CN107389317B - 一种色散光纤色散系数的测量系统 - Google Patents

一种色散光纤色散系数的测量系统 Download PDF

Info

Publication number
CN107389317B
CN107389317B CN201710613117.0A CN201710613117A CN107389317B CN 107389317 B CN107389317 B CN 107389317B CN 201710613117 A CN201710613117 A CN 201710613117A CN 107389317 B CN107389317 B CN 107389317B
Authority
CN
China
Prior art keywords
signal
optical fiber
dispersive optical
microwave
microwave signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710613117.0A
Other languages
English (en)
Other versions
CN107389317A (zh
Inventor
卢平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hongan Group Co Ltd
Original Assignee
WANG ON GROUP Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by WANG ON GROUP Ltd filed Critical WANG ON GROUP Ltd
Priority to CN201710613117.0A priority Critical patent/CN107389317B/zh
Publication of CN107389317A publication Critical patent/CN107389317A/zh
Application granted granted Critical
Publication of CN107389317B publication Critical patent/CN107389317B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/336Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring polarization mode dispersion [PMD]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/333Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using modulated input signals

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Optics & Photonics (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Dispersion Chemistry (AREA)
  • Optical Radar Systems And Details Thereof (AREA)

Abstract

本发明涉及一种色散光纤色散系数的测量系统,主要解决现有测量系统测量速度慢,测量精度低,抗环境干扰性能较差的问题。本发明通过采用一种色散光纤色散系数测量系统,包括信号源,信号源输出的高频微波信号经过功分器后分为两路微波信号,所述功分器的一路微波信号进入直调激光器中,激光器将微波信号加载到光域上而得到光载微波信号,光载微波信号通过待测色散光纤后入射到高速光电探测器上,再进入IQ混频器的射频输入端;功分器的另一路微波信号进入IQ混频器的本振输入端,再经过低通滤波器后依次通过信号放大电路、数据采集电路和信号处理及显示模块的技术方案,较好地解决了该问题,可用于色散光纤的测量。

