CN107387383A - 智能变频泵机组控制方法 - Google Patents

智能变频泵机组控制方法 Download PDF

Info

Publication number
CN107387383A
CN107387383A CN201710785003.4A CN201710785003A CN107387383A CN 107387383 A CN107387383 A CN 107387383A CN 201710785003 A CN201710785003 A CN 201710785003A CN 107387383 A CN107387383 A CN 107387383A
Authority
CN
China
Prior art keywords
frequency conversion
pump machine
conversion pump
mrow
node
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710785003.4A
Other languages
English (en)
Other versions
CN107387383B (zh
Inventor
史国锋
罗欢
凌鹏
邓文忠
李明
刘建国
潘建君
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sichuan Yu Kang Water Supply Equipment Co Ltd
Original Assignee
Sichuan Yu Kang Water Supply Equipment Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sichuan Yu Kang Water Supply Equipment Co Ltd filed Critical Sichuan Yu Kang Water Supply Equipment Co Ltd
Priority to CN201710785003.4A priority Critical patent/CN107387383B/zh
Publication of CN107387383A publication Critical patent/CN107387383A/zh
Application granted granted Critical
Publication of CN107387383B publication Critical patent/CN107387383B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B49/00Control, e.g. of pump delivery, or pump pressure of, or safety measures for, machines, pumps, or pumping installations, not otherwise provided for, or of interest apart from, groups F04B1/00 - F04B47/00
    • F04B49/06Control using electricity

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Control Of Non-Positive-Displacement Pumps (AREA)

Abstract

本发明公开了智能变频泵机组控制方法,包括以下步骤:统计连接到节点的所有变频泵机的工作功率Pi;上式中n为连接到节点的变频泵机的数量;当节点的输出流量变化时,将变化的输出流量ΔQ根据下式分配到所有节点的变频泵机:当节点的输出压力变化时,将变化的输出压力ΔH根据下式分配到所有节点的变频泵机:n为连接到节点的变频泵机的数量;变频泵机根据Qi和Hi调整转速。本发明智能变频泵机组控制方法,根据分配到的压力和流量调整变频泵机的转速,从而保证了不会出现变频泵机因转速过大而出现磨损过快的现象。

Description

智能变频泵机组控制方法
技术领域
本发明涉及供水工程领域,具体涉及智能变频泵机组控制方法。
背景技术
水资源及能源紧缺是制约我国经济发展的重要因素,节水节能是我国社会经济持续发展的基本国策。美国从20世纪90年代将变频节水节能技术应用于平移式、轴转动式喷灌机及管道灌溉等系统,但其价格昂贵。当时,在我国城乡供水及水泵抽灌系统中,电机以额定转速运行,并以额定出水量供水,当用水量减少或在用水低谷时,管网压力过高,水龙头和输水管道往往被损坏,这样也造成电能与水资源的浪费。“九五”期间,我国在工业上将交流变频调速技术列为新技术推广项目。
虽然变频泵机可以起到节水节能的作用,但是在进行管网铺设的时候,连接到同一节点的变频泵机往往数量众多,这就使得在变频泵机变频时,泵机由于与节点的距离不同,响应时间就会不同,从而导致部分变频泵机转速过大,磨损加大。
发明内容
本发明所要解决的技术问题是现有的变频泵机控制技术中,在变频泵机变频时,泵机由于与节点的距离不同,响应时间就会不同,从而导致部分变频泵机转速过大,磨损加大,目的在于提供智能变频泵机组控制方法,解决上述问题。
本发明通过下述技术方案实现:
智能变频泵机组控制方法,包括以下步骤:S1:统计连接到节点的所有变频泵机的工作功率Pi(i=1,2,…,n);上式中n为连接到节点的变频泵机的数量;S2:当节点的输出流量变化时,将变化的输出流量ΔQ根据下式分配到所有节点的变频泵机:上式中,ΔQ为节点变化的输出流量;Qi为分配到变频泵机i的输出流量;Pi为变频泵机i的工作功率;n为连接到节点的变频泵机的数量;S3:当节点的输出压力变化时,将变化的输出压力ΔH根据下式分配到所有节点的变频泵机:上式中,ΔH为节点变化的输出压力;Hi为分配到变频泵机i的输出压力;Pi为变频泵机i的工作功率;n为连接到节点的变频泵机的数量;S4:变频泵机根据Qi和Hi调整转速。
现有技术中,变频泵机可以起到节水节能的作用,但是在进行管网铺设的时候,连接到同一节点的变频泵机往往数量众多,这就使得在变频泵机变频时,泵机由于与节点的距离不同,响应时间就会不同,从而导致部分变频泵机转速过大,磨损加大。本发明应用时,先统计连接到节点的所有变频泵机的工作功率,当节点的输出流量变化时将变化的输出流量分配到所有节点的变频泵机,从而避免了部分变频泵机转速过大,而通过进行流量分配,可以有效的避免功率较小的变频泵机分配到与功率较大的变频泵机相同的流量,从而保证了功率较小的变频泵机也不会发生转速较快的现象;当节点的输出压力变化时将变化的输出压力分配到所有节点的变频泵机,而通过进行压力分配,可以有效的避免功率较小的变频泵机分配到与功率较大的变频泵机相同的压力,从而保证了功率较小的变频泵机也不会发生转速较快的现象;再根据分配到的压力和流量调整变频泵机的转速,从而保证了不会出现变频泵机因转速过大而出现磨损过快的现象。
进一步的,步骤S4还包括以下子步骤:S41:变频泵机根据Qi调整转速使得泵机的输出流量的增量为Qi;S42:变频泵机根据Hi调整转速使得泵机的输出压力的增量为Hi
进一步的,连接到节点的变频泵机的数量至少为3个。
进一步的,当ΔQ小于流量阈值时,仅将ΔQ分配到工作功率最大的变频泵机。
进一步的,当ΔH小于压力阈值时,仅将ΔH分配到工作功率最大的变频泵机。
本发明应用时,当变化的输出流量小于流量阈值时,将输出流量分配到工作功率最大的变频泵机,当变化的输出压力小于压力阈值时,将输出压力分配到工作功率最大的变频泵机,从而避免了当管道压力和流量出现小幅波动时,整个系统频繁变频导致泵机不稳定,保证了整个系统的可靠性。
本发明与现有技术相比,具有如下的优点和有益效果:
本发明智能变频泵机组控制方法,根据分配到的压力和流量调整变频泵机的转速,从而保证了不会出现变频泵机因转速过大而出现磨损过快的现象。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚明白,下面结合实施例,对本发明作进一步的详细说明,本发明的示意性实施方式及其说明仅用于解释本发明,并不作为对本发明的限定。
实施例
本发明智能变频泵机组控制方法,包括以下步骤:S1:统计连接到节点的所有变频泵机的工作功率Pi(i=1,2,…,n);上式中n为连接到节点的变频泵机的数量;S2:当节点的输出流量变化时,将变化的输出流量ΔQ根据下式分配到所有节点的变频泵机:上式中,ΔQ为节点变化的输出流量;Qi为分配到变频泵机i的输出流量;Pi为变频泵机i的工作功率;n为连接到节点的变频泵机的数量;S3:当节点的输出压力变化时,将变化的输出压力ΔH根据下式分配到所有节点的变频泵机:上式中,ΔH为节点变化的输出压力;Hi为分配到变频泵机i的输出压力;Pi为变频泵机i的工作功率;n为连接到节点的变频泵机的数量;S4:变频泵机根据Qi和Hi调整转速。步骤S4还包括以下子步骤:S41:变频泵机根据Qi调整转速使得泵机的输出流量的增量为Qi;S42:变频泵机根据Hi调整转速使得泵机的输出压力的增量为Hi。连接到节点的变频泵机的数量至少为3个。当ΔQ小于流量阈值时,仅将ΔQ分配到工作功率最大的变频泵机。当ΔH小于压力阈值时,仅将ΔH分配到工作功率最大的变频泵机。
本实施例实施时,先统计连接到节点的所有变频泵机的工作功率,当节点的输出流量变化时将变化的输出流量分配到所有节点的变频泵机,从而避免了部分变频泵机转速过大,而通过进行流量分配,可以有效的避免功率较小的变频泵机分配到与功率较大的变频泵机相同的流量,从而保证了功率较小的变频泵机也不会发生转速较快的现象;当节点的输出压力变化时将变化的输出压力分配到所有节点的变频泵机,而通过进行压力分配,可以有效的避免功率较小的变频泵机分配到与功率较大的变频泵机相同的压力,从而保证了功率较小的变频泵机也不会发生转速较快的现象;再根据分配到的压力和流量调整变频泵机的转速,从而保证了不会出现变频泵机因转速过大而出现磨损过快的现象。当变化的输出流量小于流量阈值时,将输出流量分配到工作功率最大的变频泵机,当变化的输出压力小于压力阈值时,将输出压力分配到工作功率最大的变频泵机,从而避免了当管道压力和流量出现小幅波动时,整个系统频繁变频导致泵机不稳定,保证了整个系统的可靠性。
以上所述的具体实施方式,对本发明的目的、技术方案和有益效果进行了进一步详细说明,所应理解的是,以上所述仅为本发明的具体实施方式而已,并不用于限定本发明的保护范围,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (5)

1.智能变频泵机组控制方法,其特征在于,包括以下步骤:
S1:统计连接到节点的所有变频泵机的工作功率Pi(i=1,2,…,n);上式中n为连接到节点的变频泵机的数量;
S2:当节点的输出流量变化时,将变化的输出流量ΔQ根据下式分配到所有节点的变频泵机:
<mrow> <msub> <mi>Q</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>&amp;Delta;</mi> <mi>Q</mi> <mfrac> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </msubsup> <mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mn>1</mn> <mo>/</mo> <mn>3</mn> </mrow> </msubsup> </mrow> </mfrac> <mo>;</mo> </mrow>
上式中,ΔQ为节点变化的输出流量;Qi为分配到变频泵机i的输出流量;Pi为变频泵机i的工作功率;n为连接到节点的变频泵机的数量;
S3:当节点的输出压力变化时,将变化的输出压力ΔH根据下式分配到所有节点的变频泵机:
<mrow> <msub> <mi>H</mi> <mi>i</mi> </msub> <mo>=</mo> <mi>&amp;Delta;</mi> <mi>H</mi> <mfrac> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msubsup> <mrow> <msubsup> <mi>&amp;Sigma;</mi> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>n</mi> </msubsup> <msubsup> <mi>P</mi> <mi>i</mi> <mrow> <mn>2</mn> <mo>/</mo> <mn>3</mn> </mrow> </msubsup> </mrow> </mfrac> <mo>;</mo> </mrow>
上式中,ΔH为节点变化的输出压力;Hi为分配到变频泵机i的输出压力;Pi为变频泵机i的工作功率;n为连接到节点的变频泵机的数量;
S4:变频泵机根据Qi和Hi调整转速。
2.根据权利要求1所述的智能变频泵机组控制方法,其特征在于,步骤S4还包括以下子步骤:
S41:变频泵机根据Qi调整转速使得泵机的输出流量的增量为Qi
S42:变频泵机根据Hi调整转速使得泵机的输出压力的增量为Hi
3.根据权利要求1所述的智能变频泵机组控制方法,其特征在于,连接到节点的变频泵机的数量至少为3个。
4.根据权利要求1所述的智能变频泵机组控制方法,其特征在于,当ΔQ小于流量阈值时,仅将ΔQ分配到工作功率最大的变频泵机。
5.根据权利要求1所述的智能变频泵机组控制方法,其特征在于,当ΔH小于压力阈值时,仅将ΔH分配到工作功率最大的变频泵机。
CN201710785003.4A 2017-09-04 2017-09-04 智能变频泵机组控制方法 Active CN107387383B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710785003.4A CN107387383B (zh) 2017-09-04 2017-09-04 智能变频泵机组控制方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710785003.4A CN107387383B (zh) 2017-09-04 2017-09-04 智能变频泵机组控制方法

Publications (2)

Publication Number Publication Date
CN107387383A true CN107387383A (zh) 2017-11-24
CN107387383B CN107387383B (zh) 2021-08-17

Family

ID=60348335

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710785003.4A Active CN107387383B (zh) 2017-09-04 2017-09-04 智能变频泵机组控制方法

Country Status (1)

Country Link
CN (1) CN107387383B (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228958A (ja) * 1996-02-23 1997-09-02 Toshiba Corp 送水制御装置
JPH1182897A (ja) * 1997-09-11 1999-03-26 Toshiba Corp 配水圧力制御装置
JP2006063842A (ja) * 2004-08-25 2006-03-09 Hitachi Ltd ポンプ制御装置、ポンプ制御方法及びポンプ制御プログラム
CN103104508A (zh) * 2011-11-11 2013-05-15 刘旭 闭环压力调节系统
CN103452824A (zh) * 2013-09-06 2013-12-18 武汉理工大学 基于流量-功率曲线的最小功率算法的风机水泵节能系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09228958A (ja) * 1996-02-23 1997-09-02 Toshiba Corp 送水制御装置
JPH1182897A (ja) * 1997-09-11 1999-03-26 Toshiba Corp 配水圧力制御装置
JP2006063842A (ja) * 2004-08-25 2006-03-09 Hitachi Ltd ポンプ制御装置、ポンプ制御方法及びポンプ制御プログラム
CN103104508A (zh) * 2011-11-11 2013-05-15 刘旭 闭环压力调节系统
CN103452824A (zh) * 2013-09-06 2013-12-18 武汉理工大学 基于流量-功率曲线的最小功率算法的风机水泵节能系统

Also Published As

Publication number Publication date
CN107387383B (zh) 2021-08-17

Similar Documents

Publication Publication Date Title
CN106887859A (zh) 一种抑制高压直流输电换相失败的控制优化方法和装置
CN103742337B (zh) 一种设有椭圆形流道的双侧导叶贯流式水轮机
CN106374528A (zh) 一种基于改进下垂控制的微电网分散型控制策略模型
CN110011364A (zh) 一种降低有功功率载荷波动对系统稳定影响的控制方法
Zheng et al. Improved Suter-transformation for complete characteristic curves of pump-turbine
CN107248752A (zh) 一种基于网络拓扑识别的高渗透光伏分布式电压控制方法
CN107387383A (zh) 智能变频泵机组控制方法
CN103259284B (zh) 基于锁相环的电压矢量稳定器及其控制方法
CN107514357A (zh) 防止过度磨损的泵机频率转换系统
CN204667152U (zh) 一种基于网络的小型水电站计算机监控系统
CN205101041U (zh) 一种旋转式减温减压装置
CN206397708U (zh) 一种恒压水泵节能控制系统节电装置
CN104821590A (zh) 智能电网节能优化综合测评方法
CN205503344U (zh) 循环水发电系统
CN107558532A (zh) 区域水网压力闭环调控系统
CN103944458A (zh) 一种能耗制动方法及装置
CN209692640U (zh) 一种单相整流模拟控制电路
CN106979118A (zh) 利用城市防涝地下蓄水库和隧道的蓄能发电系统及方法
CN202974026U (zh) 一种循环水补水方式改造装置
CN103197636B (zh) 配合燃烧优化的下层控制系统及其实现方法
CN204731600U (zh) 一种系统蒸汽压力的稳定装置
CN206267882U (zh) 一种流体余压透平回收双驱动节能系统
CN206117535U (zh) 针对三相四线制vienna整流器的三相独立平均电流控制电路
CN105335609B (zh) 一种评估送电断面功率转移比的方法
CN204794079U (zh) 输电频率控制装置

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant