;
图8为用户行走过程中步态的SNR值与用户输入隐私信息的SNR值的关系图;Fig. 8 is the relation diagram of the SNR value of the gait in the user's walking process and the SNR value of the user's input privacy information;
具体实施方式Detailed ways
如图1所示,当用户到达某个区域中以后,如果该区域存在WIFI的发射端和接收端,当用户所处的位置距离攻击者所部署的设备比较近时,攻击者可以利用其接收端获取到用户输入隐私信息时的CSI值,然后结合其攻击知识库,攻击者就可以很容易破解出来用户的隐私信息,例如解锁密码,支付宝支付密码,微信支付密码,此时用户存在隐私泄露的风险。本发明提供一种可检测当前区域是否安全,如不安全则引导用户到达安全区域的隐私行为保护方法,具体如下:As shown in Figure 1, after the user arrives in a certain area, if there are WIFI transmitter and receiver in the area, when the user is located close to the device deployed by the attacker, the attacker can use it to receive The terminal obtains the CSI value when the user enters the private information, and then combines with its attack knowledge base, the attacker can easily crack the user's private information, such as unlock password, Alipay payment password, WeChat payment password, and the user has privacy leakage. risks of. The present invention provides a privacy behavior protection method that can detect whether the current area is safe, and if it is not safe, guide the user to reach the safe area, the details are as follows:
一种针对CSI时频域信息攻击的用户行为隐私保护方法,包括以下步骤:A method for protecting user behavior privacy against CSI time-frequency domain information attack, comprising the following steps:
步骤一,判断当前所处位置是否安全区域
在用户的手机中安装csi tool采集软件,该软件每隔固定的时间,如1s采集一次csi值;当用户行走进入公共场所并到达某个位置后,通过以下公式计算当前所处位置的SNR值:Install the csi tool acquisition software in the user's mobile phone. The software collects the csi value every fixed time, such as 1s; when the user walks into a public place and reaches a certain position, the SNR value of the current position is calculated by the following formula :
上式中,csim为用户通过手指在屏幕上向右滑屏时手机采集的CSI的平均值,csic为用户在滑屏前一段时间内手机采集的CSI的平均值,noise为csim中包含的噪声值。判断通过上述公式计算出的SNR值是否大于设定的阈值,若大于阈值,则当前位置并非安全区域,执行下一步;否则用户可以在当前位置通过手机输入隐私信息。In the above formula, csi m is the average value of the CSI collected by the mobile phone when the user swipes the screen to the right on the screen, csi c is the average value of the CSI collected by the mobile phone within a period of time before the user swipes the screen, and noise is in csi m Included noise value. Determine whether the SNR value calculated by the above formula is greater than the set threshold. If it is greater than the threshold, the current location is not a safe area, and the next step is performed; otherwise, the user can input privacy information through the mobile phone at the current location.
该步骤通过SNR值来判断当前所处位置是否安全,判断原理是:发明人团队经过研究发现,SNR值与成功率之间存在线性回归关系,可用SNR值来评估攻击者的成功率。用户输入隐私信息的时间一般为几秒,且每秒中收到的csi一般为100个~2000个(跟采样率有关),上述计算中用到的csi值为收到的csi的平均值。In this step, the SNR value is used to judge whether the current location is safe or not. The judgment principle is: the inventor team found that there is a linear regression relationship between the SNR value and the success rate, and the SNR value can be used to evaluate the success rate of the attacker. The time for a user to input private information is generally a few seconds, and the received csi per second is generally 100 to 2000 (related to the sampling rate). The csi value used in the above calculation is the average value of the received csi.
根据实验经验,我们可得SNR值跟攻击成功率r的关系如下列公式所示:According to the experimental experience, we can obtain the relationship between the SNR value and the attack success rate r as shown in the following formula:
r=(p1×SNR+p2)/((SNR)3+q1×(SNR)2+q2×SNR+q3)r=(p 1 ×SNR+p 2 )/((SNR) 3 +q 1 ×(SNR) 2 +q 2 ×SNR+q 3 )
上面的式子中,p1,p2,q1,q2,q3为常数参数,SNR值为式1求的SNR值。发明人通过做了不同距离下的15种图案密码的实验来获取到SNR值跟攻击成功率,然后通过上述的公式对SNR值和攻击成功率进行拟合,建立关系,拟合的曲线如图2所示。通过实验获取到的SNR值与攻击成功率,我们可得到上述常数参数的值,p1=1081,p2=543.9,q1=-1033,q2=4657,q3=2582。In the above formula, p 1 , p 2 , q 1 , q 2 , and q 3 are constant parameters, and the SNR value is the SNR value obtained by
为了判断当前所处位置是否安全,本方法中采用模拟输入的方式,即用户利用手指从左向右滑屏,以这个动作来模拟用户在手机屏幕上输入信息。这个过程中,可采集到上述的csim。用户在输入隐私信息之前一般会有几秒中的时间什么操作也没做,本方法中csic收集的是这段时间的CSI值。从CSI值的幅值曲线上可以看出来哪段是静止时间,哪段是隐私信息输入时间,静止时间的CSI的幅值是稳定的,保持在一个水平线上,而隐私信息输入时间的那段CSI的幅值是波动的。静止时间可以在用户输入隐私信息之前,也可在用户输入隐私信息之后,通过CSI的幅值稳定度来判定,一般1s到3s就可以。在式1中计算时,滑屏前的一段时间可以为1s~3s,以这段时间采集的CSI的平均值作为csic。通过式1可计算出SNR值,然后根据SNR值与成功率的关系推算出用户在该位置的可能被攻击成功的概率,当被攻击成功的概率大于一个阈值时,说明当前区域不安全,存在隐私泄露风险,则通过下面的方法引导用户到达安全区域后再输入隐私信息;如果小于阈值,则说明当前区域隐私泄露的风险很小,用户可以在当前位置通过手机输入隐私信息。根据实际试验经验,本方案中阈值可以设置为-2。In order to determine whether the current location is safe, the method adopts the method of simulated input, that is, the user slides the screen from left to right with his finger, and uses this action to simulate the user inputting information on the screen of the mobile phone. In this process, the above-mentioned csim can be collected. The user generally does nothing for a few seconds before entering the private information. In this method, the csic collects the CSI value during this period. From the amplitude curve of the CSI value, it can be seen which period is the static time and which is the private information input time. The CSI amplitude of the static time is stable and remains on a horizontal line, while the private information input period The magnitude of the CSI fluctuates. The static time can be determined by the amplitude stability of the CSI before the user inputs the privacy information, or after the user inputs the privacy information, generally 1s to 3s. When calculating in
步骤二,定位恶意设备
步骤二当中采用的原理具体如下:The principle used in the second step is as follows:
因RSSI值与传播距离存在关系,且RSSI值可直接用手机来获取,因此,在本发明中,我们利用信号传播模型来定位恶意的位置。该信号传播模型公式如下:Because there is a relationship between the RSSI value and the propagation distance, and the RSSI value can be obtained directly by the mobile phone, in the present invention, we use the signal propagation model to locate the malicious location. The signal propagation model formula is as follows:
d=10(|RSSI|-A)/(10*n) d=10 (|RSSI|-A)/(10*n)
其中:d为计算所得距离,RSSI为接收信号强度,A为发射端(恶意设备)和接收端(用户的手机)相隔1m时的信号强度,n为环境衰减因子,n的取值范围为2~9。然而,当进入到一个公共场所时,因其发送端是攻击者的,所以上述的A和n是未知的。我们需要提前获得A和n,所以我们可以利用用户在进入公共场所之后的行走信息来获取未知参数,然后再进行定位。Among them: d is the calculated distance, RSSI is the received signal strength, A is the signal strength when the transmitter (malicious device) and the receiver (user's mobile phone) are separated by 1m, n is the environmental attenuation factor, and the value range of n is 2 ~9. However, when entering a public place, since the sender is an attacker, the above A and n are unknown. We need to obtain A and n in advance, so we can use the user's walking information after entering a public place to obtain unknown parameters, and then perform positioning.
记用户刚进入到公共场所时的位置为初始位置,通过用户从初始位置行走至所述的所处位置这段时间内手机内置的传感器(加速度计、磁力计、陀螺仪等)采集到的信息,计算用户的步数、步长和每一步的位置坐标;具体如下:Remember the position when the user first entered the public place as the initial position, and the information collected by the built-in sensors (accelerometer, magnetometer, gyroscope, etc.) , calculate the user's number of steps, step length and the position coordinates of each step; the details are as follows:
本方案中,可以以用户刚进入到公共场所时的位置为初始位置(原点),建立XYZ坐标系,向东为X轴正方向,向北为Y轴正方向,垂直于XY平面且远离地面的方向为Z轴。In this solution, the initial position (origin) can be used as the initial position (origin) when the user first enters the public place, and the XYZ coordinate system can be established. The east is the positive direction of the X-axis, and the north is the positive direction of the Y-axis, which is perpendicular to the XY plane and away from the ground. The direction is the Z axis.
(1)步数估计(1) Estimation of the number of steps
为了估算用户走过的距离首先需要估算用户走过的步数,当步数估算与实际走过的步数差异较大时,对于实验中的短距离估算行走距离将会产生较大的误差,因此需要准确地估算用户走过的步数。In order to estimate the distance traveled by the user, it is first necessary to estimate the number of steps the user has traveled. When the difference between the estimated number of steps and the actual number of steps traveled is large, there will be a large error in estimating the walking distance for short distances in the experiment. Therefore, it is necessary to accurately estimate the number of steps taken by the user.
在用户手持手机行走过程中,由于脚步上下起伏会对加速度传感器产生一定的作用。若选取单一方向上的加速度传感器数据则过于片面,因为用户在行走过程中身体的起伏是多个方向的,因此需要考虑多个方向上的加速度传感器数据,故提出使用合成加速度来进行步数估算,合成加速度的具体计算公式为:During the walking process of the user holding the mobile phone, the ups and downs of the footsteps will have a certain effect on the acceleration sensor. If the acceleration sensor data in a single direction is selected, it is too one-sided, because the user's body fluctuates in multiple directions during walking, so it is necessary to consider the acceleration sensor data in multiple directions, so it is proposed to use the composite acceleration to estimate the number of steps , the specific calculation formula of the composite acceleration is:
上式中,X、Y、Z分别为加速度传感器X,Y,Z三个方向上的数据;计算合成加速度之后,寻找合成加速度的峰值(可用findpeaks来实现),寻找出来的峰值个数就是步数,如图3所示。In the above formula, X, Y, Z are the data in the three directions of the acceleration sensor X, Y, and Z respectively; after calculating the composite acceleration, find the peak value of the composite acceleration (which can be realized by findpeaks), and the number of peaks found is the step number, as shown in Figure 3.
通过对比加速度传感器数据与合成加速度数据对步数估算的准确性,得出使用合成加速度能更容易估算出用户所行走的步数,因此使用合成加速度估算步数。为提高步数估算的准确性,减少因人为因素如快速摇晃手机等异常行为对步数估算产生较大的误差,在使用合成加速度进行步数估算时需要根据实际情况设定合理的峰值范围,同样,人在行走时的行走频率不可能很高,因此还需要设定两个波峰间的最小间距,通过这两个方面的限制提高步数估算的准确率,减少步数估算误差。By comparing the accuracy of estimating the number of steps between the acceleration sensor data and the synthetic acceleration data, it is concluded that the synthetic acceleration can be used to estimate the number of steps taken by the user more easily, so the synthetic acceleration is used to estimate the number of steps. In order to improve the accuracy of step estimation and reduce the large error in step estimation due to human factors such as rapid shaking of the mobile phone and other abnormal behaviors, it is necessary to set a reasonable peak range according to the actual situation when using synthetic acceleration for step estimation. Similarly, the walking frequency of people cannot be very high, so it is necessary to set the minimum distance between the two peaks, and through these two limitations, the accuracy of step estimation can be improved and the error of step estimation can be reduced.
(2)步长估计(2) Step size estimation
通过步骤(1)可以得到用户行走的步数后,还需要计算用户每一步的步长,结合步数估算才能得到用户走过的路程距离。本发明使用下列公式来估计步长:After the number of steps taken by the user can be obtained through step (1), the step length of each step of the user needs to be calculated, and the distance traveled by the user can be obtained only by estimating the number of steps. The present invention uses the following formula to estimate the step size:
上式中:Yi为第i步步长,k为系数,取值为0~1之间;maxi为第i步合成加速度的最大值,mini为第i步合成加速度的最小值。In the above formula: Y i is the step size of the ith step, k is the coefficient, and its value is between 0 and 1; max i is the maximum value of the synthetic acceleration of the ith step, and min i is the minimum value of the synthetic acceleration of the ith step.
用户全程走过路程的总距离即为每一步步长之和,至此已经可以得到用户行走的距离,还需要得到用户行走方向才能定位用户相对起始点的位置坐标。The total distance traveled by the user is the sum of the step lengths of each step. So far, the distance traveled by the user can be obtained, and the user's walking direction needs to be obtained to locate the position coordinates of the user relative to the starting point.
(3)每一步的位置坐标(3) The position coordinates of each step
本发明使用下列公式来确定用户每一步的位置坐标:The present invention uses the following formula to determine the position coordinates of each step of the user:
其中,Ei为第i步东向(X轴)坐标,Ei-1为第i-1步东向(X轴)坐标,为第i步当前方向与Y轴的夹角,Li为第i步的步长,Ni为第i步北向(Y轴)坐标,Ni-1为第i-1步北向(Y轴)坐标,即这里计算出来的每一步的位置坐标是相对于上述XYZ坐标系而言的。Among them, E i is the east (X-axis) coordinate of the i-th step, and E i-1 is the east-direction (X-axis) coordinate of the i-1th step, is the angle between the current direction of the i-th step and the Y-axis, Li is the step size of the i-th step, N i is the north (Y-axis) coordinate of the i-th step, and N i-1 is the i-1-th step north (Y-axis). ) coordinates, that is, the position coordinates of each step calculated here are relative to the above XYZ coordinate system.
用户行走过程中的坐标位置如图4中所示,图4中是展示用户走了5步,在第四步的时候转了弯,我们可把用户开始走的初始点看作(x1,0,0)后面的点都可以根据步数,步长以及所获得的陀螺仪的数据来算出,如图中所示。x1表示用户行走的第一个位置点。The coordinates of the user's walking process are shown in Figure 4. Figure 4 shows that the user took 5 steps and turned a corner at the fourth step. We can regard the initial point where the user starts walking as (x 1 , The points after 0,0) can be calculated according to the number of steps, the step size and the data obtained from the gyroscope, as shown in the figure. x 1 represents the first location point where the user walks.
本发明利用用户行走过程中的数据作为已知数据,根据信号衰减模型来具体算出恶意设备的位置并且对其位置进行实时矫正。The present invention uses the data during the user's walking process as known data, specifically calculates the location of the malicious device according to the signal attenuation model, and corrects the location in real time.
根据用户在第i步的位置处获取的RSSI值计算恶意设备距离该步位置处的比例计算公式为:According to the RSSI value obtained by the user at the position of the i-th step, calculate the proportion of the malicious device from the position of this step The calculation formula is:
上式中,rssi为用户在第i步位置处获取到的RSSI值,为恶意设备到第i步位置处的距离,n为路径损耗参数,取值为2~9;In the above formula, rss i is the RSSI value obtained by the user at the i-th step, is the distance from the malicious device to the position of the i-th step, n is the path loss parameter, which ranges from 2 to 9;
将用户每一步的位置记作一个已知参考点,根据已知参考点的坐标,计算出恶意设备在第i步位置处的一系列位置坐标,具体为:The position of each step of the user is recorded as a known reference point, and according to the coordinates of the known reference point, a series of position coordinates of the malicious device at the i-th step are calculated, specifically:
Aθ=B 式3Aθ=B Equation 3
其中:in:
上面的式子中,(X,Y,Z)为恶意设备的位置坐标,(xi,yi,zi)为用户在第i步的位置坐标,i∈(2,m);n为路径损耗参数,取值为2~9;上述参数在一个未知的公共场所中,只有n是未知的,其他参数都可与通过手机传感器来获得,然而n是有范围的,为2~9之间,当取一个n值,例如3.25,我们即可算得恶意设备的位置坐标。In the above formula, (X, Y, Z) are the location coordinates of the malicious device, (x i , y i , z i ) are the coordinates of the user's position at the i-th step, i∈(2,m); n is the path loss parameter, ranging from 2 to 9; the above parameters are in an unknown public place , only n is unknown, other parameters can be obtained through mobile phone sensors, but n has a range, between 2 and 9, when taking a value of n, such as 3.25, we can calculate the location coordinates of the malicious device .
当式3中的n取不同值时,可计算出一系列的恶意设备的位置坐标(Xn,Yn,Zn),需要从这些位置坐标中选出最精确的一个,作为用户在第i位置处确定的恶意设备的实际位置。When n in Equation 3 takes different values, a series of location coordinates (X n , Y n , Z n ) of malicious devices can be calculated, and the most accurate one needs to be selected from these location coordinates as the user’s The actual location of the malicious device determined at i location.
接下来,需要重新确定恶意设备距离第i步位置处的比例d1/di:Next, it is necessary to re-determine the ratio d 1 /d i of the malicious device from the i-th position:
式4中参数的含义同前。The meanings of the parameters in
在第i步位置处,当n取不同的值时,式2和式4分别计算出不同的值,然后根据下面的公式确定最优n值nopt:At the i-th step, when n takes different values,
则最优n值在所述的一系列的恶意设备的位置坐标中所对应的恶意设备的坐标位置即为恶意设备的实际位置(X0,Y0,Z0)。本方案中,对n的取值可采取网格策略,从2~9每次加0.05计算其对应的恶意设备的坐标位置,从而选出最精确的位置。Then, the coordinate position of the malicious device corresponding to the optimal n value in the series of position coordinates of the malicious device is the actual position (X 0 , Y 0 , Z 0 ) of the malicious device. In this scheme, a grid strategy can be adopted for the value of n, and the coordinate position of the corresponding malicious device can be calculated from 2 to 9 by adding 0.05 each time, so as to select the most accurate position.
因为RSSI测量值有误差,可能某一步测量出的RSSI值误差较大,如果用该步的数据作为参考点来计算的话,那么算出来的恶意设备的位置就不准确。Because there is an error in the RSSI measurement value, the RSSI value measured in a certain step may have a large error. If the data of this step is used as a reference point for calculation, the calculated location of the malicious device will be inaccurate.
通过经验,我们可知,当已知参考节点的个数为4的时候,定位误差可达到要求,因此在本发明中,按照步骤二中的方法,计算连续4步位置作为参考节点所对应的恶意设备的实际位置,然后将这些位置求平均,可以使恶意设备的位置更加准确,如图5所示。例如,用户走了8步,可用第1,2,3,4步的位置作为参考节点求得恶意设备的一个位置,也可用第2,3,4,5步的位置作为参考节点求得恶意设备的一个位置,然后对求出来的位置计算平均值作为恶意设备的最终位置坐标。Through experience, we know that when the number of known reference nodes is 4, the positioning error can meet the requirements. Therefore, in the present invention, according to the method in
步骤三,安全区域实时引导Step 3, real-time guidance in the safe area
计算在XYZ坐标系中用户当前所处位置与恶意设备之间的角度θ,计算公式为:Calculate the angle θ between the user's current location and the malicious device in the XYZ coordinate system. The calculation formula is:
上式中,(X0,Y0)为恶意设备的位置坐标,(xi,yi)为用户当前的位置坐标(忽略Z轴方向上的角度)。In the above formula, (X 0 , Y 0 ) are the location coordinates of the malicious device, and ( xi , y i ) are the current location coordinates of the user (ignoring the angle in the Z-axis direction).
确定用户的行走方向的角度范围,即:[θ+90°,θ+270°]。Determine the angular range of the user's walking direction, namely: [θ+90°, θ+270°].
引导用户向所述的角度范围行走,即可到达安全区域。当存在多个恶意设备时,分别计算每个恶意设备和用户当前所处位置的角度,然后计算每个恶意设备对应的所述角度范围的交集,再引导用户向交集的角度范围行走。例如用户与恶意设备1的夹角为30度,则其应该走的方向为[120°,300°],用户与恶意设备2的夹角为120度,则其应该走的方向为[240°,360°]&&[0°,30°],求上述两个集合的交集,其交集为[240°,300°],则给用户提示的方向角度为[240°,300°],如图6所示。若用户没有按照规定的路线行走,重新进行上述步骤,实时引导。Guide the user to walk toward the stated angle range to reach the safe area. When there are multiple malicious devices, the angle between each malicious device and the user's current location is calculated separately, then the intersection of the angle ranges corresponding to each malicious device is calculated, and the user is guided to walk toward the angle range of the intersection. For example, if the angle between the user and the
收集用户行走过程中步态产生的CSI值,然后计算步态的SNR值,根据步态SNR值推测隐私信息(即向右滑屏这个动作)的SNR值,然后根据推测出来的隐私信息的SNR值判定当前位置是否为安全区域,若为安全区域,则提示用户,不用再行走,若为非安全区域,否则继续为用户引导。Collect the CSI values generated by the user's gait during walking, and then calculate the SNR value of the gait. According to the SNR value of the gait, the SNR value of the private information (that is, the action of sliding the screen to the right) is estimated, and then the SNR of the private information is estimated according to the SNR value of the private information. The value determines whether the current location is a safe area. If it is a safe area, it will prompt the user to stop walking. If it is a non-safe area, otherwise continue to guide the user.
该步骤的原理如下:The principle of this step is as follows:
在估算出恶意设备的位置坐标之后,系统可以根据用户与恶意设备的相对位置,给出用户以安全的方向指导。如图6所示,当用户站在P点时,若空间中只有一个恶意AP1(恶意设备),那么用户可以直接朝着其相反的方向行走即可,而若有多个恶意AP的时候,需要考虑用户与多个恶意AP的相对位置,如图中所示,用户可以往T1,T2,T5,T6方向走。After estimating the location coordinates of the malicious device, the system can guide the user in a safe direction based on the relative position of the user and the malicious device. As shown in Figure 6, when the user is standing at point P, if there is only one malicious AP1 (malicious device) in the space, then the user can directly walk in the opposite direction, and if there are multiple malicious APs, The relative positions of the user and multiple malicious APs need to be considered. As shown in the figure, the user can go in the direction of T1, T2, T5, and T6.
当系统给出用户安全方向之后,用户可以按照本方法给出的方向行走,但是有时候,系统给出的方向并不是用户真正想要去的方向,那么就需要系统结合传感器数据给予用户实时引导,如图7所示。After the system gives the user a safe direction, the user can walk in the direction given by this method, but sometimes, the direction given by the system is not the direction the user really wants to go, so the system needs to combine the sensor data to give the user real-time guidance , as shown in Figure 7.
当用户往安全区域行走的时候,系统可以根据用户行走过程的SNR值的关系与用户输入隐私信息时的SNR值的关系来实时推断出隐私信息的SNR值,然后再进一步推断出攻击成功的概率,当概率小于一定阈值时,我们认为用户走到的地方是安全的。When the user walks to the safe area, the system can infer the SNR value of the privacy information in real time according to the relationship between the SNR value of the user's walking process and the SNR value when the user enters the privacy information, and then further infer the probability of successful attack. , when the probability is less than a certain threshold, we consider the place where the user walks to be safe.
用户行走过程中步态的SNR值与用户输入隐私信息的SNR值的关系如图8所示,我们可从图中看出,该比例在1的范围左右,因此在本发明中,我们可以直接使用比例1来使用,即将步态产生的SNR值看作是用户向右滑屏(输入隐私信息)时产生的SNR值,来按照步骤一的方法判断当前位置是否安全。The relationship between the SNR value of the user's gait and the SNR value of the user's input privacy information during walking is shown in Figure 8. We can see from the figure that the ratio is in the range of 1. Therefore, in the present invention, we can directly Use the
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710791353.1A CN107395646B (en) | 2017-09-05 | 2017-09-05 | A User Behavior Privacy Protection Method Against CSI Time-Frequency Domain Information Attacks |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710791353.1A CN107395646B (en) | 2017-09-05 | 2017-09-05 | A User Behavior Privacy Protection Method Against CSI Time-Frequency Domain Information Attacks |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107395646A CN107395646A (en) | 2017-11-24 |
CN107395646B true CN107395646B (en) | 2020-06-05 |
Family
ID=60349289
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710791353.1A Expired - Fee Related CN107395646B (en) | 2017-09-05 | 2017-09-05 | A User Behavior Privacy Protection Method Against CSI Time-Frequency Domain Information Attacks |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107395646B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102869013A (en) * | 2012-08-29 | 2013-01-09 | 北京邮电大学 | Secure communication system based on wireless channel characteristic |
CN104766427A (en) * | 2015-04-27 | 2015-07-08 | 太原理工大学 | Detection method for illegal invasion of house based on Wi-Fi |
CN106060811A (en) * | 2016-07-05 | 2016-10-26 | 西北大学 | User behavior privacy protection method based on channel interference |
CN106413074A (en) * | 2016-10-11 | 2017-02-15 | 西北工业大学 | Optimal power allocation method of untrusted relay network under perfect CSI |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US8427976B1 (en) * | 2011-12-04 | 2013-04-23 | Ofinno Technology, LLC | Carrier information exchange between base stations |
-
2017
- 2017-09-05 CN CN201710791353.1A patent/CN107395646B/en not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102869013A (en) * | 2012-08-29 | 2013-01-09 | 北京邮电大学 | Secure communication system based on wireless channel characteristic |
CN104766427A (en) * | 2015-04-27 | 2015-07-08 | 太原理工大学 | Detection method for illegal invasion of house based on Wi-Fi |
CN106060811A (en) * | 2016-07-05 | 2016-10-26 | 西北大学 | User behavior privacy protection method based on channel interference |
CN106413074A (en) * | 2016-10-11 | 2017-02-15 | 西北工业大学 | Optimal power allocation method of untrusted relay network under perfect CSI |
Non-Patent Citations (1)
Title |
---|
Protect Sensitive Information Against Channel State Information Based Attacks;Jie Zhang;《2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC)》;20170818;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN107395646A (en) | 2017-11-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9113310B2 (en) | Systems and methods for simultaneously and automatically creating databases of wifi signal information | |
Li et al. | A smartphone localization algorithm using RSSI and inertial sensor measurement fusion | |
CN103809153B (en) | Method and system for accurate straight line distance estimation between two communication devices | |
Kang et al. | Improved heading estimation for smartphone-based indoor positioning systems | |
Garg et al. | An efficient gradient descent approach to secure localization in resource constrained wireless sensor networks | |
EP2951752B1 (en) | Location based process-monitoring | |
Yu et al. | NLOS identification and mitigation for mobile tracking | |
JP5943724B2 (en) | Information processing system and method for generating indoor and outdoor seamless trajectories | |
KR20140124418A (en) | Method and apparatus for locating a mobile device using the mobile device orientation | |
CN104197934B (en) | A kind of localization method based on earth magnetism, apparatus and system | |
WO2014074837A1 (en) | Unsupervised indoor localization and heading directions estimation | |
US20150031387A1 (en) | Compensation of the signal attenuation by human body in indoor wi-fi positioning | |
WO2013155919A1 (en) | Positioning method and system | |
JP2013120191A (en) | Mobile terminal and position estimating method, and computer readable recording medium | |
US9554253B2 (en) | Locating method, drive test terminal and hand-held terminal | |
Fihri et al. | A particle swarm optimization based algorithm for primary user emulation attack detection | |
Huang et al. | Method and analysis of TOA-based localization in 5G ultra-dense networks with randomly distributed nodes | |
Traini et al. | Practical indoor localization via smartphone sensor data fusion techniques: A performance study | |
EP3014469A1 (en) | Systems and methods for revisit location detection | |
Narain et al. | The perils of user tracking using zero-permission mobile apps | |
Fang et al. | Compensating for orientation mismatch in robust Wi-Fi localization using histogram equalization | |
CN107395646B (en) | A User Behavior Privacy Protection Method Against CSI Time-Frequency Domain Information Attacks | |
Zhang et al. | Find me a safe zone: A countermeasure for channel state information based attacks | |
JP2015224932A (en) | Information processing device, information processing method, and computer program | |
Zhao et al. | Adaptive range-based nonlinear filters for wireless indoor positioning system using dynamic Gaussian model |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20200605 |