Description

一种色散光纤色散系数的测量系统
技术领域
本发明涉及一种色散光纤色散系数的测量系统。
背景技术
光纤色散系数是光纤的关键参数之一,其测量方法也是光纤参数测量技术的重要研究方向。色散光纤的色散系数直接决定了色散光纤的色散补偿特性和非线性特性,是色散光纤最重要的参数之一。传统的测量手段都是通过脉冲延迟法、相移法、模场直径法和白光干涉等方法来实现,这些光学测量方法系统成本高,精度存在较大波动,抗环境干扰性能较差,且需要复杂的时频分析算法来计算和分析测量结果。
又如中国专利文献CN 205538163 U本发明公开了一种光纤色散系数测量装置,包括波长可调DFB窄线宽激光器,电光调制器,待测光纤,高速光电探测器,矢量网络分析仪和直流电源;所述波长可调DFB窄线宽激光器、电光调制器、高速光电探测器构成一条微波光子链路;波长可调DFB窄线宽激光器发出的单色偏振光入射到电光调制器;矢量网络分析仪的第一端口输出一扫频的射频信号进入电光调制器;电光调制器将该射频信号加载到光波上而输出一光载射频信号,该光载射频信号经过待测光纤后入射到高速光电探测器上,高速光电探测器将光信号转换成射频信号并接入到矢量网络分析仪进行采集和分析;相比现有的光学测量方法,该方法具备测量速度快,测量精度高,并且不受环境因素的影响等优点,但是该测量装置不能测量几十米的光纤。
发明内容
本发明所要解决的技术问题是现有测量系统测量速度慢,测量精度低,抗环境干扰性能较差的问题,提供一种新的色散光纤色散系数测量系统。使用该色散光纤色散系数测量系统具备测量速度快,测量精度高,并且不受环境因素的影响等优点。
为解决上述技术问题本发明采用的技术方案如下:一种基于色散光纤色散系数的测量系统的测量方法,包括以下步骤:
步骤一、系统上电后,将信号源打开,设置信号源的频率为f;
步骤二、不将待测光纤接入到系统中,改变激光器的波长使得波长变化量为Δλ,通过测量系统测量波长变化前后微波信号源到达高速光电探测器的相位变化量并通过式(5)得到该变化量为
步骤三、将一长度为L的待测色散光纤接入到直调激光器和高速光电探测器之间,同样改变激光器的波长使得波长变化量为Δλ,通过测量系统测量波长变化前后微波信号源到达高速光电探测器的相位变化量并通过式(5)得到该变化量为则由于色散光纤导致的波长变化前后微波相位的变化量为
步骤四、将代入到式(6)便可得到待测色散光纤的色散系数,系统的显示模块将实时显示待测色散光纤的色散系数。
测量原理如下:
假设信号源输出信号的频率为f,该信号经功分器后得到两个相同的微波信号,其中一路作为本振信号直接进入IQ混频器的本振输入端,该信号可表示为:
Vo为信号幅值,为信号的初相位。功分器输出的另一路信号经过直调激光器调制后得到光载微波信号,该光载微波信号经待测色散光纤后入射到高速光电探测器上。假设待测色散光纤的长度为L,色散系数为D,改变激光的波长使得波长的变化量为Δλ,则由于色散光纤的色散引起的光载微波信号相位的变化为
式中c为光速,由此导致高速光电探测器105输出的微波信号可表示为:
该微波信号进入IQ混频器后,混频器将该信号分为两路,一路信号作为I路输入射频信号与本振信号进行混频,另一路信号经过90度相移后作为Q路输入射频信号也与本振信号进行混频,则I路输出信号可表示为:
Q路输出信号可表示为:
将混频器输出的两路直流信号相除可得:
由此,可得待测色散光纤的色散系数为:
由于测试系统中的光纤器件都是普通单模光纤,并且含有射频电缆,因此测量时需要将这些器件引入的相位值扣除。因此,测量时,首先不将待测色散光纤接入到系统中,根据混频器得到测试系统的固有相位值为将待测色散光纤108接入到测试系统中后,再次通过测试系统测量射频信号的相位值则由待测色散光纤引起的相位变化量为由此,可得待测色散光纤的色散系数为:
一种色散光纤色散系数测量系统,包括信号源、直调激光器、功分器、待测色散光纤、高速光电探测器、IQ混频器、低通滤波器、信号放大电路、数据采集电路、信号处理及显示模块,所述信号源输出的高频微波信号经过功分器后分为两路微波信号,所述功分器的一路微波信号进入直调激光器中,该激光器将微波信号加载到光域上而得到一光载微波信号,该光载微波信号通过待测色散光纤后入射到高速光电探测器上,该高速光电探测器将光信号变为微波信号,该微波信号进入IQ混频器的射频输入端;所述功分器的另一路微波信号进入IQ混频器的本振输入端,IQ混频器I分量和Q分量的直流信号经过一低通滤波器后依次通过信号放大电路、数据采集电路和信号处理及显示模块后,通过数据采集电路采集到的电压数据,传送给信号处理模块,信号处理模块通过一系列的算法对电压信号进行分析和处理而得到待测色散光纤的色散系数并通过显示模块显示。
优选地,所述直调激光器的输出功率应大于5mW,波长调节精度高于0.4nm。
优选地,所述直调激光器也可以采用DFB激光器加外调制的方式来代替。
本发明采用高频率响应的光电和微波器件可以提高测量的准确性;本发明采用IQ混频器,由于IQ混频器能实现跨3600相位周期的测量,同时通过调节微波信号的频率,可使本发明提出的位移传感测量范围达几十米;本发明根据IQ混频器输出的两个直流电压值就可以得到当前待测色散光纤的色散系数,并且该色散系数测量值与待测信号的幅度无关,这极大地降低了光信号抖动及环境因素的影响对位移测量结果的影响。
附图说明
图1为本发明一种色散光纤色散系数测量系统示意框图。
附图中:
101、信号源 102、直调激光器 103、功分器
104、待测色散光纤 105、高速光电探测器 106、IQ混频器
107、低通滤波器 108、信号放大电路 109、数据采集电路
201、信号处理及显示模块
具体实施方式
下面结合附图和具体实施方式,进一步阐明本发明,应理解下述具体实施方式仅用于说明本发明而不用于限制本发明的范围。
如图所示,一种色散光纤色散系数测量系统,包括信号源101、直调激光器102、功分器103、待测色散光纤104、高速光电探测器105、IQ混频器106、低通滤波器107、信号放大电路108、数据采集电路109、信号处理及显示模块201,所述信号源101输出的高频微波信号经过功分器103后分为两路微波信号,所述功分器103的一路微波信号进入直调激光器102中,该激光器将微波信号加载到光域上而得到一光载微波信号,该光载微波信号通过待测色散光纤104后入射到高速光电探测器105上,该高速光电探测器将光信号变为微波信号,该微波信号进入IQ混频器106的射频输入端;所述功分器103的另一路微波信号进入IQ混频器106的本振输入端,IQ混频器I分量和Q分量的直流信号经过一低通滤波器107后依次通过信号放大电路108、数据采集电路109和信号处理及显示模块201后,通过数据采集电路109采集到的电压数据,传送给信号处理模块,信号处理模块通过一系列的算法对电压信号进行分析和处理而得到待测色散光纤的色散系数并通过显示模块显示。所述直调激光器102的输出功率应大于5mW,波长调节精度高于0.4nm。工作原理如下:
假设信号源输出信号的频率为f,该信号经功分器103后得到两个相同的微波信号,其中一路作为本振信号直接进入IQ混频器106的本振输入端,该信号可表示为:
Vo为信号幅值,为信号的初相位。功分器输出的另一路信号经过直调激光器调制后得到光载微波信号,该光载微波信号经待测色散光纤后入射到高速光电探测器105上。假设待测色散光纤的长度为L,色散系数为D,改变激光的波长使得波长的变化量为Δλ,则由于色散光纤的色散引起的光载微波信号相位的变化为
式中c为光速,由此导致高速光电探测器105输出的微波信号可表示为:
该微波信号进入IQ混频器后,混频器将该信号分为两路,一路信号作为I路输入射频信号与本振信号进行混频,另一路信号经过90度相移后作为Q路输入射频信号也与本振信号进行混频,则I路输出信号可表示为:
Q路输出信号可表示为:
将混频器输出的两路直流信号相除可得:
由此,可得待测色散光纤的色散系数为:
由于测试系统中的光纤器件都是普通单模光纤,并且含有射频电缆,因此测量时需要将这些器件引入的相位值扣除。因此,测量时,首先不将待测色散光纤接入到系统中,根据混频器得到测试系统的固有相位值为将待测色散光纤108接入到测试系统中后,再次通过测试系统测量射频信号的相位值则由待测色散光纤引起的相位变化量为由此,可得待测色散光纤的色散系数为:
由上式可知,根据IQ混频器输出的两个直流电压值就可以得到当前待测色散光纤的色散系数,并且该色散系数测量值与待测信号的幅度无关。这极大地降低了光信号抖动及环境因素的影响对位移测量结果的影响。IQ混频器的相位测量精度可达0.050,当微波信号频率为40GHz时,色散光纤的长度为1m,光源的波长调节范围为40nm时,本发明提出的色散光纤色散系数的测量分辨率可达0.1ps/km/nm。采用高频率响应的光电和微波器件可以提高测量的准确性。本测量系统也可以采用DFB激光器加外调制的方式来代替直调激光器。由于IQ混频器能实现跨3600相位周期的测量,同时通过调节微波信号的频率,可使本发明提出的位移传感测量范围达几十米。由于目前商用的光纤器件的尾纤都是采用普通单模或保偏光纤,其色散系数一般都为正值,而待测色散光纤的色散系数一般为负值,所以测量时需要将测量系统中光纤器件的尾纤的色散导致的微波信号相位的变化量从最终的测量结果中排除。
本发明的基于色散光纤色散系数测量系统的测量方法,包括以下步骤:
步骤一、系统上电后,将信号源打开,设置信号源的频率为f;
步骤二、不将待测光纤104接入到系统中,改变激光器的波长使得波长变化量为Δλ,通过测量系统测量波长变化前后微波信号源到达高速光电探测器的相位变化量并通过式(5)得到该变化量为
步骤三、将一长度为L的待测色散光纤接入到直调激光器和高速光电探测器105之间,同样改变激光器的波长使得波长变化量为Δλ,通过测量系统测量波长变化前后微波信号源到达高速光电探测器的相位变化量并通过式(5)得到该变化量为则由于色散光纤导致的波长变化前后微波相位的变化量为
步骤四、将代入到式(7)便可得到待测色散光纤的色散系数,系统的显示模块将实时显示待测色散光纤的色散系数。
尽管上面对本发明说明性的具体实施方式进行了描述,以便于本技术领域的技术人员能够理解本发明,但是本发明不仅限于具体实施方式的范围,对本技术领域的普通技术人员而言,只要各种变化只要在所附的权利要求限定和确定的本发明精神和范围内,一切利用本发明构思的发明创造均在保护之列。

Claims (3)

1.一种色散光纤色散系数的测量系统,其特征在于:包括信号源(101)、直调激光器(102)、功分器(103)、待测色散光纤(104)、高速光电探测器(105)、IQ混频器(106)、低通滤波器(107)、信号放大电路(108)、数据采集电路(109)、信号处理及显示模块(201),所述信号源(101)输出的高频微波信号经过功分器(103)后分为两路微波信号,所述功分器(103)的一路微波信号进入直调激光器(102)中,该激光器将微波信号加载到光域上而得到一光载微波信号,该光载微波信号通过待测色散光纤(104)后入射到高速光电探测器(105)上,该高速光电探测器将光信号变为微波信号,该微波信号进入IQ混频器(106)的射频输入端;所述功分器(103)的另一路微波信号进入IQ混频器(106)的本振输入端,IQ混频器I分量和Q分量的直流信号经过一低通滤波器(107)后依次通过信号放大电路(108)、数据采集电路(109)和信号处理及显示模块(201)后,通过数据采集电路(109)采集到的电压数据,传送给信号处理模块,信号处理模块通过一系列的算法对电压信号进行分析和处理而得到待测色散光纤的色散系数并通过显示模块显示。
2.根据权利要求1所述的一种色散光纤色散系数的测量系统,其特征在于所述直调激光器(102)的输出功率应大于5mW,波长调节精度高于0.4nm。
3.根据权利要求1所述的一种色散光纤色散系数的测量系统,其特征在于所述直调激光器(102)也采用DFB激光器加外调制的方式来代替。
CN201710613117.0A 2017-07-25 2017-07-25 一种色散光纤色散系数的测量系统 Active CN107389317B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710613117.0A CN107389317B (zh) 2017-07-25 2017-07-25 一种色散光纤色散系数的测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710613117.0A CN107389317B (zh) 2017-07-25 2017-07-25 一种色散光纤色散系数的测量系统

Publications (2)

Publication Number Publication Date
CN107389317A CN107389317A (zh) 2017-11-24
CN107389317B true CN107389317B (zh) 2019-06-07

Family

ID=60336126

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710613117.0A Active CN107389317B (zh) 2017-07-25 2017-07-25 一种色散光纤色散系数的测量系统

Country Status (1)

Country Link
CN (1) CN107389317B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108709720B (zh) * 2018-08-01 2023-09-01 天津博科光电科技有限公司 一种高双折射保偏光纤的模式双折射的测量装置和方法
CN112816180A (zh) * 2020-12-27 2021-05-18 苏州六幺四信息科技有限责任公司 光纤色散测量方法及测量装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1568423A (zh) * 2001-10-12 2005-01-19 株式会社爱德万测试 偏振模式色散测量器件、方法和记录媒介
US6947129B1 (en) * 2004-05-11 2005-09-20 National Research Council Of Canada Method and apparatus for measuring polarization-mode dispersion
CN106092520A (zh) * 2016-08-02 2016-11-09 中国电子科技集团公司第三十八研究所 Dfb激光器频率噪声的测量装置和方法
CN106768871A (zh) * 2016-11-14 2017-05-31 河南师范大学 基于光开关激光拍频系统测量光纤色散的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6859283B2 (en) * 2002-06-17 2005-02-22 Lightwave Electronics Corporation Apparatus and method for measuring phase response of optical detectors using multiple-beatnote optical heterodyne

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1568423A (zh) * 2001-10-12 2005-01-19 株式会社爱德万测试 偏振模式色散测量器件、方法和记录媒介
US6947129B1 (en) * 2004-05-11 2005-09-20 National Research Council Of Canada Method and apparatus for measuring polarization-mode dispersion
CN106092520A (zh) * 2016-08-02 2016-11-09 中国电子科技集团公司第三十八研究所 Dfb激光器频率噪声的测量装置和方法
CN106768871A (zh) * 2016-11-14 2017-05-31 河南师范大学 基于光开关激光拍频系统测量光纤色散的方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
"一种光纤光栅色散测量方法的探讨";方娟妮等;《兵工学报》;20040515;第25卷(第3期);第382-384页

Also Published As

Publication number Publication date
CN107389317A (zh) 2017-11-24

Similar Documents

Publication Publication Date Title
CN107271152B (zh) 一种基于色散光纤色散系数的测量系统的测量方法
CN106092520B (zh) Dfb激光器频率噪声的测量装置和方法
CN104459360B (zh) 基于微波光子混频技术的微波源相位噪声测试方法及装置
CN106656322B (zh) 利用相位调制器实现瞬时频率测量的方法
CN103645371B (zh) 一种测量电光相位调制器半波电压的装置和方法
CN106768896B (zh) 超高分辨率光矢量分析方法及装置
CN109613335B (zh) 一种基于循环移频的微波信号频率测量装置及方法
CN106341182B (zh) 一种基于光载射频链路的微波源相位噪声测量装置
CN205538163U (zh) 一种光纤色散系数测量装置
CN103954356B (zh) 一种光器件光谱响应测量方法、测量系统
CN105812053A (zh) 瞬时频率测量方法及系统
CN107389317B (zh) 一种色散光纤色散系数的测量系统
CN107085143A (zh) 一种光电频响测试仪及测试方法
CN106301554B (zh) 一种并联mzi电光调制器工作点电压的调试方法及调试装置
CN106093598A (zh) 一种电磁信号特性测量系统和方法
CN108918092A (zh) 基于光采样的电光强度调制器幅频特性测量方法及装置
CN104165756A (zh) 基于受激布里渊散射的高灵敏度光矢量网络分析仪
CN108616311A (zh) 一种基于Mach-Zehnder型光滤波器频率测量的装置及方法
CN110927448B (zh) 一种硅基集成微波频率测量仪
CN107356412B (zh) 一种基于稀土掺杂光纤折射率的测量系统的测量方法
CN106656321B (zh) 光载波的信号的大带宽射频谱的实时测量方法及系统
CA2456914C (en) Method and device for measuring half-wave voltage of mach-zehnder type optical modulator
CN105353210B (zh) 一种高灵敏大带宽光子微波频率测量装置及方法
RU193095U1 (ru) Волоконно-оптическое устройство измерения мгновенных частот множества СВЧ-сигналов
CN106771688A (zh) 一种超宽带相位噪声测试系统的使用方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
TA01 Transfer of patent application right

Effective date of registration: 20190508

Address after: 264400 No. 88 Longshan Banhengshan Road, Wendeng District, Weihai City, Shandong Province

Applicant after: HONGAN GROUP Co.,Ltd.

Address before: 215600 Jiangsu province Suzhou Zhangjiagang free trade zone new industry breeding center A Dong 145

Applicant before: SUZHOU RUNTONG PATENT OPERATION Co.,Ltd.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20210127

Address after: 264400 No. 88 Longshan Banhengshan Road, Wendeng District, Weihai City, Shandong Province

Patentee after: HONGAN GROUP Co.,Ltd.

Patentee after: SHANDONG PACIFIC OPTICAL FIBER CABLE Co.,Ltd.

Address before: 264400 No. 88 Longshan Banhengshan Road, Wendeng District, Weihai City, Shandong Province

Patentee before: HONGAN GROUP Co.,Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230926

Address after: 264200 No. 1, Longwei Road, Longshan office, Wendeng District, Weihai City, Shandong Province

Patentee after: HONGAN GROUP Co.,Ltd.

Address before: 264400 No. 88 Longshan Banhengshan Road, Wendeng District, Weihai City, Shandong Province

Patentee before: HONGAN GROUP Co.,Ltd.

Patentee before: SHANDONG PACIFIC OPTICAL FIBER CABLE Co.,Ltd.

TR01 Transfer of patent right