CN107376911A - 一种α‑钒酸银作为模拟酶的应用 - Google Patents

一种α‑钒酸银作为模拟酶的应用 Download PDF

Info

Publication number
CN107376911A
CN107376911A CN201710623869.5A CN201710623869A CN107376911A CN 107376911 A CN107376911 A CN 107376911A CN 201710623869 A CN201710623869 A CN 201710623869A CN 107376911 A CN107376911 A CN 107376911A
Authority
CN
China
Prior art keywords
analogue enztme
silver vanadate
application
silver
vanadate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710623869.5A
Other languages
English (en)
Inventor
王毅
张盾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Oceanology of CAS
Original Assignee
Institute of Oceanology of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Oceanology of CAS filed Critical Institute of Oceanology of CAS
Priority to CN201710623869.5A priority Critical patent/CN107376911A/zh
Publication of CN107376911A publication Critical patent/CN107376911A/zh
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/38Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals
    • B01J23/54Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of noble metals combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/66Silver or gold
    • B01J23/68Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/682Silver or gold with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium with vanadium, niobium, tantalum or polonium

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Catalysts (AREA)

Abstract

本发明涉及模拟酶技术,具体的说是一种α‑钒酸银作为模拟酶的应用。所述钒酸银作为模拟酶的应用。其是通过直接共沉淀法合成获得。本发明所述α‑钒酸银具有良好的HRP酶催化活性,在免疫分析等领域具有潜在应用前景,且廉价易得。

Description

一种α-钒酸银作为模拟酶的应用
技术领域
本发明涉及模拟酶技术,具体的说是一种α-钒酸银作为模拟酶的应用。
背景技术
过氧化物酶(Horseradish peroxidase,简称HRP)是由微生物或植物所产生的一类氧化还原酶,是以过氧化氢为电子受体催化底物氧化的酶。HRP是免疫酶标技术中最为常用的工具酶之一,常用于标记抗体。
文献(Nature Nanotechnology,2007,2,577-583)首次报道了Fe3O4磁性纳米颗粒具有HRP催化活性,其催化效率、机理和底物的专一性都与HRP相同。并且与HRP比较,还具有稳定性高、制备工艺简单和可循环利用的优点。在Fe3O4之后,又相继报道了氧化石墨烯、碳纳米管、氧化铈、氧化锰等纳米材料也具有HRP催化活性,在免疫分析和生物传感器领域得到了广泛引用。
α-钒酸银由于其独特的电子、光子和磁学特性,已经成为近年来的研究热点。α-钒酸银具有独特的晶体结构,其在生物领域的应用潜能尚未开发。
发明内容
本发明的目的是提供一种α-钒酸银作为模拟酶的应用。
为实现上述目的,本发明采用的技术方案为:
一种α-钒酸银作为模拟酶的应用。
所述α-钒酸银作为对底物进行催化氧化还原反应的HRP酶。
所述α-钒酸银通过直接共沉淀合成获得,为长度为2到10微米,宽度为500纳米左右棒状物。
所述α-钒酸银将AgNO3水溶液与NH4VO3的水溶液共混,于10-50℃条件下晶化0.5-2小时,晶化后洗涤,过滤,将滤饼在40-60℃干燥24小时,得到α-钒酸银。
具体为:
1)将NH4VO3配置成浓度为0.005-0.050mol/L的水溶液,再将AgNO3配置成浓度为0.005-0.050mol/L的水溶液,AgNO3溶液与NH4VO3溶液直接共混;
2)将上述混合溶液于10-50℃条件下晶化0.5-2小时,晶化后依次用去离子水、乙醇洗涤,过滤,将滤饼在40-60℃干燥24小时,得到化学组成为AgVO3的α-钒酸银模拟酶材料。
本发明所具有的有益效果:本发明所得模拟酶材料具有良好的HRP酶催化活性,在免疫分析等领域具有潜在应用前景,且廉价易得。
附图说明
图1为本发明实施例提供的模拟酶材料的XRD谱图(其中横坐标-角度2θ,单位为°(度);纵坐标-强度,单位为a.u.(绝对单位))。
图2为本发明实施例提供的模拟酶材料的SEM图。
图3为本发明实施例提供的模拟酶材料的催化效果图(其中横坐标-时间Time,单位为s(秒);纵坐标-吸光度值Abs)。
具体实施方式
实施例1
钒酸银制备过程:
将NH4VO3配置成浓度为0.029mol/L的水溶液,再将AgNO3配置成浓度为0.029mol/L的水溶液,AgNO3溶液与NH4VO3溶液直接共混,将上述混合溶液于30℃条件下晶化1小时,晶化后依次用去离子水、乙醇洗涤,过滤,将滤饼在60℃干燥24小时,得到化学组成为AgVO3的α-钒酸银(图1和2)。
由图1和2可见所合成产物为长度为2到10微米,宽度为500纳米左右微米级棒状α-钒酸银。
利用典型的催化氧化底物TMB和H2O2测定合成的钒酸银的类过氧化物酶活性。取一个1.5mL离心管,加入800μL磷酸盐缓冲液(100mM,pH 4.0),然后分别加入1mM TMB和0.5mMH2O2作为催化底物,最后加入所合成的20μg/mL纳米模拟酶材料。当纳米模拟酶材料加入到反应体系后,能够用肉眼观察到体系迅速发生颜色变化(由无色变为蓝色)。所有的反应体系吸光度都通过U-2900Hitachi紫外分光光度计进行测定(时间扫描模式,波长652nm)。
实施例2-8
制备过程:
将NH4VO3配置成浓度为0.005~0.050mol/L的水溶液,再将AgNO3配置成浓度为0.005~0.050mol/L的水溶液,AgNO3溶液与NH4VO3溶液直接共混,将上述混合溶液于10-50℃条件下晶化0.5-2小时,晶化后洗涤,过滤,将滤饼在40-60℃干燥24小时,得到化学组成为AgVO3的α-钒酸银(参见表1)。
取一个1.5mL离心管,加入800μL磷酸盐缓冲液(100mM,pH 4.0),然后分别加入1mMTMB和0.5mM H2O2作为催化底物,最后加入表1所合成的20μg/mL各纳米模拟酶材料。当纳米模拟酶材料加入到反应体系后,能够用肉眼观察到体系迅速发生颜色变化(由无色变为蓝色)。所有的反应体系吸光度都通过U-2900Hitachi紫外分光光度计进行测定(时间扫描模式,波长652nm)。表明所制备α-钒酸银有纳米酶活性(图3)。
表1

Claims (5)

1.一种α-钒酸银作为模拟酶的应用,其特征在于:所述α-钒酸银作为模拟酶的应用。
2.按权利要求1所述的α-钒酸银作为模拟酶的应用,其特征在于:所述α-钒酸银作为对底物进行催化氧化还原反应的HRP酶。
3.按权利要求1或2所述的α-钒酸银作为模拟酶的应用,其特征在于:所述α-钒酸银通过直接共沉淀合成获得长度为2—10微米,宽度为500纳米左右棒状物。
4.按权利要求3所述的α-钒酸银作为模拟酶的应用,其特征在于:所述α-钒酸银为将AgNO3水溶液与NH4VO3的水溶液共混,于10-50℃条件下晶化0.5-2小时,晶化后洗涤,过滤,将滤饼在40-60℃干燥24小时,得到α-钒酸银。
5.一种模拟酶,其特征在于:模拟酶为通过直接共沉淀合成获得长度为2—10微米,宽度为500纳米左右棒状物的α-钒酸银。
CN201710623869.5A 2017-07-27 2017-07-27 一种α‑钒酸银作为模拟酶的应用 Pending CN107376911A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710623869.5A CN107376911A (zh) 2017-07-27 2017-07-27 一种α‑钒酸银作为模拟酶的应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710623869.5A CN107376911A (zh) 2017-07-27 2017-07-27 一种α‑钒酸银作为模拟酶的应用

Publications (1)

Publication Number Publication Date
CN107376911A true CN107376911A (zh) 2017-11-24

Family

ID=60342603

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710623869.5A Pending CN107376911A (zh) 2017-07-27 2017-07-27 一种α‑钒酸银作为模拟酶的应用

Country Status (1)

Country Link
CN (1) CN107376911A (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113277558A (zh) * 2021-06-17 2021-08-20 湘潭大学 一种α′-AgVO3纳米材料的制备方法
CN115490264A (zh) * 2022-09-15 2022-12-20 山东黄海科技创新研究院 钒酸银模拟酶制备方法及其抑菌应用

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103506116A (zh) * 2012-06-29 2014-01-15 江南大学 钒酸银纳米管可见光光催化材料的制备及其应用
CN105217683A (zh) * 2015-10-14 2016-01-06 中国科学院海洋研究所 一种钒酸银作为模拟酶的应用

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103506116A (zh) * 2012-06-29 2014-01-15 江南大学 钒酸银纳米管可见光光催化材料的制备及其应用
CN105217683A (zh) * 2015-10-14 2016-01-06 中国科学院海洋研究所 一种钒酸银作为模拟酶的应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REGIANE CRISTINA DE OLIVEIRA等: "Mechanism of Antibacterial Activity via Morphology Change of α AgVO3: Theoretical and Experimental Insights", 《ACS APPLIED MATERERIALS & INTERFACES》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113277558A (zh) * 2021-06-17 2021-08-20 湘潭大学 一种α′-AgVO3纳米材料的制备方法
CN115490264A (zh) * 2022-09-15 2022-12-20 山东黄海科技创新研究院 钒酸银模拟酶制备方法及其抑菌应用
CN115490264B (zh) * 2022-09-15 2023-10-20 山东黄海科技创新研究院 钒酸银模拟酶制备方法及其抑菌应用

Similar Documents

Publication Publication Date Title
Chen et al. Facile synthesis of nitrogen and sulfur co-doped carbon dots and application for Fe (III) ions detection and cell imaging
Thakur et al. Green reduction of graphene oxide by aqueous phytoextracts
Zhang et al. Synthesis of nitrogen-doped graphene quantum dots (N-GQDs) from marigold for detection of Fe3+ ion and bioimaging
Chandra et al. One step synthesis of functionalized carbon dots for the ultrasensitive detection of Escherichia coli and iron (III)
Sreeju et al. Studies on catalytic degradation of organic pollutants and anti-bacterial property using biosynthesized CuO nanostructures
Zhu et al. Synthesis of hierarchical Co3O4@ NiO core-shell nanotubes with a synergistic catalytic activity for peroxidase mimicking and colorimetric detection of dopamine
CN105217683B (zh) 一种钒酸银作为模拟酶的应用
Yang et al. A colorimetric strategy for ascorbic acid sensing based on the peroxidase-like activity of core-shell Fe3O4/CoFe-LDH hybrid
Wang et al. Colorimetric and fluorometric dual-signal determination of dopamine by the use of Cu-Mn-O microcrystals and C-dots
Yang et al. FeCo nanoparticles-embedded carbon nanofibers as robust peroxidase mimics for sensitive colorimetric detection of L-cysteine
Du et al. Bright-green-emissive nitrogen-doped carbon dots as a nanoprobe for bifunctional sensing, its logic gate operation and cellular imaging
Sawant et al. Biogenic capped selenium nano rods as naked eye and selective hydrogen peroxide spectrometric sensor
Li et al. Strong coupled palladium nanoparticles decorated on magnetic graphene nanosheets as enhanced peroxidase mimetics for colorimetric detection of H2O2
Zheng et al. Label-free detection of Acinetobacter baumannii through the induced fluorescence quenching of thiolated AuAg nanoclusters
Li et al. “On-off-on” detection of Fe3+ and F−, biological imaging, and its logic gate operation based on excitation-independent blue-fluorescent carbon dots
Yang et al. Attachment of nickel hexacyanoferrates nanoparticles on carbon nanotubes: preparation, characterization and bioapplication
Zhu et al. Bandgap control of α-Fe2O3 nanozymes and their superior visible light promoted peroxidase-like catalytic activity
Zhou et al. Morphology-dependent sensing performance of CuO nanomaterials
Kim et al. Recent advances in layered double hydroxide-based electrochemical and optical sensors
Rahman et al. An enzyme free detection of L-Glutamic acid using deposited CuO. GdO nanospikes on a flat glassy carbon electrode
Pandey et al. Novel synthesis of super peroxidase mimetic polycrystalline mixed metal hexacyanoferrates nanoparticles dispersion
CN107376911A (zh) 一种α‑钒酸银作为模拟酶的应用
Ghotekar et al. Biosynthesis of silver sulfide nanoparticle and its applications
Lian et al. Visible light-driven photocatalytic and enzyme-like properties of novel AgBr/Ag2MoO4 for degradation of pollutants and improved antibacterial application
Tang et al. Concentration-regulated multi-color fluorescent carbon dots for the detection of rifampicin, morin and Al3+

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication
RJ01 Rejection of invention patent application after publication

Application publication date: 20171124