CN107370186A - One kind is based on improvement dead beat photovoltaic parallel in system resonance suppressing method - Google Patents

One kind is based on improvement dead beat photovoltaic parallel in system resonance suppressing method Download PDF

Info

Publication number
CN107370186A
CN107370186A CN201710762052.6A CN201710762052A CN107370186A CN 107370186 A CN107370186 A CN 107370186A CN 201710762052 A CN201710762052 A CN 201710762052A CN 107370186 A CN107370186 A CN 107370186A
Authority
CN
China
Prior art keywords
mrow
msub
mfrac
alpha
inverter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710762052.6A
Other languages
Chinese (zh)
Other versions
CN107370186B (en
Inventor
袁晓冬
史明明
葛乐
费骏韬
朱卫平
柳丹
罗珊珊
张宸宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
Nanjing Institute of Technology
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Original Assignee
State Grid Corp of China SGCC
Nanjing Institute of Technology
Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, Nanjing Institute of Technology, Electric Power Research Institute of State Grid Jiangsu Electric Power Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201710762052.6A priority Critical patent/CN107370186B/en
Publication of CN107370186A publication Critical patent/CN107370186A/en
Application granted granted Critical
Publication of CN107370186B publication Critical patent/CN107370186B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • H02J3/383
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • H02J3/01Arrangements for reducing harmonics or ripples
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/56Power conversion systems, e.g. maximum power point trackers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/40Arrangements for reducing harmonics

Abstract

The reason for the invention discloses one kind based on improving dead beat photovoltaic parallel in system resonance suppressing method, including analyzing generation resonance;According to the result of analysis, improved track with zero error strategy is built, improved track with zero error strategy is:By predicting the sample rate current at k+2 moment, the PWM duty cycle D needed for k+1 moment inverters is calculatedk+1, PWM duty cycle D is performed in k+1 moment photovoltaic parallel in systemk+1;Improved track with zero error strategy is combined with virtual harmonic impedance method, suppresses photovoltaic parallel in system and resonance occurs.Effectively suppression system resonance can occur for the present invention.

