CN107392230A - A kind of semi-supervision image classification method for possessing maximization knowledge utilization ability - Google Patents

A kind of semi-supervision image classification method for possessing maximization knowledge utilization ability Download PDF

Info

Publication number
CN107392230A
CN107392230A CN201710483627.0A CN201710483627A CN107392230A CN 107392230 A CN107392230 A CN 107392230A CN 201710483627 A CN201710483627 A CN 201710483627A CN 107392230 A CN107392230 A CN 107392230A
Authority
CN
China
Prior art keywords
mrow
msub
msup
munderover
mtd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710483627.0A
Other languages
Chinese (zh)
Inventor
钱鹏江
奚臣
蒋亦樟
邓赵红
王骏
王士同
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangnan University
Original Assignee
Jiangnan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangnan University filed Critical Jiangnan University
Priority to CN201710483627.0A priority Critical patent/CN107392230A/en
Publication of CN107392230A publication Critical patent/CN107392230A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/24Classification techniques
    • G06F18/241Classification techniques relating to the classification model, e.g. parametric or non-parametric approaches
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/213Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods
    • G06F18/2135Feature extraction, e.g. by transforming the feature space; Summarisation; Mappings, e.g. subspace methods based on approximation criteria, e.g. principal component analysis
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/21Design or setup of recognition systems or techniques; Extraction of features in feature space; Blind source separation
    • G06F18/214Generating training patterns; Bootstrap methods, e.g. bagging or boosting
    • G06F18/2155Generating training patterns; Bootstrap methods, e.g. bagging or boosting characterised by the incorporation of unlabelled data, e.g. multiple instance learning [MIL], semi-supervised techniques using expectation-maximisation [EM] or naïve labelling

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Artificial Intelligence (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种具备极大化知识利用能力的半监督图像分类方法。该方法针对一般图像分类技术里面专注于对图像数据预处理和特征筛选上,而在分类方法上并未有所突破,提出了一种具备极大化知识利用能力的半监督图像分类方法。该图像分类方法在首先考虑了现实情况下图像标记代价大的问题,从半监督方法着手,再对标记图像数据进行极大化挖掘,从有标记图像和无标记图像两个方面着手挖掘图像数据知识;同时,在图像数据的预处理和特征筛选上,采取了具有适用性的归一化和主成分分析征降维方法来事先处理图像数据,充分保证图像数据信息的完整性。

The invention discloses a semi-supervised image classification method capable of maximizing knowledge utilization. This method focuses on image data preprocessing and feature selection in general image classification technology, but has not made breakthroughs in classification methods, and proposes a semi-supervised image classification method with the ability to maximize knowledge utilization. The image classification method first considers the problem of high cost of image labeling in reality, starts from the semi-supervised method, and then maximizes the mining of labeled image data, and mines image data from two aspects of labeled images and unlabeled images At the same time, in the preprocessing and feature selection of image data, the applicable normalization and principal component analysis dimensionality reduction methods are adopted to process image data in advance to fully ensure the integrity of image data information.

Description

一种具备极大化知识利用能力的半监督图像分类方法A semi-supervised image classification method with the ability to maximize knowledge utilization

技术领域technical field

本发明属于图像处理及应用领域,具体是一种具备极大化知识利用能力的半监督图像分类方法。The invention belongs to the field of image processing and application, in particular to a semi-supervised image classification method capable of maximizing knowledge utilization.

背景技术Background technique

支持向量机(Support Vector Machine,SVM)是20世纪90年代以后逐步发展起来的一种基于统计学习理论的机器学习方法,坚实的理论基础使其成功地解决了机器学习中普遍存在的“维数灾难”和“过拟合”问题,并具有良好的泛化能力,已经在许多实际工程领域中展示了良好的应用前景。然而传统的SVM作为一种有监督的学习方法,只能在少量的有标号的样本上进行学习,从而在一定程度上导致学习不太充分,在一定程度上影响了该方法对具体模式进行识别的能力。如果能把半监督学习思想引入支持向量机中,将会弥补标准支持向量机的缺陷,获得更好的分类效果。Support Vector Machine (Support Vector Machine, SVM) is a machine learning method based on statistical learning theory developed gradually after the 1990s. Disaster" and "overfitting" problems, and has good generalization ability, has shown good application prospects in many practical engineering fields. However, as a supervised learning method, the traditional SVM can only learn on a small number of labeled samples, which leads to insufficient learning to a certain extent, and affects the recognition of specific patterns by this method to a certain extent. Ability. If the idea of semi-supervised learning can be introduced into the support vector machine, it will make up for the defects of the standard support vector machine and obtain better classification results.

传统的机器学习技术分为两类,一类是无监督学习,一类是监督学习。无监督学习只利用未标记的样本集,而监督学习则只利用标记的样本集进行学习。但在很多实际问题中,只有少量的带有标记的数据,因为对样本进行类别标记往往需要耗费大量的人力物力,代价有时很高,而大量的未标记的数据却很容易得到。这就促使能同时利用标记样本和未标记样本的半监督学习技术迅速发展起来。基于支持向量机延伸的半监督支持向量机算法就有较好的效果。Traditional machine learning techniques are divided into two categories, one is unsupervised learning and the other is supervised learning. Unsupervised learning uses only unlabeled sample sets, while supervised learning uses only labeled sample sets for learning. But in many practical problems, there is only a small amount of labeled data, because it often takes a lot of manpower and material resources to label samples, and the cost is sometimes high, while a large amount of unlabeled data is easy to obtain. This has prompted the rapid development of semi-supervised learning techniques that can utilize both labeled and unlabeled samples. The semi-supervised support vector machine algorithm based on support vector machine extension has a better effect.

图像分类是将图像分到预先设定的不同类别中。对于计算机而言,识别并分类是较为困难的。原因是两方面的,一是图像数据方面的,图像里充满了大量复杂多样且难以描述的对象,由原始图像到模式识别方法里具体的数据的数据处理和特征选择方法多样;二是具体分类方法的选择,分类方法多种多样,各有优缺。对于图像分类而言,一般做法是从第一个方面出发,在数据预处理和特征选择的过程中尽可能找出合适的特征选择方法,再利用一些经典的分类方法例如SVM进行图像分类,但这种方法的前提是往往需要尽可能多的、训练分类器所需要的、划分明确的、且特征选择合适的标记数据,那这种代价往往是较高的。那么从分类方法的选择出发,半监督支持向量机往往具有较好的分类效果。Image classification is to divide images into different preset categories. It is difficult for computers to identify and classify. The reason is twofold. One is the image data. The image is full of a large number of complex and diverse objects that are difficult to describe. There are various data processing and feature selection methods from the original image to the specific data in the pattern recognition method; the second is the specific classification. The selection of methods and classification methods are varied, each with its own advantages and disadvantages. For image classification, the general approach is to start from the first aspect, find out the appropriate feature selection method as much as possible in the process of data preprocessing and feature selection, and then use some classic classification methods such as SVM for image classification, but The premise of this method is that it often needs as much labeled data as possible, which is required for training classifiers, is clearly divided, and the feature selection is appropriate, and this cost is often high. Then starting from the selection of classification methods, semi-supervised support vector machines often have better classification results.

发明内容Contents of the invention

本发明的目的在通过更为有效和深入的挖掘有标记的和无标记图像样本数据从而提高机器的图像分类能力。The purpose of the present invention is to improve the machine's image classification ability by mining marked and unmarked image sample data more effectively and deeply.

按照本发明提供的技术方案,所述具备极大化知识利用能力的半监督图像分类方法,包含如下定义和步骤:According to the technical solution provided by the present invention, the semi-supervised image classification method with the ability to maximize knowledge utilization includes the following definitions and steps:

定义:definition:

定义1:数据集表示分类器训练用样本的集合,d为数据维度,l为有标签的样本数量和u为无标签样本数量;Definition 1: Dataset Indicates the set of samples used for classifier training, d is the data dimension, l is the number of labeled samples and u is the number of unlabeled samples;

定义2:yi∈{+1,-1}(i=1,...,l)表示数据集X的l个有标签样本对应的样本标签;Definition 2: y i ∈{+1,-1}(i=1,...,l) represents the sample label corresponding to l labeled samples of data set X;

定义3:表示分类决策函数,其中αi≥0是支撑向量指示器元素,b是一常数,K()为核函数,常取径向基核函数:K(xi,xj)=exp(-||xi-xj||2/2σ2),i∈[1,l],j∈[1,l+u],σ为核宽带;Definition 3: Represents a classification decision function, where α i ≥ 0 is a support vector indicator element, b is a constant, K() is a kernel function, usually a radial basis kernel function: K( xi ,x j )=exp(-| |x i -x j || 2 /2σ 2 ), i∈[1,l], j∈[1,l+u], σ is the core broadband;

定义4:f=[f1,...,fl,fl+1,...,fl+u]T为数据集根据分类决策函数得到的预测值;Definition 4: f=[f 1 ,...,f l ,f l+1 ,...,f l+u ] T is the data set The predicted value obtained according to the classification decision function;

定义5:成对约束集MS(Must-Link Set,必须连接集)和CS(Cannot-Link Set,不能连接集)这里由提供的样本标签转换过来的,转换形式如图2;Definition 5: Pairwise constraint sets MS (Must-Link Set, must be connected set) and CS (Cannot-Link Set, cannot be connected set) are converted from the sample labels provided here, and the conversion form is shown in Figure 2;

定义6:L=D-W是图拉普拉斯矩阵,其中W=[Wij](u+l)×(u+l)为数据集X邻接矩阵,且Definition 6: L=DW is a graph Laplacian matrix, where W=[W ij ] (u+l)×(u+l) is the adjacency matrix of data set X, and

D成为对角矩阵,且 D becomes a diagonal matrix, and

定义7:定义矩阵Z=H-Q,其中Q=[Qij](u+l)×(u+l)表示标记样本间的成对约束关系矩阵,其矩阵元素Qij的计算如式(2),H是对角矩阵,H=diag(Q·1(l+u)×1),1(l+u)×1为(l+u)×1的向量且元素全为1;Definition 7: Define the matrix Z=HQ, where Q=[Q ij ] (u+l)×(u+l) represents the pairwise constraint relationship matrix between marked samples, and the calculation of the matrix element Q ij is as formula (2) , H is a diagonal matrix, H=diag(Q·1 (l+u)×1 ), 1 (l+u)×1 is a vector of (l+u)×1 and all elements are 1;

其中|MS|表示必须连接集的记录容量,|CS|则表示不能连接集的记录容量;Among them, |MS| indicates the record capacity of the set that must be connected, and |CS| indicates the record capacity of the set that cannot be connected;

定义8:定义流形正则化(Manifold Regularization)形式为Definition 8: Define the form of Manifold Regularization as

定义9:成对约束正则化形式:Definition 9: Pairwise constrained regularization form:

式中,i,j,p,q为数据集X中样本序号,i,j,p,q∈[1,l+u],<i,j>表示MS集合中任意一对,<p,q>表示CS集合中任意一对,|MS|和|CS|分别表示MS集合和CS集合的元素个数,相应的式(4)可以重写为:In the formula, i, j, p, q are the sample numbers in the data set X, i, j, p, q ∈ [1, l+u], <i, j> represents any pair in the MS set, <p, q> represents any pair in the CS set, and |MS| and |CS| represent the number of elements in the MS set and CS set, respectively. The corresponding formula (4) can be rewritten as:

定义10:矩阵P的具体形式为 Definition 10: The specific form of matrix P is

具备极大化知识利用能力的半监督图像分类方法,包含如下步骤:A semi-supervised image classification method with the ability to maximize knowledge utilization, including the following steps:

步骤1:将所有原始图像的尺寸统一为相同格式,并把每张图像的所有像素点作为一个样本的特征,这样得到一个初步的图像数据;Step 1: Unify the size of all original images into the same format, and use all the pixels of each image as a feature of a sample, so as to obtain a preliminary image data;

步骤2:对步骤1中的得到数据进行数据归一化和特征降维(主成分分析方法)处理,得到相应的图像数据;Step 2: Perform data normalization and feature dimensionality reduction (principal component analysis method) processing on the data obtained in step 1 to obtain corresponding image data;

步骤3:生成具备极大化知识利用能力的半监督分类模型,如式(6)所示:Step 3: Generate a semi-supervised classification model with the ability to maximize knowledge utilization, as shown in formula (6):

上式中,In the above formula,

其中,数据集表示分类器训练所需的l个有标签的样本和u个无标签样本,样本维数为d,yi∈{+1,-1}(i=1,...,l)为这l个有标签样本的样本标签,f(.)表示分类决策函数,HK为再生核希尔伯特空间(Reproducing Kernel HilbertSpace,RKHS),K为通过核函数K计算得到的核矩阵,f=[f1,...,fl,fl+1,...,fl+u]T为数据集根据分类决策函数f(.)得到的预测值,fi(i=1,...,l+u),分类决策函数如式(7),γA>0,γI>0,γD>0为三个正则化系数,L和Z分别为图拉普拉斯矩阵和成对约束矩阵;Among them, the data set Represents l labeled samples and u unlabeled samples required for classifier training, the sample dimension is d, y i ∈ {+1,-1}(i=1,...,l) is this l The sample label of a labeled sample, f(.) represents the classification decision function, H K is the Reproducing Kernel Hilbert Space (RKHS), K is the kernel matrix calculated by the kernel function K, f=[ f 1 ,...,f l ,f l+1 ,...,f l+u ] T is the data set According to the predicted value obtained by the classification decision function f(.), f i (i=1,...,l+u), the classification decision function is as in formula (7), γ A >0, γ I >0, γ D >0 is three regularization coefficients, L and Z are graph Laplacian matrix and pairwise constraint matrix respectively;

式(6)即具备极大化知识利用能力的半监督分类模型可以分为三个部分,第一部分即式(6-1)控制着经验风险表示为合页损失函数(hinge loss function),第二部分即式(6-2)目的是避免过拟合,第三部分即式(6)最后一项表示流形与成对约束联合正则化框架,通过参数γID的调节来合理安排流形正则化和成对约束正则化各自对整体的影响;Equation (6), that is, the semi-supervised classification model with the ability to maximize knowledge utilization, can be divided into three parts. The first part, namely Equation (6-1), controls empirical risk and is expressed as a hinge loss function. The purpose of the second part, namely formula (6-2), is to avoid overfitting, and the last item of the third part, namely formula (6), represents the joint regularization framework of manifold and pairwise constraints, which is reasonable through the adjustment of parameters γ I and γ D Arranging the influence of manifold regularization and pairwise constraint regularization on the whole;

将式(6-1)-(6-2)代入到式(6)可以得到具体的具备极大化知识利用能力的半监督分类方法模型:Substituting formula (6-1)-(6-2) into formula (6) can get a specific semi-supervised classification method model with the ability to maximize knowledge utilization:

步骤4:根据步骤3中分类模型求解,获得分类决策函数f(.)中所需的最终解α*和b*,构成图像分类所需的分类器,并把数据预处理过程中处理的预测图像数据导入到分类器模型中,得到预测图像的分类结果。Step 4: Solve according to the classification model in step 3, obtain the final solutions α * and b * required in the classification decision function f(.), form the classifier required for image classification, and combine the predictions processed in the data preprocessing process The image data is imported into the classifier model to obtain the classification result of the predicted image.

进一步的,步骤4所述获得分类决策函数f(.)中所需的最优解α*和b*的优化求解步骤包括:Further, the optimal solution steps for obtaining the optimal solutions α * and b * required in the classification decision function f(.) described in step 4 include:

(1)将具备极大化知识利用能力的半监督分类模型即式(8)转变为二次规划问题求解形式,具体过程为引入拉格朗日系数β=(β12,...,βl)和γ=(γ12,...,γl),可以得到相应的拉格朗日函数L(α,b,ξ,β,γ):(1) Transform the semi-supervised classification model with the ability to maximize knowledge utilization, that is, formula (8), into a quadratic programming problem solution form. The specific process is to introduce the Lagrangian coefficient β=(β 12 ,.. .,β l ) and γ=(γ 12 ,...,γ l ), the corresponding Lagrangian function L(α,b,ξ,β,γ) can be obtained:

根据卡罗需-库恩-塔克条件(Karush-Kuhn-Tucker,KKT),利用经典的数学方法-拉格朗日条件极值法令可得到下式:According to the Karush-Kuhn-Tucker (KKT) condition (Karush-Kuhn-Tucker, KKT), using the classic mathematical method - Lagrange condition extreme value law The following formula can be obtained:

把式(10)-(12)代入式(9)中可得到相应的二次规划问题,Substituting equations (10)-(12) into equation (9), the corresponding quadratic programming problem can be obtained,

式(13)中S=PTAK+K(γIL+γDZ)K)-1P;In formula (13), S=P TA K+K(γ I L+γ D Z)K) -1 P;

(2)对式(13)进行二次规划问题求解,得到最优解β*,并把β*代入式(10)中α的求解形式中去得到最终解α*,即式(14):(2) Solve the quadratic programming problem of formula (13) to obtain the optimal solution β * , and substitute β * into the solution form of α in formula (10) to get the final solution α * , namely formula (14):

(3)根据(2)中得到的最终解α*,代入到式(15)中得到b的最终解b*(3) Substituting the final solution α * obtained in (2) into formula (15) to obtain the final solution b * of b.

本发明的优点是:本发明首先在分类器选择上与传统的分类方法SVM比较而言具有更好的学习能力,流形与成对约束联合正则化框架的构造里即包含了对少量有标签样本知识的进一步挖掘(通过对MS和CS集的挖掘),也包含了对大量无标签样本的知识探索(通过流形正则化方式);其次在图像数据的数据预处理上选择了较为广泛适用的特征归一化和特征降维(主成分分析方法),充分保障了数据信息的完整性。The advantages of the present invention are: firstly, the present invention has better learning ability compared with the traditional classification method SVM in the selection of classifiers, and the construction of the joint regularization framework of manifold and pairwise constraints includes a small number of labeled The further mining of sample knowledge (through the mining of MS and CS sets) also includes the knowledge exploration of a large number of unlabeled samples (through the manifold regularization method); secondly, in the data preprocessing of image data, a more widely applicable The feature normalization and feature dimensionality reduction (principal component analysis method) fully guarantee the integrity of data information.

附图说明Description of drawings

图1是本发明所述具备极大化知识利用能力的半监督图像分类方法流程图。Fig. 1 is a flow chart of the semi-supervised image classification method with the capability of maximizing knowledge utilization according to the present invention.

图2是样本标签转化为成对约束集和MS和CS的过程示意图。Figure 2 is a schematic diagram of the process of converting sample labels into pairwise constraint sets and MS and CS.

图3是用于分类器训练和预测所需要的二类图像,抽取其中一部分展示。Figure 3 is the second-class images required for classifier training and prediction, and a part of them is extracted for display.

图4是分类器在不同标签下的预测精度值的趋势图。Figure 4 is a trend graph of the prediction accuracy values of the classifier under different labels.

具体实施方式detailed description

下面结合附图和实施例对本发明作进一步说明。The present invention will be further described below in conjunction with drawings and embodiments.

为了描述方便,对本发明方法中所涉及到的术语进行如下定义:For convenience of description, the terms involved in the method of the present invention are defined as follows:

定义1:数据集表示分类器训练所需的l个有标签的样本和u个无标签样本,yi∈{+1,-1}(i=1,...,l)为这l个有标签样本的样本标签;Definition 1: Dataset Represents l labeled samples and u unlabeled samples required for classifier training, y i ∈ {+1,-1}(i=1,...,l) is the sample of these l labeled samples Label;

定义2:f(.)表示分类决策函数,HK为再生核希尔伯特空间(Reproducing Kernel Hilbert Space,RKHS),K为核函数,这里用的是径向基核函数,计算方式为σ为核宽带;Definition 2: f(.) represents the classification decision function, H K is the Reproducing Kernel Hilbert Space (RKHS), and K is the kernel function. The radial basis kernel function is used here, and the calculation method is σ is the core broadband;

定义3:f=[f1,...,fl,fl+1,...,fl+u]T为数据集根据分类决策函数f(.)得到的预测值,fi(i=1,...,l+u),;Definition 3: f=[f 1 ,...,f l ,f l+1 ,...,f l+u ] T is the data set The predicted value obtained according to the classification decision function f(.), f i (i=1,...,l+u),;

定义4:成对约束集MS和CS这里由提供的样本标签转换过来的,转换形式如图2;Definition 4: The pairwise constraint sets MS and CS are converted from the sample labels provided here, and the conversion form is shown in Figure 2;

定义5:Wij∈W(i,j=1,...,u+l)为数据集X邻接矩阵的边权,L=D-W是图拉普拉斯矩阵,D是对角矩阵, Definition 5: W ij ∈ W(i,j=1,...,u+l) is the edge weight of the adjacency matrix of the data set X, L=DW is the graph Laplacian matrix, D is the diagonal matrix,

定义6:Qij∈Q(i,j=1,...,u+l)表示了标记样本间的成对约束关系,其矩阵元素Qij的计算如式(2),Z=H-Q类似于图拉普拉斯矩阵形式,H是对角矩阵,H=diag(Q·1(l+u)×1),其中,1(l+u)×1为(l+u)×1的矩阵且矩阵元素全为1;Definition 6: Q ij ∈ Q(i,j=1,...,u+l) represents the pairwise constraint relationship between labeled samples, and the calculation of its matrix element Q ij is as in formula (2), and Z=HQ is similar In the Laplacian matrix form, H is a diagonal matrix, H=diag(Q 1 (l+u)×1 ), where 1 (l+u)×1 is (l+u)×1 Matrix and the matrix elements are all 1;

定义7:流形正则化(Manifold Regularization)形式:Definition 7: Manifold Regularization form:

定义8:成对约束正则化形式:Definition 8: Pairwise constrained regularization form:

式中,i,j,p,q为X中样本序号,i,j,p,q∈[1,l+u],<i,j>表示MS集合中任意一对,<p,q〉表示CS集合中任意一对,|MS|和|CS|分别表示MS集合和CS集合的元素个数,相应的式(4)可以重写为:In the formula, i, j, p, q are the sample numbers in X, i, j, p, q ∈ [1, l+u], <i, j> represents any pair in the MS set, <p, q> represents any pair in the CS set, and |MS| and |CS| represent the number of elements in the MS set and CS set respectively, and the corresponding formula (4) can be rewritten as:

定义9:矩阵P的具体形式为 Definition 9: The concrete form of matrix P is

如图1所示,所述具备极大化知识利用能力的半监督图像分类方法,基于前述的定义,按照以下步骤实施:As shown in Figure 1, the semi-supervised image classification method with the ability to maximize knowledge utilization is implemented according to the following steps based on the aforementioned definition:

步骤1:将所有原始图像的尺寸统一为相同格式,并把每张图像的所有像素点作为一个样本的特征,这样得到一个初步的图像数据;Step 1: Unify the size of all original images into the same format, and use all the pixels of each image as a feature of a sample, so as to obtain a preliminary image data;

步骤2:对步骤1中的得到数据进行数据归一化和特征降维(主成分分析方法)处理,得到相应的图像数据;Step 2: Perform data normalization and feature dimensionality reduction (principal component analysis method) processing on the data obtained in step 1 to obtain corresponding image data;

步骤3:生成具备极大化知识利用能力的半监督分类模型,如式(6)所示:Step 3: Generate a semi-supervised classification model with the ability to maximize knowledge utilization, as shown in formula (6):

上式中,In the above formula,

其中,数据集表示分类器训练所需的l个有标签的样本和u个无标签样本,样本维数为d,yi∈{+1,-1}(i=1,...,l)为这l个有标签样本的样本标签,f(.)表示分类决策函数,HK为再生核希尔伯特空间(Reproducing Kernel HilbertSpace,RKHS),K为通过核函数K计算得到的核矩阵,其中核函数K这里用的是径向基核函数,计算方式为σ为核宽带,f=[f1,...,fl,fl+1,...,fl+u]T为数据集根据分类决策函数f(.)得到的预测值,fi(i=1,...,l+u),分类决策函数如式(7),γA>0,γI>0,γD>0为三个正则化系数,L和Z分别为图拉普拉斯矩阵和成对约束矩阵;Among them, the data set Represents l labeled samples and u unlabeled samples required for classifier training, the sample dimension is d, y i ∈ {+1,-1}(i=1,...,l) is this l The sample label of a labeled sample, f(.) represents the classification decision function, H K is the Reproducing Kernel Hilbert Space (RKHS), K is the kernel matrix calculated by the kernel function K, where the kernel function K uses the radial basis kernel function here, and the calculation method is σ is the core broadband, f=[f 1 ,...,f l ,f l+1 ,...,f l+u ] T is the data set According to the predicted value obtained by the classification decision function f(.), f i (i=1,...,l+u), the classification decision function is as in formula (7), γ A >0, γ I >0, γ D >0 is three regularization coefficients, L and Z are graph Laplacian matrix and pairwise constraint matrix respectively;

式(6)即具备极大化知识利用能力的半监督分类模型可以分为三个部分,第一部分即式(6-1)控制着经验风险表示为合页损失函数(hinge loss function),第二部分即式(6-2)目的是避免过拟合,第三部分即式(6)中最后一项表示流形与成对约束联合正则化框架,通过参数γID的调节来合理安排流形正则化和成对约束正则化各自对整体的影响;Equation (6), that is, the semi-supervised classification model with the ability to maximize knowledge utilization, can be divided into three parts. The first part, namely Equation (6-1), controls empirical risk and is expressed as a hinge loss function. The purpose of the second part, namely formula (6-2), is to avoid overfitting, and the last item in the third part, namely formula (6), represents the joint regularization framework of manifold and pairwise constraints, through the adjustment of parameters γ I , γ D Reasonably arrange the influence of manifold regularization and pairwise constraint regularization on the whole;

将式(6-1)-(6-2)代入到式(6)可以得到具体的具备极大化知识利用能力的半监督分类方法模型:Substituting formula (6-1)-(6-2) into formula (6) can get a specific semi-supervised classification method model with the ability to maximize knowledge utilization:

步骤4:根据步骤3中分类模型求解,获得分类决策函数f(.)中所需的最终解α*和b*,构成图像分类所需的分类器,并把数据预处理过程中处理的预测图像数据导入到分类器模型中,得到预测图像的分类结果。Step 4: Solve according to the classification model in step 3, obtain the final solutions α * and b * required in the classification decision function f(.), form the classifier required for image classification, and combine the predictions processed in the data preprocessing process The image data is imported into the classifier model to obtain the classification result of the predicted image.

进一步的,步骤4所述获得分类决策函数f(.)中所需的最优解α*和b*的优化求解步骤包括:Further, the optimal solution steps for obtaining the optimal solutions α * and b * required in the classification decision function f(.) described in step 4 include:

(1)将具备极大化知识利用能力的半监督分类模型即式(8)转变为二次规划问题求解形式,具体过程为引入拉格朗日系数β=(β12,...,βl)和γ=(γ12,...,γl),可以得到相应的拉格朗日函数L(α,b,ξ,β,γ):(1) Transform the semi-supervised classification model with the ability to maximize knowledge utilization, that is, formula (8), into a quadratic programming problem solution form. The specific process is to introduce the Lagrangian coefficient β=(β 12 ,.. .,β l ) and γ=(γ 12 ,...,γ l ), the corresponding Lagrangian function L(α,b,ξ,β,γ) can be obtained:

根据卡罗需-库恩-塔克条件(Karush-Kuhn-Tucker,KKT),利用经典的数学方法-拉格朗日条件极值法令可得到下式:According to the Karush-Kuhn-Tucker (KKT) condition (Karush-Kuhn-Tucker, KKT), using the classic mathematical method - Lagrange condition extreme value law The following formula can be obtained:

把式(10)-(12)代入式(9)中可得到相应的二次规划问题,Substituting equations (10)-(12) into equation (9), the corresponding quadratic programming problem can be obtained,

式(13)中S=PTAK+K(γIL+γDZ)K)-1P;In formula (13), S=P TA K+K(γ I L+γ D Z)K) -1 P;

(2)对式(13)进行二次规划问题求解,得到最优解β*,并把β*代入式(10)中α的求解形式中去得到最终解α*,即式(14):(2) Solve the quadratic programming problem of formula (13) to obtain the optimal solution β * , and substitute β * into the solution form of α in formula (10) to get the final solution α * , namely formula (14):

(3)根据得到的最终解α*即式(14),代入到式(15)中得到b的最终解b*(3) According to the obtained final solution α * , that is, formula (14), substitute it into formula (15) to obtain the final solution b * of b.

以下是一个详细的实施过程。The following is a detailed implementation process.

1、原始图像数据预处理过程:1. Raw image data preprocessing process:

1)把所有原始图像(包括训练和测试的所有图像)的尺寸统一为相式,具体分辨率为256*256,并把每张图像的所有像素点作为一个样本的特征,这样得到一个初步的图像数据集;1) Unify the size of all original images (including all images for training and testing) into a phase format, with a specific resolution of 256*256, and use all pixels of each image as a feature of a sample, so as to obtain a preliminary image dataset;

2)对1)中得到的初步的图像数据集进行归一化处理并得到归一化后的图像数据集;2) normalize the preliminary image data set obtained in 1) and obtain a normalized image data set;

3)对2)中得到的归一化后的图像数据集用主成分分析方法进行特征降维,选取特征值最大的前1000维(此时的累计贡献率达到94%,保证了数据信息的完整性),完成特征提取;3) The principal component analysis method is used to perform feature dimensionality reduction on the normalized image data set obtained in 2), and the first 1000 dimensions with the largest feature value are selected (the cumulative contribution rate at this time reaches 94%, ensuring the integrity of the data information Integrity), complete feature extraction;

2、分类器训练预测阶段:2. Classifier training and prediction stage:

1)根据数据预处理得到的训练数据,以及数据标签,生成MS集合CS集,并求出图拉普拉斯矩阵L和成对约束矩阵Z;1) Generate the MS set CS set according to the training data and data labels obtained by data preprocessing, and obtain the graph Laplacian matrix L and the pairwise constraint matrix Z;

2)根据径向基核函数对给定的训练数据集进行高维映射,得到训练分类器所需的核矩阵K,并计算出矩阵P以及S;2) Carry out high-dimensional mapping on the given training data set according to the radial basis kernel function, obtain the kernel matrix K required for training the classifier, and calculate the matrix P and S;

3)利用二次规划工具箱求出二次规划问题式(15),并得到最优解β*3) Utilize the quadratic programming toolbox to find the quadratic programming problem formula (15), and obtain the optimal solution β * ;

4)并把β*代入式(12)中α的求解形式中去得到最终解α*,并根据求解的α*代入到式(17)中得到b的最终解b*,这样得到图像分类所需的分类器模型,即式(9);4) Substituting β * into the solution form of α in formula (12) to get the final solution α * , and substituting the solved α * into formula (17) to get the final solution b * of b, so that the image classification can be obtained The required classifier model, namely formula (9);

5)把数据预处理得到的预测数据导入到式(9)中,根据预测值的正负性划分图像类别,正值对应正类,负值对应负类。通过上述两个阶段,最终得到了最优的具备极大化知识利用能力的半监督图像分类方法的图像分类准确度。5) Import the predicted data obtained by data preprocessing into formula (9), and divide the image category according to the positive or negative of the predicted value, the positive value corresponds to the positive category, and the negative value corresponds to the negative category. Through the above two stages, the optimal image classification accuracy of the semi-supervised image classification method with the ability to maximize knowledge utilization is finally obtained.

实施例1Example 1

图3(a)-3(d)表示各类图像为训练测试所用图像的部分样本,其中训练用了400张图,测试用了220张图像,图4为在不同标记样本点下的图像分类准确度趋势图,本实施例中参数选择方法为交叉验证,参数γA,γI,γD各自范围设置均为{10-5,10-4,10-3,10-2,10-1,101,102},实施例中分类准确度均为交叉验证取得最优参数的结果,同时本发明不应该局限于该实施例和附图所公开的内容。所以,凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。Figures 3(a)-3(d) show that various images are some samples of images used for training and testing. Among them, 400 images are used for training and 220 images are used for testing. Figure 4 shows the classification of images under different labeled sample points Accuracy trend graph, the parameter selection method in this embodiment is cross-validation, and the respective ranges of parameters γ A , γ I , and γ D are set to {10 -5 , 10 -4 , 10 -3 , 10 -2 , 10 -1 , 10 1 , 10 2 }, the classification accuracy in the embodiment is the result of cross-validation to obtain the optimal parameters, and the present invention should not be limited to the content disclosed in the embodiment and the accompanying drawings. Therefore, all equivalents or modifications that do not deviate from the spirit disclosed in the present invention fall within the protection scope of the present invention.

以上为本发明较佳的实施方式,本发明所属领域的技术人员还能对上述实施方式进行变更和修改。因此,本发明并不局限于上述的具体实施方式,凡是本领域技术人员在本发明的基础上所作的任何显而易见的改进、替换或变型均属于本发明的保护范围。The above are preferred embodiments of the present invention, and those skilled in the art to which the present invention pertains can also make changes and modifications to the above embodiments. Therefore, the present invention is not limited to the specific embodiments described above, and any obvious improvement, replacement or modification made by those skilled in the art on the basis of the present invention falls within the protection scope of the present invention.

Claims (3)

1. a kind of semi-supervision image classification method for possessing maximization knowledge utilization ability, is characterized in, according to being defined as below and Step is implemented:
Define 1:Data setThe l samples and u for having label needed for the training of presentation class device Individual unlabeled exemplars, yi∈ {+1, -1 } (i=1 ..., l) it is this l sample labels for having exemplar;
Define 2:F () presentation class decision function,HKFor reproducing kernel Hilbert space (Reproducing Kernel Hilbert Space, RKHS), K is kernel function, here be Radial basis kernel function, calculate Mode isσ is core broadband;
Define 3:F=[f1,...,fl,fl+1,...,fl+u]TFor data setDetermined according to classification The predicted value that plan function f () is obtained, fi(i=1 ..., l+u);
Define 4:Paired constraint set MS and CS here by the sample label provided it is converted Lai;
Define 5:Wij∈ W (i, j=1 ..., u+l) are the side right of data set X adjacency matrix, and L=D-W is figure Laplce's square Battle array, D is diagonal matrix,
Define 6:Qij∈ Q (i, j=1 ..., u+l) illustrate the paired restriction relation between marker samples, its matrix element Qij's Calculate such as formula (2), Z=H-Q is similar to figure Laplce's matrix form, and H is diagonal matrix, H=diag (Q1(l+u)×1), its In, 1(l+u)×11 is all for the matrix and matrix element of (l+u) × 1;
Define 7:Popular regularization (Manifold Regularization) form:
<mrow> <mo>|</mo> <mo>|</mo> <mi>f</mi> <mo>|</mo> <msubsup> <mo>|</mo> <mi>I</mi> <mn>2</mn> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mo>(</mo> <mi>u</mi> <mo>+</mo> <mi>l</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>l</mi> <mo>+</mo> <mi>u</mi> </mrow> </munderover> <msup> <mrow> <mo>(</mo> <mi>f</mi> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>-</mo> <mi>f</mi> <mo>(</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <msub> <mi>W</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msup> <mrow> <mo>(</mo> <mi>u</mi> <mo>+</mo> <mi>l</mi> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mfrac> <msup> <mi>f</mi> <mi>T</mi> </msup> <mi>L</mi> <mi>f</mi> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
Define 8:Constraint regularization form in pairs:
<mrow> <munder> <mi>min</mi> <mi>f</mi> </munder> <mrow> <mo>(</mo> <mfrac> <mrow> <munder> <mi>&amp;Sigma;</mi> <mrow> <mo>&lt;</mo> <mi>i</mi> <mo>,</mo> <mi>j</mi> <mo>&gt;</mo> <mo>&amp;Element;</mo> <mi>M</mi> <mi>S</mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>i</mi> </msub> <mo>-</mo> <msub> <mi>f</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mo>|</mo> <mi>M</mi> <mi>S</mi> <mo>|</mo> </mrow> </mfrac> <mo>-</mo> <mfrac> <mrow> <munder> <mi>&amp;Sigma;</mi> <mrow> <mo>&lt;</mo> <mi>p</mi> <mo>,</mo> <mi>q</mi> <mo>&gt;</mo> <mo>&amp;Element;</mo> <mi>C</mi> <mi>S</mi> </mrow> </munder> <msup> <mrow> <mo>(</mo> <msub> <mi>f</mi> <mi>p</mi> </msub> <mo>-</mo> <msub> <mi>f</mi> <mi>q</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <mo>|</mo> <mi>C</mi> <mi>S</mi> <mo>|</mo> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
In formula, i, j, p, q be X in sample sequence number, i, j, p, q ∈ [1, l+u],<i,j>Represent in MS set any pair,<p,q >Represent in CS set any pair, | MS | and | CS | the element number of MS set and CS set, corresponding formula (4) are represented respectively It can be rewritten as:
<mrow> <munder> <mi>min</mi> <mi>f</mi> </munder> <mrow> <mo>(</mo> <msup> <mi>f</mi> <mi>T</mi> </msup> <mi>Z</mi> <mi>f</mi> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow> 1
Define 9:Matrix P concrete form is
Step 1:The size of all original images is unified for same format, and using all pixels o'clock of every image as one The feature of sample, so obtain a preliminary view data;
Step 2:Data normalization and Feature Dimension Reduction (principal component analytical method) processing are carried out to the data that obtain in step 1, obtained To corresponding view data;
Step 3:Generation possesses the semisupervised classification model of maximization knowledge utilization ability, as shown in formula (6):
<mrow> <munder> <mi>min</mi> <mrow> <mi>f</mi> <mo>&amp;Element;</mo> <msub> <mi>H</mi> <mi>k</mi> </msub> </mrow> </munder> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mi>l</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msub> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> </msub> <mo>+</mo> <msub> <mi>&amp;gamma;</mi> <mi>A</mi> </msub> <mo>|</mo> <mo>|</mo> <mi>f</mi> <mo>|</mo> <msubsup> <mo>|</mo> <mi>K</mi> <mn>2</mn> </msubsup> <mo>+</mo> <msup> <mi>f</mi> <mi>T</mi> </msup> <mo>(</mo> <mrow> <msub> <mi>&amp;gamma;</mi> <mi>I</mi> </msub> <mi>L</mi> <mo>+</mo> <msub> <mi>&amp;gamma;</mi> <mi>D</mi> </msub> <mi>Z</mi> </mrow> <mo>)</mo> <mi>f</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
In above formula,
<mrow> <mfrac> <mn>1</mn> <mi>l</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mi>f</mi> <mo>(</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> <mo>)</mo> </mrow> <mo>+</mo> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mi>l</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msub> <mi>&amp;xi;</mi> <mi>i</mi> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mo>|</mo> <mo>|</mo> <mi>f</mi> <mo>|</mo> <msubsup> <mo>|</mo> <mi>K</mi> <mn>2</mn> </msubsup> <mo>=</mo> <msup> <mi>&amp;alpha;</mi> <mi>T</mi> </msup> <mi>K</mi> <mi>&amp;alpha;</mi> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>-</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, data setThe l samples and u for having label needed for the training of presentation class device Individual unlabeled exemplars, sample dimension are d, yi∈ {+1, -1 } (i=1 ..., l) is the sample labels that this l has exemplar, f () presentation class decision function, HKFor reproducing kernel Hilbert space (Reproducing Kernel Hilbert Space, RKHS), K is the nuclear matrix that is calculated by kernel function K, f=[f1,...,fl,fl+1,...,fl+u]TFor data setThe predicted value obtained according to categorised decision function f (), fi(i=1 ..., l+u), classification Decision function such as formula (7), γA> 0, γI> 0, γD> 0 is three regularization coefficients, and L and Z are respectively figure Laplacian Matrix With paired constraint matrix;
<mrow> <msup> <mi>f</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>l</mi> <mo>+</mo> <mi>u</mi> </mrow> </munderover> <msubsup> <mi>&amp;alpha;</mi> <mi>i</mi> <mo>*</mo> </msubsup> <mi>K</mi> <mrow> <mo>(</mo> <mi>x</mi> <mo>,</mo> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msup> <mi>b</mi> <mo>*</mo> </msup> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
Formula (6-1)-(6-2) is updated into formula (6) can specifically be possessed semi-supervised point of maximization knowledge utilization ability Class method model:
<mrow> <mtable> <mtr> <mtd> <munder> <mi>min</mi> <mrow> <mi>&amp;alpha;</mi> <mo>&amp;Element;</mo> <msup> <mi>R</mi> <mrow> <mi>l</mi> <mo>+</mo> <mi>u</mi> </mrow> </msup> <mo>,</mo> <msub> <mi>&amp;xi;</mi> <mi>i</mi> </msub> <mo>&amp;Element;</mo> <mi>R</mi> </mrow> </munder> </mtd> <mtd> <mrow> <mo>(</mo> <mfrac> <mn>1</mn> <mi>l</mi> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msub> <mi>&amp;xi;</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>&amp;gamma;</mi> <mi>A</mi> </msub> <msup> <mi>&amp;alpha;</mi> <mi>T</mi> </msup> <mi>K</mi> <mi>&amp;alpha;</mi> <mo>+</mo> <msup> <mi>&amp;alpha;</mi> <mi>T</mi> </msup> <mi>K</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;gamma;</mi> <mi>I</mi> </msub> <mi>L</mi> <mo>+</mo> <msub> <mi>&amp;gamma;</mi> <mi>D</mi> </msub> <mi>Z</mi> </mrow> <mo>)</mo> <mi>K</mi> <mi>&amp;alpha;</mi> <mo>)</mo> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <msub> <mi>y</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>l</mi> <mo>+</mo> <mi>u</mi> </mrow> </munderover> <msub> <mi>&amp;alpha;</mi> <mi>j</mi> </msub> <mi>K</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> <mo>)</mo> </mrow> <mo>&amp;GreaterEqual;</mo> <mn>1</mn> <mo>-</mo> <msub> <mi>&amp;xi;</mi> <mi>i</mi> </msub> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>l</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <msub> <mi>&amp;xi;</mi> <mi>i</mi> </msub> <mo>&amp;GreaterEqual;</mo> <mn>0</mn> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>l</mi> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
Step 4:Utilize the last solution obtained by step 1 needed for categorised decision function and point needed for composition image classification Class device, and the predicted image data handled in process of data preprocessing is imported into sorter model, obtain prognostic chart picture Classification results.
2. possessing the semi-supervision image classification method of maximization knowledge utilization ability as claimed in claim 1, it is characterized in, it is described Obtain the optimal solution α needed for categorised decision function f ()*And b*Optimization Solution step include:
(1) the semisupervised classification model i.e. formula (8) that will be provided with maximization knowledge utilization ability is changed into quadratic programming problem solution Form, detailed process are introducing Lagrange coefficient β=(β12,...,βl) and γ=(γ12,...,γl), it can obtain To corresponding LagrangianL (α, b, ξ, β, γ):
<mrow> <mtable> <mtr> <mtd> <mrow> <mi>L</mi> <mrow> <mo>(</mo> <mi>a</mi> <mo>,</mo> <mi>b</mi> <mo>,</mo> <mi>&amp;xi;</mi> <mo>,</mo> <mi>&amp;beta;</mi> <mo>,</mo> <mi>&amp;gamma;</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mi>l</mi> </mfrac> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msub> <mi>&amp;xi;</mi> <mi>i</mi> </msub> <mo>+</mo> <msup> <mi>a</mi> <mi>T</mi> </msup> <mrow> <mo>(</mo> <mi>&amp;gamma;</mi> <mi>A</mi> <mi>K</mi> <mo>+</mo> <mi>K</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;gamma;</mi> <mi>I</mi> </msub> <mi>L</mi> <mo>+</mo> <msub> <mi>&amp;gamma;</mi> <mi>D</mi> </msub> <mi>Z</mi> </mrow> <mo>)</mo> <mi>K</mi> <mo>)</mo> </mrow> <mi>&amp;alpha;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msub> <mi>&amp;beta;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>(</mo> <mrow> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>l</mi> <mo>+</mo> <mi>u</mi> </mrow> </munderover> <mrow> <msub> <mi>&amp;alpha;</mi> <mi>j</mi> </msub> <mi>K</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mi>b</mi> </mrow> </mrow> <mo>)</mo> <mo>-</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>&amp;xi;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msub> <mi>&amp;gamma;</mi> <mi>i</mi> </msub> <msub> <mi>&amp;xi;</mi> <mi>i</mi> </msub> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
According to Caro need-Kuhn-Tucker condition (Karush-Kuhn-Tucker, KKT), mathematical method-glug of classics is utilized Bright day conditional extremum decreeIt can obtain following formula:
Wushu (10)-(12) substitute into formula (9) and can obtain corresponding quadratic programming problem,
<mrow> <mtable> <mtr> <mtd> <munder> <mi>max</mi> <mrow> <mi>&amp;beta;</mi> <mo>&amp;Element;</mo> <msup> <mi>R</mi> <mi>l</mi> </msup> </mrow> </munder> </mtd> <mtd> <mrow> <mo>(</mo> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msub> <mi>&amp;beta;</mi> <mi>i</mi> </msub> <mo>-</mo> <mfrac> <mn>1</mn> <mn>4</mn> </mfrac> <msup> <mi>&amp;beta;</mi> <mi>T</mi> </msup> <mi>S</mi> <mi>&amp;beta;</mi> <mo>)</mo> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <munderover> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <msub> <mi>&amp;beta;</mi> <mi>i</mi> </msub> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>=</mo> <mn>0</mn> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow></mrow> </mtd> <mtd> <mrow> <mn>0</mn> <mo>&amp;le;</mo> <msub> <mi>&amp;beta;</mi> <mi>i</mi> </msub> <mo>&amp;le;</mo> <mfrac> <mi>1</mi> <mi>l</mi> </mfrac> <mo>,</mo> <mi>i</mi> <mo>=</mo> <mn>1</mn> <mo>,</mo> <mn>...</mn> <mo>,</mo> <mi>l</mi> <mo>.</mo> </mrow> </mtd> </mtr> </mtable> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
S=P in formula (13)TAK+K(γIL+γDZ)K)-1P;
(2) quadratic programming problem solution is carried out to formula (13), obtains optimal solution β*, and β*α solution form in substitution formula (10) In go to obtain last solution α*, i.e. formula (14):
<mrow> <msup> <mi>&amp;alpha;</mi> <mo>*</mo> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msup> <mrow> <mo>(</mo> <msub> <mi>&amp;gamma;</mi> <mi>A</mi> </msub> <mi>K</mi> <mo>+</mo> <mi>K</mi> <mo>(</mo> <mrow> <msub> <mi>&amp;gamma;</mi> <mi>I</mi> </msub> <mi>L</mi> <mo>+</mo> <msub> <mi>&amp;gamma;</mi> <mi>D</mi> </msub> <mi>Z</mi> </mrow> <mo>)</mo> <mi>K</mi> <mo>)</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msup> <mi>P&amp;beta;</mi> <mo>*</mo> </msup> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
(3) according to the last solution α obtained in (2)*, it is updated in formula (15) and obtains b last solution b*
<mrow> <msup> <mi>b</mi> <mo>*</mo> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <mi>l</mi> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>l</mi> </munderover> <mrow> <mo>(</mo> <msub> <mi>y</mi> <mi>i</mi> </msub> <mo>-</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>j</mi> <mo>=</mo> <mn>1</mn> </mrow> <mrow> <mi>l</mi> <mo>+</mo> <mi>u</mi> </mrow> </munderover> <msubsup> <mi>&amp;alpha;</mi> <mi>j</mi> <mo>*</mo> </msubsup> <mi>K</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>x</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>x</mi> <mi>j</mi> </msub> </mrow> <mo>)</mo> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
3. possess the semisupervised classification method of maximization knowledge utilization ability as claimed in claim 1, it is characterized in that, possess greatly The semisupervised classification model for changing knowledge utilization ability is that formula (6) can be divided into three parts, and Part I is that formula (6-1) controls Empiric risk is expressed as hinge loss function (hinge loss function), and Part II is that formula (6-2) purpose is to avoid Fitting, Part III are that last in formula (6) represents manifold and constraint joint regularization framework in pairs, pass through parameter γID Regulation come reasonable arrangement manifold regularization and in pairs constraint regularization each to entirety influence.
CN201710483627.0A 2017-06-22 2017-06-22 A kind of semi-supervision image classification method for possessing maximization knowledge utilization ability Pending CN107392230A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710483627.0A CN107392230A (en) 2017-06-22 2017-06-22 A kind of semi-supervision image classification method for possessing maximization knowledge utilization ability

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710483627.0A CN107392230A (en) 2017-06-22 2017-06-22 A kind of semi-supervision image classification method for possessing maximization knowledge utilization ability

Publications (1)

Publication Number Publication Date
CN107392230A true CN107392230A (en) 2017-11-24

Family

ID=60333598

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710483627.0A Pending CN107392230A (en) 2017-06-22 2017-06-22 A kind of semi-supervision image classification method for possessing maximization knowledge utilization ability

Country Status (1)

Country Link
CN (1) CN107392230A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109299732A (en) * 2018-09-12 2019-02-01 北京三快在线科技有限公司 The method, apparatus and electronic equipment of unmanned behaviour decision making and model training
CN109711456A (en) * 2018-12-21 2019-05-03 江南大学 A Robust Semi-Supervised Image Clustering Method
CN110781942A (en) * 2019-10-18 2020-02-11 中国科学技术大学 Semi-supervised classification method and system
CN111046951A (en) * 2019-12-12 2020-04-21 安徽威奥曼机器人有限公司 Medical image classification method
CN111126297A (en) * 2019-12-25 2020-05-08 淮南师范学院 An Experience Analysis Method Based on Learner Expression
CN111898710A (en) * 2020-07-15 2020-11-06 中国人民解放军火箭军工程大学 Method and system for selecting characteristics of graph

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105426923A (en) * 2015-12-14 2016-03-23 北京科技大学 Semi-supervised classification method and system
CN104463202B (en) * 2014-11-28 2017-09-19 苏州大学 A method and system for semi-supervised classification of multi-class images

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104463202B (en) * 2014-11-28 2017-09-19 苏州大学 A method and system for semi-supervised classification of multi-class images
CN105426923A (en) * 2015-12-14 2016-03-23 北京科技大学 Semi-supervised classification method and system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
奚臣等: "流形与成对约束联合正则化半监督分类方法", 《计算机科学与探索》 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109299732A (en) * 2018-09-12 2019-02-01 北京三快在线科技有限公司 The method, apparatus and electronic equipment of unmanned behaviour decision making and model training
US11983245B2 (en) 2018-09-12 2024-05-14 Beijing Sankuai Online Technology Co., Ltd Unmanned driving behavior decision-making and model training
CN109711456A (en) * 2018-12-21 2019-05-03 江南大学 A Robust Semi-Supervised Image Clustering Method
CN109711456B (en) * 2018-12-21 2023-04-28 江南大学 A Robust Semi-Supervised Image Clustering Method
CN110781942A (en) * 2019-10-18 2020-02-11 中国科学技术大学 Semi-supervised classification method and system
CN111046951A (en) * 2019-12-12 2020-04-21 安徽威奥曼机器人有限公司 Medical image classification method
CN111126297A (en) * 2019-12-25 2020-05-08 淮南师范学院 An Experience Analysis Method Based on Learner Expression
CN111126297B (en) * 2019-12-25 2023-10-31 淮南师范学院 An experience analysis method based on learners’ expressions
CN111898710A (en) * 2020-07-15 2020-11-06 中国人民解放军火箭军工程大学 Method and system for selecting characteristics of graph
CN111898710B (en) * 2020-07-15 2023-09-29 中国人民解放军火箭军工程大学 Feature selection method and system of graph

Similar Documents

Publication Publication Date Title
CN107392230A (en) A kind of semi-supervision image classification method for possessing maximization knowledge utilization ability
CN111275092A (en) An Image Classification Method Based on Unsupervised Domain Adaptation
CN102722713B (en) Handwritten numeral recognition method based on lie group structure data and system thereof
CN108898181B (en) An image classification model processing method, device and storage medium
CN105893954A (en) Non-negative matrix factorization (NMF) face identification method and system based on kernel machine learning
CN113128620B (en) Semi-supervised domain self-adaptive picture classification method based on hierarchical relationship
CN104933428B (en) A kind of face identification method and device based on tensor description
CN105354595A (en) Robust visual image classification method and system
CN105069774B (en) The Target Segmentation method of optimization is cut based on multi-instance learning and figure
CN103440512A (en) Identifying method of brain cognitive states based on tensor locality preserving projection
CN111401156B (en) Image Recognition Method Based on Gabor Convolutional Neural Network
CN102208037A (en) Hyper-spectral image classification method based on Gaussian process classifier collaborative training algorithm
CN105893610A (en) Deficiency-source completion method of multi-source heterogeneous large data
Shen et al. A direct formulation for totally-corrective multi-class boosting
Zhang et al. Self-taught semisupervised dictionary learning with nonnegative constraint
CN106650820A (en) Matching recognition method of handwritten electrical component symbols and standard electrical component symbols
Chen et al. Sparsity-regularized feature selection for multi-class remote sensing image classification
CN115797637A (en) Semi-supervised segmentation model based on uncertainty between models and in models
CN111027582A (en) Semi-supervised feature subspace learning method and device based on low-rank graph learning
Gan et al. Learning-aware feature denoising discriminator
CN103761532A (en) Label space dimensionality reducing method and system based on feature-related implicit coding
CN107305565A (en) Information processor, information processing method and message processing device
CN104281569B (en) Construction device and method, classification device and method, and electronic device
CN115457311A (en) A method for band selection of hyperspectral remote sensing images based on self-expressive transfer learning
CN105427272A (en) Image processing device, image processing method and electronic device

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171124

WD01 Invention patent application deemed withdrawn after publication