CN107389693A - 一种基于机器视觉的印刷品缺陷自动检测方法 - Google Patents

一种基于机器视觉的印刷品缺陷自动检测方法 Download PDF

Info

Publication number
CN107389693A
CN107389693A CN201710514247.9A CN201710514247A CN107389693A CN 107389693 A CN107389693 A CN 107389693A CN 201710514247 A CN201710514247 A CN 201710514247A CN 107389693 A CN107389693 A CN 107389693A
Authority
CN
China
Prior art keywords
image
printed matter
mrow
defect
value
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710514247.9A
Other languages
English (en)
Other versions
CN107389693B (zh
Inventor
张二虎
高敏
段敬红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Langji Packaging Materials Co ltd
Original Assignee
Xian University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xian University of Technology filed Critical Xian University of Technology
Priority to CN201710514247.9A priority Critical patent/CN107389693B/zh
Publication of CN107389693A publication Critical patent/CN107389693A/zh
Application granted granted Critical
Publication of CN107389693B publication Critical patent/CN107389693B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/84Systems specially adapted for particular applications
    • G01N21/88Investigating the presence of flaws or contamination
    • G01N21/89Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles
    • G01N21/8914Investigating the presence of flaws or contamination in moving material, e.g. running paper or textiles characterised by the material examined
    • G01N2021/8917Paper, also ondulated

Landscapes

  • Analytical Chemistry (AREA)
  • Immunology (AREA)
  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Textile Engineering (AREA)
  • General Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Pathology (AREA)
  • Image Processing (AREA)
  • Image Analysis (AREA)
  • Inking, Control Or Cleaning Of Printing Machines (AREA)

Abstract

本发明公开了一种基于机器视觉的印刷品缺陷自动检测方法,采用凸性形状匹配方法,首先对采集的合格的印刷品图像进行配准;然后由这些配准后的合格的印刷品图像形成平均图像、亮模板图像和暗模板图像;最后,采用形状凸性匹配方法,对待检测的印刷品图像和平均图像进行配准,将待检测图像中高于亮模板图像或低于暗模板图像的像素标记为缺陷点,并去除孤立的缺陷点、融合离散的缺陷区域。本发明的一种基于机器视觉的印刷品缺陷自动检测方法,其中的凸性形状匹配方法具有图像匹配速度快、匹配精度高的优点,所设计的基于亮模板和暗模板图像的缺陷检测方法适应性强、能有效检测出印刷品中的缺陷,应用所提出的方法可以提高整个检测系统的精度与效率。

Description

一种基于机器视觉的印刷品缺陷自动检测方法
技术领域
本发明属于印刷技术领域,具体涉及一种基于机器视觉的印刷品缺陷自动检测方法。
背景技术
随着现代印刷机快速发展,印刷的速度越来越快,一旦出现印刷缺陷将造成大量的浪费。另一方面,高速印刷使得依靠人工监控印刷质量变得无法进行。因此,印刷企业迫切需要高效的全自动的基于机器视觉的印刷品质量检测系统。
在基于机器视觉的印刷品缺陷检测方法中,涉及到标准模板的构建、图像匹配及缺陷判断等环节。由于印刷中合格图像之间始终是有一定差异的,现有方法中构建的标准模板不够灵活,容易造成误检或者漏检。图像匹配是印刷缺陷自动检测中另一个非常重要的环节,现有的方法大多是基于形状的匹配方法,存在着对形状轮廓描述不够精准、匹配时间较长、匹配精度不够高等问题。本发明提出一种形状凸性匹配方法,具有形状描述数据量小、匹配速度快的特点。基于该匹配方法,发明的印刷品缺陷检测方法具有检测准确率的特点。
发明内容
本发明的目的是提供一种基于机器视觉的印刷品缺陷自动检测方法,解决了现有技术中存在的印刷图像匹配慢、检测不够准确的问题。
本发明所采用的技术方案是,一种基于机器视觉的印刷品缺陷自动检测方法,采用凸性形状匹配方法,首先对采集的合格的印刷品图像进行配准;然后由这些配准后的合格的印刷品图像形成平均图像、亮模板图像和暗模板图像;最后,采用形状凸性匹配方法,对待检测的印刷品图像和平均图像进行配准,将待检测图像中高于亮模板图像或低于暗模板图像的像素标记为缺陷点,并去除孤立的缺陷点、融合离散的缺陷区域。
本发明的特点还在于:
凸性形状匹配方法,包括以下步骤:
步骤a:按均匀选取方式采样形状轮廓上的特征点,将其称为轮廓特征点,设有N个轮廓特征点,记为P1、P2、…PN,求这些轮廓特征点组成的质心O;
步骤b:以质心O为中心,建立一个直角坐标系,设任意一个轮廓特征点Pi到质心O的距离为di,其中,i=1,2,…,N,Pi与其前、后轮廓特征点之间组成的夹角为θi,Pi所在的象限为qi,则轮廓特征点Pi处的形状特征表述为fi={dii,qi};
步骤c:求di的最大值dmax,以dmax/3为量化间隔可将di的取值量化为0、1、2,以30度为量化间隔可将θi的取值量化为0、1、2、3、4、5,qi的取值为1或者2或者3或者4,则所有轮廓特征点的形状特征取值有3×6×4=72种情况;统计所有轮廓特征点的形状特征取值在这72种情况下出现的次数,称为形状特征直方图,记为h(k),其中,k=1,2,…,72;
步骤d:设P和Q分别是两个形状中的轮廓特征点集,其相应的形状特征直方图分别为hP(k)和hQ(k),其中,k=1,2,…,72,则这两个形状匹配的相似度为:
对采集的合格的印刷品图像进行配准具体为:
采集多幅合格的印刷品图像,以其中任意一幅作为参考图像,采用凸性形状匹配方法,将其它合格的印刷品图像和该参考图像进行配准,设这些配准后的图像共有m幅,记为Ij(x,y),其中,j=1,2,…,m,(x,y)是图像的像素坐标。
由配准后的合格的印刷品图像形成平均图像、亮模板图像和暗模板图像,具体为:
求配准后的图像的平均图像标准差图像
则由这些合格的印刷品图像形成一幅高亮度图像H(x,y)和一幅低亮度图像L(x,y),具体如公式(2)和公式(3):
H(x,y)=Ia(x,y)+max(a,b×V(x,y)) (2)
L(x,y)=Ia(x,y)-max(a,b×V(x,y)) (3)
其中,a、b为两个参数值;
对H(x,y)中的每一像素点,求其3×3邻域中的最大值,以该最大值作为该像素点的取值,将这样处理后的H(x,y)称为亮模板图像;同理,对L(x,y)中的每一像素点,取其3×3邻域中像素值最小的作为该像素点的取值,将这样处理后的L(x,y)称为暗模板图像。
a的取值在10到15之间。
b的取值在3到5之间。
采用形状凸性匹配方法,对待检测的印刷品图像和平均图像进行配准,将待检测图像中高于亮模板图像或低于暗模板的像素标记为缺陷点,并去除孤立的缺陷点、融合离散的缺陷区域具体为:
采用形状凸性匹配方法,对待检测的印刷品图像和平均图像Ia(x,y)进行配准,设配准后的待检测的印刷品图像为I(x,y),则检测出的缺陷图像D(x,y)为:
对D(x,y)中像素值为1的点,若其3×3邻域中像素值为1的个数少于3个,则将该点的取值变为0,以去除孤立的噪声点;进一步对D(x,y)采用模板大小为5×5的形态学闭运算,以将一些相邻的离散缺陷区域融合为一个缺陷区域。
本发明的有益效果是:本发明的一种基于机器视觉的印刷品缺陷自动检测方法,相比较现有的方法,其中的凸性形状匹配方法具有图像匹配速度快、匹配精度高的优点,所设计的基于亮模板和暗模板图像的缺陷检测方法适应性强、能有效检测出印刷品中的缺陷,应用所提出的方法可以提高整个检测系统的精度与效率。
附图说明
图1是本发明基于机器视觉的印刷品缺陷自动检测方法的流程图。
具体实施方式
下面结合附图和具体实施方式对本发明进行详细说明。
如图1所示,本发明一种基于机器视觉的印刷品缺陷自动检测方法,采用凸性形状匹配方法,首先对采集的合格的印刷品图像进行配准;然后由这些配准后的合格的印刷品图像形成平均图像、亮模板图像和暗模板图像;最后,采用形状凸性匹配方法,对待检测的印刷品图像和平均图像进行配准,将待检测图像中高于亮模板图像或低于暗模板图像的像素标记为缺陷点,并去除孤立的缺陷点、融合离散的缺陷区域。
凸性形状匹配方法,包括以下步骤:
步骤a:按均匀选取方式采样形状轮廓上的特征点,将其称为轮廓特征点,设有N个轮廓特征点,记为P1、P2、…PN,求这些轮廓特征点组成的质心O;
步骤b:以质心O为中心,建立一个直角坐标系,设任意一个轮廓特征点Pi到质心O的距离为di,其中,i=1,2,…,N,Pi与其前、后轮廓特征点之间组成的夹角为θi,Pi所在的象限为qi,则轮廓特征点Pi处的形状特征表述为fi={dii,qi};
步骤c:求di的最大值dmax,以dmax/3为量化间隔可将di的取值量化为0、1、2,以30度为量化间隔可将θi的取值量化为0、1、2、3、4、5,qi的取值为1或者2或者3或者4,则所有轮廓特征点的形状特征取值有3×6×4=72种情况;统计所有轮廓特征点的形状特征取值在这72种情况下出现的次数,称为形状特征直方图,记为h(k),其中,k=1,2,…,72;
步骤d:设P和Q分别是两个形状中的轮廓特征点集,其相应的形状特征直方图分别为hP(k)和hQ(k),其中,k=1,2,…,72,则这两个形状匹配的相似度为:
对采集的合格的印刷品图像进行配准具体为:
采集多幅合格的印刷品图像,以其中任意一幅作为参考图像,采用凸性形状匹配方法,将其它合格的印刷品图像和该参考图像进行配准,设这些配准后的图像共有m幅,记为Ij(x,y),其中,j=1,2,…,m,(x,y)是图像的像素坐标。
由配准后的合格的印刷品图像形成平均图像、亮模板图像和暗模板图像,具体为:
求配准后的图像的平均图像标准差图像
则由这些合格的印刷品图像形成一幅高亮度图像H(x,y)和一幅低亮度图像L(x,y),具体如公式(2)和公式(3):
H(x,y)=Ia(x,y)+max(a,b×V(x,y)) (2)
L(x,y)=Ia(x,y)-max(a,b×V(x,y)) (3)
其中,a、b为两个经验参数值,a的取值可以在10到15之间,b的取值在3到5之间,具体可根据不同的印刷品图像进行选择;
对H(x,y)中的每一像素点,求其3×3邻域中的最大值,以该最大值作为该像素点的取值,将这样处理后的H(x,y)称为亮模板图像;同理,对L(x,y)中的每一像素点,取其3×3邻域中像素值最小的作为该像素点的取值,将这样处理后的L(x,y)称为暗模板图像。
采用形状凸性匹配方法,对待检测的印刷品图像和平均图像进行配准,将待检测图像中高于亮模板图像或低于暗模板的像素标记为缺陷点,并去除孤立的缺陷点、融合离散的缺陷区域具体为:
采用形状凸性匹配方法,对待检测的印刷品图像和平均图像Ia(x,y)进行配准,设配准后的待检测的印刷品图像为I(x,y),则检测出的缺陷图像D(x,y)为:
对D(x,y)中像素值为1的点,若其3×3邻域中像素值为1的个数少于3个,则将该点的取值变为0,以去除孤立的噪声点;进一步对D(x,y)采用模板大小为5×5的形态学闭运算,以将一些相邻的离散缺陷区域融合为一个缺陷区域。
本发明的一种基于机器视觉的印刷品缺陷自动检测方法,提出的凸性形状匹配方法,描述一个形状特征仅需72维的特征数据,具有形状描述简单、匹配速度快的特点;在缺陷检测中,通过在亮模板和暗模板中参数值的设置,增加了缺陷检测方法的灵活性。整个检测方法具有计算简单、检测速度快的特点,能有效的检测出印刷品中的缺陷,并能提高整个检测系统的精度与效率。

Claims (7)

1.一种基于机器视觉的印刷品缺陷自动检测方法,其特征在于,采用凸性形状匹配方法,首先对采集的合格的印刷品图像进行配准;然后由这些配准后的合格的印刷品图像形成平均图像、亮模板图像和暗模板图像;最后,采用形状凸性匹配方法,对待检测的印刷品图像和平均图像进行配准,将待检测图像中高于亮模板图像或低于暗模板图像的像素标记为缺陷点,并去除孤立的缺陷点、融合离散的缺陷区域。
2.根据权利要求1所述的一种基于机器视觉的印刷品缺陷自动检测方法,其特征在于,所述凸性形状匹配方法,包括以下步骤:
步骤a:按均匀选取方式采样形状轮廓上的特征点,将其称为轮廓特征点,设有N个轮廓特征点,记为P1、P2、…PN,求这些轮廓特征点组成的质心O;
步骤b:以质心O为中心,建立一个直角坐标系,设任意一个轮廓特征点Pi到质心O的距离为di,其中,i=1,2,…,N,Pi与其前、后轮廓特征点之间组成的夹角为θi,Pi所在的象限为qi,则轮廓特征点Pi处的形状特征表述为fi={dii,qi};
步骤c:求di的最大值dmax,以dmax/3为量化间隔可将di的取值量化为0、1、2,以30度为量化间隔可将θi的取值量化为0、1、2、3、4、5,qi的取值为1或者2或者3或者4,则所有轮廓特征点的形状特征取值有3×6×4=72种情况;统计所有轮廓特征点的形状特征取值在这72种情况下出现的次数,称为形状特征直方图,记为h(k),其中,k=1,2,…,72;
步骤d:设P和Q分别是两个形状中的轮廓特征点集,其相应的形状特征直方图分别为hP(k)和hQ(k),其中,k=1,2,…,72,则这两个形状匹配的相似度为:
<mrow> <mi>S</mi> <mrow> <mo>(</mo> <mi>P</mi> <mo>,</mo> <mi>Q</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>k</mi> <mo>=</mo> <mn>1</mn> </mrow> <mn>72</mn> </munderover> <mfrac> <msup> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>h</mi> <mi>P</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>h</mi> <mi>Q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>&amp;rsqb;</mo> </mrow> <mn>2</mn> </msup> <mrow> <msub> <mi>h</mi> <mi>P</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>h</mi> <mi>Q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>.</mo> </mrow>
3.根据权利要求2所述的一种基于机器视觉的印刷品缺陷自动检测方法,其特征在于,所述对采集的合格的印刷品图像进行配准具体为:
采集多幅合格的印刷品图像,以其中任意一幅作为参考图像,采用凸性形状匹配方法,将其它合格的印刷品图像和该参考图像进行配准,设这些配准后的图像共有m幅,记为Ij(x,y),其中,j=1,2,…,m,(x,y)是图像的像素坐标。
4.根据权利要求3所述的一种基于机器视觉的印刷品缺陷自动检测方法,其特征在于,所述由配准后的合格的印刷品图像形成平均图像、亮模板图像和暗模板图像,具体为:
求配准后的图像的平均图像标准差图像
则由这些合格的印刷品图像形成一幅高亮度图像H(x,y)和一幅低亮度图像L(x,y),具体如公式(2)和公式(3):
H(x,y)=Ia(x,y)+max(a,b×V(x,y)) (2)
L(x,y)=Ia(x,y)-max(a,b×V(x,y)) (3)
其中,a、b为两个参数值;
对H(x,y)中的每一像素点,求其3×3邻域中的最大值,以该最大值作为该像素点的取值,将这样处理后的H(x,y)称为亮模板图像;同理,对L(x,y)中的每一像素点,取其3×3邻域中像素值最小的作为该像素点的取值,将这样处理后的L(x,y)称为暗模板图像。
5.根据权利要求4所述的一种基于机器视觉的印刷品缺陷自动检测方法,其特征在于,所述a的取值在10到15之间。
6.根据权利要求4所述的一种基于机器视觉的印刷品缺陷自动检测方法,其特征在于,所述b的取值在3到5之间。
7.根据权利要求4所述的一种基于机器视觉的印刷品缺陷自动检测方法,其特征在于,所述采用形状凸性匹配方法,对待检测的印刷品图像和平均图像进行配准,将待检测图像中高于亮模板图像或低于暗模板的像素标记为缺陷点,并去除孤立的缺陷点、融合离散的缺陷区域具体为:
采用形状凸性匹配方法,对待检测的印刷品图像和平均图像Ia(x,y)进行配准,设配准后的待检测的印刷品图像为I(x,y),则检测出的缺陷图像D(x,y)为:
对D(x,y)中像素值为1的点,若其3×3邻域中像素值为1的个数少于3个,则将该点的取值变为0,以去除孤立的噪声点;进一步对D(x,y)采用模板大小为5×5的形态学闭运算,以将一些相邻的离散缺陷区域融合为一个缺陷区域。
CN201710514247.9A 2017-06-29 2017-06-29 一种基于机器视觉的印刷品缺陷自动检测方法 Active CN107389693B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710514247.9A CN107389693B (zh) 2017-06-29 2017-06-29 一种基于机器视觉的印刷品缺陷自动检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710514247.9A CN107389693B (zh) 2017-06-29 2017-06-29 一种基于机器视觉的印刷品缺陷自动检测方法

Publications (2)

Publication Number Publication Date
CN107389693A true CN107389693A (zh) 2017-11-24
CN107389693B CN107389693B (zh) 2020-04-21

Family

ID=60334132

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710514247.9A Active CN107389693B (zh) 2017-06-29 2017-06-29 一种基于机器视觉的印刷品缺陷自动检测方法

Country Status (1)

Country Link
CN (1) CN107389693B (zh)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107945172A (zh) * 2017-12-08 2018-04-20 博众精工科技股份有限公司 一种字符检测方法及系统
CN108459023A (zh) * 2018-03-27 2018-08-28 松下电子部品(江门)有限公司 双基准电容外观图像检测方法
CN110335262A (zh) * 2019-06-28 2019-10-15 西安理工大学 一种机器视觉中印刷品缺陷自动分类方法
CN110782453A (zh) * 2019-11-06 2020-02-11 西安工程大学 一种基于图像特征匹配的印刷品质量检测方法
CN110940670A (zh) * 2019-11-25 2020-03-31 佛山缔乐视觉科技有限公司 基于机器视觉的柔印标签印刷首稿检测系统及其实现方法
CN113393437A (zh) * 2021-06-15 2021-09-14 中航华东光电有限公司 基于oled显示模块的缺陷检测方法
CN113724257A (zh) * 2021-11-01 2021-11-30 常州市宏发纵横新材料科技股份有限公司 一种碳板灰色污点检测方法、计算机设备及存储介质
CN115420746A (zh) * 2022-09-01 2022-12-02 深圳市源川科技有限公司 一种印刷件的质量检测方法、质量检测装置及质量检测设备
CN118010759A (zh) * 2024-04-08 2024-05-10 青岛天仁微纳科技有限责任公司 一种纳米压印图像的检测方法
CN119359721A (zh) * 2024-12-25 2025-01-24 深圳精智达技术股份有限公司 一种微显示器件电路区缺陷检测的方法、装置及存储介质

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109840499B (zh) * 2019-01-31 2021-03-02 闽江学院 一种快速检测印刷品打印及装订质量的方法

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107945172A (zh) * 2017-12-08 2018-04-20 博众精工科技股份有限公司 一种字符检测方法及系统
CN108459023A (zh) * 2018-03-27 2018-08-28 松下电子部品(江门)有限公司 双基准电容外观图像检测方法
CN110335262A (zh) * 2019-06-28 2019-10-15 西安理工大学 一种机器视觉中印刷品缺陷自动分类方法
CN110782453A (zh) * 2019-11-06 2020-02-11 西安工程大学 一种基于图像特征匹配的印刷品质量检测方法
CN110940670A (zh) * 2019-11-25 2020-03-31 佛山缔乐视觉科技有限公司 基于机器视觉的柔印标签印刷首稿检测系统及其实现方法
CN110940670B (zh) * 2019-11-25 2023-04-28 佛山缔乐视觉科技有限公司 基于机器视觉的柔印标签印刷首稿检测系统及其实现方法
CN113393437A (zh) * 2021-06-15 2021-09-14 中航华东光电有限公司 基于oled显示模块的缺陷检测方法
CN113724257A (zh) * 2021-11-01 2021-11-30 常州市宏发纵横新材料科技股份有限公司 一种碳板灰色污点检测方法、计算机设备及存储介质
CN115420746A (zh) * 2022-09-01 2022-12-02 深圳市源川科技有限公司 一种印刷件的质量检测方法、质量检测装置及质量检测设备
CN118010759A (zh) * 2024-04-08 2024-05-10 青岛天仁微纳科技有限责任公司 一种纳米压印图像的检测方法
CN119359721A (zh) * 2024-12-25 2025-01-24 深圳精智达技术股份有限公司 一种微显示器件电路区缺陷检测的方法、装置及存储介质

Also Published As

Publication number Publication date
CN107389693B (zh) 2020-04-21

Similar Documents

Publication Publication Date Title
CN107389693A (zh) 一种基于机器视觉的印刷品缺陷自动检测方法
CN108982508B (zh) 一种基于特征模板匹配和深度学习的塑封体ic芯片缺陷检测方法
CN107203990B (zh) 一种基于模板匹配与图像质量评估的标贴破损检测方法
CN117541588B (zh) 一种纸制品的印刷缺陷检测方法
CN108918526B (zh) 一种柔性ic封装基板线路的缺口缺陷检测方法
CN111242896A (zh) 一种彩色印刷标签缺陷检测与质量评级方法
CN102629322B (zh) 一种基于边界点笔画形状的字符特征提取方法及应用
CN102880863B (zh) 一种基于可变形部件模型的车牌及驾驶员人脸定位方法
CN104990925A (zh) 一种基于梯度多阈值优化缺陷检测方法
CN103914687A (zh) 一种基于多通道和多阈值的矩形目标识别方法
CN106247969A (zh) 一种基于机器视觉的工业磁芯元件的形变检测方法
CN106855951A (zh) 一种基于计算机视觉的粮种品质检测方法
CN104846054A (zh) 一种基于形态学特征的白带中霉菌的自动检测方法
CN109376740A (zh) 一种基于视频的水尺读数检测方法
CN107796826B (zh) 基于齿心距离曲线分析的微型双联齿轮断齿缺陷检测方法
CN106097368A (zh) 一种单板裂缝的识别方法
CN104778684A (zh) 钢材表面异质型缺陷的自动测量、表征分类方法及其系统
CN106447673A (zh) 一种非均匀光照条件下的芯片引脚提取方法
CN104897071A (zh) 一种基于机器视觉的双绞线节距测量方法
CN107832762A (zh) 一种基于多特征融合的车牌定位与识别方法
CN103456021A (zh) 一种基于形态学分析的布匹瑕疵检测方法
CN113657339A (zh) 一种基于机器视觉的仪表指针计数读取方法及介质
CN104331693B (zh) 一种印刷品对称性检测方法及系统
CN103837537B (zh) 一种无砂目金属喷墨印版网点面积率测量方法
CN105404869A (zh) 一种基于计算机视觉的水果外形分级方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200629

Address after: No. 16699, Sande Road, Haimen street, Haimen City, Nantong City, Jiangsu Province, 226100

Patentee after: Jiangsu Langhui Industrial Development Co.,Ltd.

Address before: 710048 Shaanxi city of Xi'an Province Jinhua Road No. 5

Patentee before: XI'AN University OF TECHNOLOGY

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20241119

Address after: No. 6, Chuangye Avenue, the intersection of Chuangye Avenue and Renmin Road, Gedian Development Zone, Ezhou City, Hubei Province, 436000

Patentee after: Wuhan ruishiteng anti-counterfeiting technology Co.,Ltd.

Country or region after: China

Address before: No. 16699, Sande Road, Haimen Street, Haimen City, Nantong City, Jiangsu Province, 226100

Patentee before: Jiangsu Langhui Industrial Development Co.,Ltd.

Country or region before: China

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20250102

Address after: No. 16789 San De Road, Haimen Street, Haimen District, Nantong City, Jiangsu Province, China 226100

Patentee after: Jiangsu Langji Packaging Materials Co.,Ltd.

Country or region after: China

Address before: No. 6, Chuangye Avenue, the intersection of Chuangye Avenue and Renmin Road, Gedian Development Zone, Ezhou City, Hubei Province, 436000

Patentee before: Wuhan ruishiteng anti-counterfeiting technology Co.,Ltd.

Country or region before: China