Description

One kind is based on improvement dead beat photovoltaic parallel in system resonance suppressing method
Technical field
The present invention relates to one kind based on dead beat photovoltaic parallel in system resonance suppressing method is improved, belong to power electronics neck Domain.
Background technology
Under energy crisis and the double challenge of environmental pollution, the distributed photovoltaic energy is greatly developed as countries in the world Common recognition.However, along with the continuous improvement of photovoltaic permeability, distributed photovoltaic grid-connected system can produce to distribution network electric energy quality Adverse effect, including the distortion of grid entry point voltage, current harmonics injection, three-phase imbalance etc..In view of L or LC filter effects are not Foot, LCL are more applied in combining inverter, and it has for inverter output current high band harmonic wave preferably suppresses Effect.However, LCL can be affected as underdamping third-order system, operation and the control of inverter because of its resonance.The opposing party Face, due to containing a large amount of inverters, the friendship between inverter and inverter, inverter and power network in distributed photovoltaic grid-connected system Mutual coupling, trigger the series parallel resonance of power distribution network, power distribution network safe and stable operation is caused to have a strong impact on.
To distributed photovoltaic grid-connected system resonance reason and solution, existing scholar deploys correlative study.Related article Consider the reciprocal effect between more combining inverters and power network, establish comprising the circuit including inverter, transformer and line impedance Output impedance model, the harmonic resonance mechanism from the angle analysis of circuit in photovoltaic parallel in system.Also article passes through in public affairs Grid entry point installs the passive damper being made up of resistance, inductance and electric capacity additional altogether, according to grid entry point resonant frequency characteristic, adjusts three Passive element parameter, destroy resonance formation condition.But these methods are required for installing extra power equipment additional, that is, add Once put into, also increase system operation loss.
The content of the invention
In order to solve the above-mentioned technical problem, pressed down the invention provides one kind based on dead beat photovoltaic parallel in system resonance is improved Method processed.
In order to achieve the above object, the technical solution adopted in the present invention is:
One kind is based on improving dead beat photovoltaic parallel in system resonance suppressing method, including,
Analysis produces the reason for resonance;
According to the result of analysis, improved track with zero error strategy is built;Improved track with zero error strategy is:By pre- The sample rate current at k+2 moment is surveyed, calculates the PWM duty cycle D needed for k+1 moment invertersk+1, in k+1 moment photovoltaic parallel in system Perform PWM duty cycle Dk+1
Improved track with zero error strategy is combined with virtual harmonic impedance method, suppresses photovoltaic parallel in system and resonance occurs.
According to photovoltaic parallel in system equivalent model, shadow of the systematic parameter to inverter output current in Researching The Equivalent model Ring, analyze the reason for producing resonance.
Systematic parameter includes reference current I*, inverter bridge amplification interference Err, line voltage UgWith other combining inverters electricity Flow summation Is
Reference current I*For inverter output currentTransmission function GIL(s) it is,
Err is for inverter output current for inverter bridge amplification interferenceTransmission function GEL(s) it is,
Line voltage UgFor inverter output currentTransmission function GGL(s) it is,
Other combining inverter electric current summations IsFor inverter output currentTransmission function GPL(s) it is,
Wherein,
Gg(s)=1/sLg, KPWMFor inverter coefficient, KPAnd KiFor PID coefficient, L1And L2For the filtering in inverter unit Inductance, LgFor electric network impedance, C is the filter capacitor in inverter unit,WithRepresent the inductance transmission in s domains Function,WithRepresent inductance transmission function in practice.
Analysis result is, by reference current I*Caused resonance is referred to as internal resonance, total by other combining inverter electric currents And IsCaused resonance is referred to as parallel resonance, by line voltage UgCaused resonance is referred to as series resonance, inverter bridge amplification interference Err can after photovoltaic parallel in system operation rapid decay, therefore resonance will not be produced.
Calculate the PWM duty cycle D needed for k+1 moment invertersk+1Process be,
The voltage circuit equation of j-th of unit discretization of combining inverter is,
Wherein, k and k+1 represents moment, L1jAnd L2jFor two filter inductances of j-th of unit of combining inverter, Ts is to adopt Sample cycle, uαAnd uβRespectively α shaft voltages sampled value and β shaft voltage sampled values, UAnd URespectively line voltage is in α axles and β Component under axle, iikjαAnd iikjβRespectively component of the inverter output current under α axles and β axles, iskjαAnd iskjβIt is respectively inverse Become component of the device grid-connected current under α axles and β axles;
Ignore the influence of photovoltaic parallel in system filter capacitor, acquiescence electric current iikj=iskj=i, the then moment of kth+2 α shaft currents Sampled value is,
Wherein, iαFor α shaft current sampled values;
Kth moment and the moment of kth+1 α shaft current deviations value,
Wherein, Δ iαFor α shaft current deviation values;
The moment of kth+1 α shaft current deviations value is made to be,
J-th of unit AC output voltage expression formula of combining inverter, which can be obtained, is,
Make grid side voltage on α axles equal in continuous three sampling instant sampling deviations, expression formula is,
U(k+1)-U(k)=U(k)-U(k-1)
Grid side voltage U on the moment of kth+1 α axles can be obtained(k+1) expression formula is,
Make the set-point that the instance sample of kth+2 electric current is the kth moment, i.e. iα(k+2)=I*
Then according to UAnd i (k+1)α(k+2) j-th of unit AC output voltage of the moment of kth+1 combining inverter can be obtained uα(k+1), by calculating uα(k+1) with inverter high side voltage UdcRatio, obtain the PWM duty cycle needed for inverter Dk+1
Improved track with zero error strategy is combined with virtual harmonic impedance method, detailed process is,
By the voltage U for gathering public grid entry pointpcc, phase theta is obtained using phaselocked loop, by DC bus capacitor C2Electricity Pressure feedback control obtains active command P, and reactive command Q is arranged to 0, UpccThe component of voltage u under dq is obtained after Park is converteddq, Instruction current I is obtained after conversiondq, detect Upcc, harmonic voltage is separated with fundamental voltage using virtual harmonic impedance method, Pass through virtual conductance GvAnd then harmonic current is obtained, then harmonic current is decomposed to be transmitted back in instruction current on dq axles and calculated, Last improved track with zero error strategy, obtains the pwm switching signal of inverter.
The beneficial effect that the present invention is reached:The present invention is directed to system resonance high frequency characteristics, proposes a kind of improved indifference Control strategy to be clapped, by predicting the sample rate current at k+2 moment, control delay is reduced, increases circuit bandwidth, resonance suppresses link, It is combined with virtual harmonic impedance method, system resonance possibility occurrence substantially reduces, and effectively suppression system resonance can occur.
Brief description of the drawings
Fig. 1 is the flow chart of the present invention;
Fig. 2 is photovoltaic parallel in system equivalent circuit;
Fig. 3 is photovoltaic parallel in system control block diagram;
Fig. 4 is control delay schematic diagram;
Fig. 5 is combining inverter unit control block diagram;
Fig. 6 is α axle dead beat current control block diagrams;
Fig. 7 is virtual harmonic impedance method control block diagram;
Fig. 8 is virtual harmonic impedance method control strategy;
Grid side current waveform when Fig. 9 is unchecked measure;
Figure 10 is using grid side current waveform after traditional dead beat;
Figure 11 is using grid side current waveform after improvement dead beat.
Embodiment
The invention will be further described below in conjunction with the accompanying drawings.Following examples are only used for clearly illustrating the present invention Technical scheme, and can not be limited the scope of the invention with this.
As shown in figure 1, it is a kind of based on dead beat photovoltaic parallel in system resonance suppressing method is improved, comprise the following steps:
Step 1, according to photovoltaic parallel in system equivalent model, systematic parameter is to inverter output current in Researching The Equivalent model Influence, analysis produce resonance the reason for.
As shown in Fig. 2 LCL type photovoltaic parallel in system equivalent model, L1j、L1jAnd CfjRespectively j-th of list of combining inverter Inverter side inductance, grid side inductance and the filter capacitor of machine, j=1,2 ..., n, ZgElectric network impedance is represented, it is main to include rising Pressure transformer leakage inductance resists and transmission line of electricity equivalent resistance and reactance.According to above-mentioned equivalent model, large-sized photovoltaic grid-connected system is established The equivalent control structure in S domains, as shown in figure 3, systematic parameter includes reference current I*, inverter bridge amplification interference Err, power network electricity Press UgWith other combining inverter electric current summations Is
Reference current I*For inverter output currentTransmission function GIL(s) it is,
Err is for inverter output current for inverter bridge amplification interferenceTransmission function GEL(s) it is,
Line voltage UgFor inverter output currentTransmission function GGL(s) it is,
Other combining inverter electric current summations IsFor inverter output currentTransmission function GPL(s) it is,
Wherein,
Gg(s)=1/sLg, KPWMFor inverter coefficient, KPAnd KiFor PID coefficient L1And L2For the filtering in inverter unit Inductance, LgFor electric network impedance, C is the filter capacitor in inverter unit,WithThe inductance in s domains is represented to pass Delivery function,WithRepresent inductance transmission function in practice.
By to above-mentioned transfer function analysis, drawing by reference current I*Caused resonance is referred to as internal resonance, by it He is combining inverter electric current summation IsCaused resonance is referred to as parallel resonance, by line voltage UgCaused resonance is referred to as connecting humorous Shake, inverter bridge amplification interference Err can after photovoltaic parallel in system operation rapid decay, therefore resonance will not be produced.
Step 2, according to the result of analysis, improved track with zero error strategy is built;Improved track with zero error strategy is: By predicting the sample rate current at k+2 moment, the PWM duty cycle D needed for k+1 moment inverters is calculatedk+1, in k+1 moment photovoltaic simultaneously Net system performs PWM duty cycle Dk+1
As shown in figure 4, at the kth moment, that photovoltaic parallel in system still performs is k-1 moment PWM duty cycles Dk-1, and k Moment PWM duty cycle DkBe delayed tdJust export, further to improve track with zero error precision, correct all as caused by above reason Phase sexual deviation, innovatory algorithm calculate the PWM duty cycle needed for k+1 moment inverters by predicting the sample rate current at k+2 moment Dk+1, PWM duty cycle D is performed in k+1 moment photovoltaic parallel in systemk+1, realize electric current DAZ gene.
Calculate the PWM duty cycle D needed for k+1 moment invertersk+1Process it is as follows:
As it can be seen in figures 5 and 6, the voltage circuit equation of j-th of unit discretization of combining inverter is,
Wherein, j=1, k and k+1 represent moment, L1jAnd L2jFor two filter inductances of j-th of unit of combining inverter, Ts is the sampling period, uαAnd uβRespectively α shaft voltages sampled value and β shaft voltage sampled values, UAnd URespectively line voltage is in α Component under axle and β axles, iikjαAnd iikjβRespectively component of the inverter output current under α axles and β axles, iskjαAnd iskjβPoint Wei not component of the grid-connected inverters electric current under α axles and β axles;
Ignore the influence of photovoltaic parallel in system filter capacitor, acquiescence electric current iikj=iskj=i, the then moment of kth+2 α shaft currents Sampled value is,
Wherein, iαFor α shaft current sampled values;
Kth moment and the moment of kth+1 α shaft current deviations value,
Wherein, Δ iαFor α shaft current deviation values;
The moment of kth+1 α shaft current deviations value is made to be,
J-th of unit AC output voltage expression formula of combining inverter, which can be obtained, is,
Make grid side voltage on α axles equal in continuous three sampling instant sampling deviations, expression formula is,
U(k+1)-U(k)=U(k)-U(k-1)
Grid side voltage U on the moment of kth+1 α axles can be obtained(k+1) expression formula is,
Make the set-point that the instance sample of kth+2 electric current is the kth moment, i.e. iα(k+2)=I*
Then according to UAnd i (k+1)α(k+2) j-th of unit AC output voltage of the moment of kth+1 combining inverter can be obtained uα(k+1), by calculating uα(k+1) with inverter high side voltage UdcRatio, obtain the PWM duty cycle needed for inverter Dk+1
Step 3, improved track with zero error strategy is combined with virtual harmonic impedance method, suppresses photovoltaic parallel in system Resonance.
Detailed process is:Such as Fig. 7 and 8, by the voltage U for gathering public grid entry pointpcc, phase theta is obtained using phaselocked loop, By to DC bus capacitor C2Voltage Feedback controls to obtain active command P, and reactive command Q is arranged to 0, UpccConverted by Park The component of voltage u under dq is obtained afterwardsdq, instruction current I is obtained after conversiondq, detect Upcc, will be humorous using virtual harmonic impedance method Wave voltage separates with fundamental voltage, passes through virtual conductance GvAnd then harmonic current is obtained, then harmonic current is decomposed on dq axles It is transmitted back in instruction current and calculates, last improved track with zero error strategy, obtains the pwm switching signal of inverter.
To verify institute's extracting method of the present invention, experimental system is built, by taking internal resonance as an example, examines correctness and validity.
Photovoltaic parallel in system main circuit parameter is as shown in table 1:
The main circuit parameter of table 1
There is high requirement for precision of fuzzy controller and response speed by method carries improved track with zero error, because This uses the controllers of NI companies Single-Board RIO 9683, and its FPGA possesses the parallel control ability of high speed, and each control follows It is independent of each other between ring, system resource will not be seized.The controller possesses special power electronics input/output module simultaneously (GPIC), can be according to requirement of system design autonomous configuration input/output port.
Control and require for this subsystem, GPIC concrete configurations are as follows:1st, 7 road synchronously simulating amount input channels are configured, are used In collection photovoltaic voltage, photovoltaic electric current, DC bus-bar voltage, inverter output current, line voltage;2nd, 8 road half-bridge numbers are configured Word output channel, exported for pwm pulse signal;3rd, 6 road differential digital I/O channels are configured, for gathering DC/DC moulds Block and DC/AC module error signals.
It is unchecked, using traditional dead beat suppress and using improved dead beat suppress after effect such as Fig. 9,10 and 11 institutes Show.Test result indicates that the above method effectively suppression system resonance, current on line side THD can be decreased obviously.
The above method is directed to system resonance high frequency characteristics, a kind of improved track with zero error strategy is proposed, by predicting k+2 The sample rate current at moment, control delay is reduced, increase circuit bandwidth, resonance suppresses link, by itself and virtual harmonic impedance method phase With reference to system resonance possibility occurrence substantially reduces, and effectively suppression system resonance can occur.This paper can be carried improvement side by future Method suppresses strategy with the resonance of feature more of overall importance and is combined, and has not only widened the above method scope of application, and can enter One step improves inhibition.
Described above is only the preferred embodiment of the present invention, it is noted that for the ordinary skill people of the art For member, without departing from the technical principles of the invention, some improvement and deformation can also be made, these are improved and deformation Also it should be regarded as protection scope of the present invention.

Claims (7)

1. one kind is based on improvement dead beat photovoltaic parallel in system resonance suppressing method, it is characterised in that:Including analysis produces resonance The reason for;
According to the result of analysis, improved track with zero error strategy is built;Improved track with zero error strategy is:By predicting k+ The sample rate current at 2 moment, calculate the PWM duty cycle D needed for k+1 moment invertersk+1, performed in k+1 moment photovoltaic parallel in system PWM duty cycle Dk+1
Improved track with zero error strategy is combined with virtual harmonic impedance method, suppresses photovoltaic parallel in system and resonance occurs.
2. according to claim 1 a kind of based on dead beat photovoltaic parallel in system resonance suppressing method is improved, its feature exists In:According to photovoltaic parallel in system equivalent model, influence of the systematic parameter to inverter output current in Researching The Equivalent model, analysis The reason for producing resonance.
3. according to claim 2 a kind of based on dead beat photovoltaic parallel in system resonance suppressing method is improved, its feature exists In:Systematic parameter includes reference current I*, inverter bridge amplification interference Err, line voltage UgWith other combining inverter electric current summations Is
4. according to claim 3 a kind of based on dead beat photovoltaic parallel in system resonance suppressing method is improved, its feature exists In:Reference current I*For inverter output currentTransmission function GIL(s) it is,
<mrow> <msub> <mi>G</mi> <mrow> <mi>I</mi> <mi>L</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>I</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msup> <mi>I</mi> <mo>*</mo> </msup> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>G</mi> <mrow> <mi>P</mi> <mi>I</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msub> <mi>G</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
Err is for inverter output current for inverter bridge amplification interferenceTransmission function GEL(s) it is,
<mrow> <msub> <mi>G</mi> <mrow> <mi>E</mi> <mi>L</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>I</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mrow> <mi>E</mi> <mi>r</mi> <mi>r</mi> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msub> <mi>G</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>G</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
Line voltage UgFor inverter output currentTransmission function GGL(s) it is,
<mrow> <msub> <mi>G</mi> <mrow> <mi>G</mi> <mi>L</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>I</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <msub> <mi>U</mi> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
Other combining inverter electric current summations IsFor inverter output currentTransmission function GPL(s) it is,
<mrow> <msub> <mi>G</mi> <mrow> <mi>P</mi> <mi>L</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>I</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mrow> <msub> <mi>I</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>=</mo> <mfrac> <mrow> <mo>-</mo> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <msub> <mi>G</mi> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>G</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> </mrow> </mfrac> </mrow>
Wherein,
<mrow> <msub> <mi>G</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>G</mi> <mrow> <mi>P</mi> <mi>I</mi> </mrow> </msub> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>G</mi> <mi>C</mi> </msub> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mo>+</mo> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <msub> <mi>G</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>1</mn> </msub> </msub> <msub> <mi>G</mi> <mi>C</mi> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <msub> <mi>G</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mi>C</mi> </msub> <mo>+</mo> <msub> <mi>G</mi> <mi>g</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
<mrow> <msub> <mi>G</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <msub> <mi>G</mi> <mi>g</mi> </msub> <mrow> <mo>(</mo> <mi>s</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mrow> <msub> <mi>G</mi> <mi>C</mi> </msub> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>2</mn> </msub> </msub> <mrow> <mo>(</mo> <mn>1</mn> <mo>+</mo> <msub> <mi>G</mi> <mrow> <mi>P</mi> <mi>I</mi> </mrow> </msub> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>1</mn> </msub> </msub> <mo>)</mo> </mrow> </mrow> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>G</mi> <msub> <mi>L</mi> <mn>1</mn> </msub> </msub> <mrow> <mo>(</mo> <msub> <mi>G</mi> <mrow> <mi>P</mi> <mi>I</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>G</mi> <mi>C</mi> </msub> <mo>)</mo> </mrow> </mrow> </mfrac> <mo>,</mo> </mrow>
GPI(s)=KPWM(KP+Ki/ s),GC(s)=1/sC,Gg(s)=1/sLg, KPWMFor inverter coefficient, KPAnd KiFor PID coefficient, L1And L2For the filter inductance in inverter unit, LgFor electric network impedance, C is Filter capacitor in inverter unit,WithThe inductance transmission function in s domains is represented,WithRepresent real Inductance transmission function in border.
5. according to claim 1 a kind of based on dead beat photovoltaic parallel in system resonance suppressing method is improved, its feature exists In:Analysis result is, by reference current I*Caused resonance is referred to as internal resonance, by other combining inverter electric current summations IsDraw The resonance risen is referred to as parallel resonance, by line voltage UgCaused resonance is referred to as series resonance, and inverter bridge amplification interference Err can be Rapid decay after photovoltaic parallel in system operation, therefore resonance will not be produced.
6. according to claim 1 a kind of based on dead beat photovoltaic parallel in system resonance suppressing method is improved, its feature exists In:Calculate the PWM duty cycle D needed for k+1 moment invertersk+1Process be,
The voltage circuit equation of j-th of unit discretization of combining inverter is,
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mfrac> <mrow> <msub> <mi>i</mi> <mrow> <mi>i</mi> <mi>k</mi> <mi>j</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mrow> <mi>i</mi> <mi>k</mi> <mi>j</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mfrac> <mrow> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>k</mi> <mi>j</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>k</mi> <mi>j</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mi>&amp;beta;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mfrac> <mrow> <msub> <mi>i</mi> <mrow> <mi>i</mi> <mi>k</mi> <mi>j</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mrow> <mi>i</mi> <mi>k</mi> <mi>j</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> <mfrac> <mrow> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>k</mi> <mi>j</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mrow> <mi>s</mi> <mi>k</mi> <mi>j</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;beta;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
Wherein, k and k+1 represents moment, L1jAnd L2jFor two filter inductances of j-th of unit of combining inverter, Ts is sampling week Phase, uαAnd uβRespectively α shaft voltages sampled value and β shaft voltage sampled values, UAnd URespectively line voltage is under α axles and β axles Component, iikjαAnd iikjβRespectively component of the inverter output current under α axles and β axles, iskjαAnd iskjβRespectively inverter Component of the grid-connected current under α axles and β axles;
Ignore the influence of photovoltaic parallel in system filter capacitor, acquiescence electric current iikj=iskj=i, the then moment of kth+2 α shaft currents sampling It is worth and is,
<mrow> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>&amp;alpha;</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mo>+</mo> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein, iαFor α shaft current sampled values;
Kth moment and the moment of kth+1 α shaft current deviations value,
<mrow> <msub> <mi>&amp;Delta;i</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>&amp;alpha;</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mi>&amp;Delta;i</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mi>T</mi> <mi>s</mi> </mrow> <mrow> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>u</mi> <mi>&amp;alpha;</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
Wherein, Δ iαFor α shaft current deviation values;
The moment of kth+1 α shaft current deviations value is made to be,
<mrow> <msub> <mi>&amp;Delta;i</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;i</mi> <mi>&amp;alpha;</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>+</mo> <msub> <mi>&amp;Delta;i</mi> <mi>&amp;alpha;</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
J-th of unit AC output voltage expression formula of combining inverter, which can be obtained, is,
<mrow> <msub> <mi>u</mi> <mi>&amp;alpha;</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>L</mi> <mrow> <mn>1</mn> <mi>j</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>L</mi> <mrow> <mn>2</mn> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <mn>2</mn> <mi>T</mi> <mi>s</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>2</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>i</mi> <mi>&amp;alpha;</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> </mrow>
Make grid side voltage on α axles equal in continuous three sampling instant sampling deviations, expression formula is,
U(k+1)-U(k)=U(k)-U(k-1)
Grid side voltage U on the moment of kth+1 α axles can be obtained(k+1) expression formula is,
<mrow> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mrow> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow> <mn>2</mn> </mfrac> <mo>=</mo> <mfrac> <mn>5</mn> <mn>2</mn> </mfrac> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <mn>3</mn> <mn>2</mn> </mfrac> <msub> <mi>U</mi> <mrow> <mi>g</mi> <mi>&amp;alpha;</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Make the set-point that the instance sample of kth+2 electric current is the kth moment, i.e. iα(k+2)=I*
Then according to UAnd i (k+1)α(k+2) j-th of unit AC output voltage u of the moment of kth+1 combining inverter can be obtainedα(k+ 1), by calculating uα(k+1) with inverter high side voltage UdcRatio, obtain the PWM duty cycle D needed for inverterk+1
7. according to claim 1 a kind of based on dead beat photovoltaic parallel in system resonance suppressing method is improved, its feature exists In:Improved track with zero error strategy is combined with virtual harmonic impedance method, detailed process is, by gathering public grid entry point Voltage Upcc, phase theta is obtained using phaselocked loop, by DC bus capacitor C2Voltage Feedback controls to obtain active command P, idle Instruction Q is arranged to 0, UpccThe component of voltage u under dq is obtained after Park is converteddq, instruction current I is obtained after conversiondq, inspection Survey Upcc, harmonic voltage is separated with fundamental voltage using virtual harmonic impedance method, passes through virtual conductance GvAnd then obtain harmonic wave electricity Stream, then harmonic current is decomposed to be transmitted back in instruction current on dq axles and calculated, last improved track with zero error strategy, obtain To the pwm switching signal of inverter.
CN201710762052.6A 2017-08-30 2017-08-30 One kind is based on improvement dead beat photovoltaic parallel in system resonance suppressing method Active CN107370186B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710762052.6A CN107370186B (en) 2017-08-30 2017-08-30 One kind is based on improvement dead beat photovoltaic parallel in system resonance suppressing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710762052.6A CN107370186B (en) 2017-08-30 2017-08-30 One kind is based on improvement dead beat photovoltaic parallel in system resonance suppressing method

Publications (2)

Publication Number Publication Date
CN107370186A true CN107370186A (en) 2017-11-21
CN107370186B CN107370186B (en) 2019-10-18

Family

ID=60312170

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710762052.6A Active CN107370186B (en) 2017-08-30 2017-08-30 One kind is based on improvement dead beat photovoltaic parallel in system resonance suppressing method

Country Status (1)

Country Link
CN (1) CN107370186B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952902A (en) * 2021-02-25 2021-06-11 云南电网有限责任公司电力科学研究院 Novel photovoltaic grid-connected power distribution network side control system and method

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595280A (en) * 2013-11-18 2014-02-19 河南师范大学 Deadbeat control method of solar power generating system inverter under condition of voltage unbalance
CN104953611A (en) * 2015-04-24 2015-09-30 苏州同虞新能源科技有限公司 Frequency-multiplication-modulation-based improved deadbeat control method of photovoltaic grid-connected inverter
CN105897030A (en) * 2016-06-08 2016-08-24 江苏固德威电源科技股份有限公司 Dead beat fixed frequency model forecast control method, device and system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103595280A (en) * 2013-11-18 2014-02-19 河南师范大学 Deadbeat control method of solar power generating system inverter under condition of voltage unbalance
CN104953611A (en) * 2015-04-24 2015-09-30 苏州同虞新能源科技有限公司 Frequency-multiplication-modulation-based improved deadbeat control method of photovoltaic grid-connected inverter
CN105897030A (en) * 2016-06-08 2016-08-24 江苏固德威电源科技股份有限公司 Dead beat fixed frequency model forecast control method, device and system

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112952902A (en) * 2021-02-25 2021-06-11 云南电网有限责任公司电力科学研究院 Novel photovoltaic grid-connected power distribution network side control system and method
CN112952902B (en) * 2021-02-25 2023-04-07 云南电网有限责任公司电力科学研究院 Novel photovoltaic grid-connected power distribution network side control system and method

Also Published As

Publication number Publication date
CN107370186B (en) 2019-10-18

Similar Documents

Publication Publication Date Title
CN107994605B (en) Grid-connected inverter system method for analyzing stability based on harmonics matrix transmission function
CN105210283B (en) Resonance restraining device
CN105162134A (en) Novel microgrid system, power balance control strategy and small-signal modeling method therefor
CN103123664B (en) A kind of dynamic model of modular multi-level convector modeling method
CN108923463B (en) Frequency coupling modeling method of single-phase LCL type grid-connected inverter considering phase-locked loop
Lei et al. An improved virtual resistance damping method for grid-connected inverters with LCL filters
CN106532701B (en) LCL type Active Power Filter-APF and its control method
CN104716668B (en) Improve feed forward control method of the LCL type combining inverter to grid adaptability
CN103310121B (en) A kind of large-sized photovoltaic power station and distribution interaction of harmonics analytical model modeling method
CN102136738B (en) Control method of grid-connected inverter of large-scale grid-connected photovoltaic power station
CN103944428B (en) A kind of control method of the Three-Phase PWM Rectifier being applicable to waveform distortion of the power supply network
CN104158220B (en) The virtual reactance control method of photovoltaic combining inverter
CN103490653B (en) Grid-connected electric current and DC voltage secondary Ripple Suppression control system and control method
CN105763094A (en) Inverter control method based on voltage feedforward and recombination current control
CN105006839B (en) Weak power grid source load impedance model analysis method of grid-connected power generation system
CN103986187B (en) Method for damping control of LCL grid-connected inverter based on dimension reduction observation
CN105827133A (en) Distributed inverter resonance suppression method and system based on capacitor voltage prediction
CN104505834B (en) A kind of suppression parallel resonance Adaptive Compensation Control Method of capacitive load
CN106532770A (en) Inverter control method based on fuzzy PCI (Proportional Complex Integral) and PR (Proportional Resonance) parallel composite control
CN105186906B (en) Three-phase LCL type photovoltaic combining inverter control method
CN106849182A (en) Grid-connected inverters control method based on fuzzy control and virtual synchronous generator
CN107611971A (en) For the net side inverter resonance full-order sliding mode control method of Voltage Harmonic distortion operating mode
CN104104251B (en) A kind of robust control method of the combining inverter based on SSR-KDF
CN107302219A (en) A kind of closed loop control method of Active Power Filter-APF power network angle
CN105914774A (en) Method for modeling large-scale photovoltaic grid-connected system with multiple parallel-connected grid-connected inverters through considering dead zone

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant