CN107364463A - The rubber method for designing profile and drawing pull bar node of drawing pull bar node - Google Patents

The rubber method for designing profile and drawing pull bar node of drawing pull bar node Download PDF

Info

Publication number
CN107364463A
CN107364463A CN201710617061.6A CN201710617061A CN107364463A CN 107364463 A CN107364463 A CN 107364463A CN 201710617061 A CN201710617061 A CN 201710617061A CN 107364463 A CN107364463 A CN 107364463A
Authority
CN
China
Prior art keywords
convex surface
overcoat
pull bar
arc convex
drawing pull
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710617061.6A
Other languages
Chinese (zh)
Other versions
CN107364463B (en
Inventor
雷军玉
荣继刚
张玉祥
蒋仲三
曾先会
曾慧
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhuzhou Times New Material Technology Co Ltd
Original Assignee
Zhuzhou Times New Material Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhuzhou Times New Material Technology Co Ltd filed Critical Zhuzhou Times New Material Technology Co Ltd
Priority to CN201710617061.6A priority Critical patent/CN107364463B/en
Publication of CN107364463A publication Critical patent/CN107364463A/en
Application granted granted Critical
Publication of CN107364463B publication Critical patent/CN107364463B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61FRAIL VEHICLE SUSPENSIONS, e.g. UNDERFRAMES, BOGIES OR ARRANGEMENTS OF WHEEL AXLES; RAIL VEHICLES FOR USE ON TRACKS OF DIFFERENT WIDTH; PREVENTING DERAILING OF RAIL VEHICLES; WHEEL GUARDS, OBSTRUCTION REMOVERS OR THE LIKE FOR RAIL VEHICLES
    • B61F5/00Constructional details of bogies; Connections between bogies and vehicle underframes; Arrangements or devices for adjusting or allowing self-adjustment of wheel axles or bogies when rounding curves
    • B61F5/50Other details

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Tires In General (AREA)
  • Extrusion Moulding Of Plastics Or The Like (AREA)

Abstract

The rubber method for designing profile of drawing pull bar node, the rubber layer being bonded in including mandrel, overcoat and vulcanization between mandrel and overcoat, it is characterized in that it is outwardly arc convex surface by the outer end quasi spline of rubber layer, described arc convex surface ecto-entad moves closer to outer casing inner wall, and pass through the transition of transition face one between arc convex surface and the inwall of overcoat, pass through the transition of transition face two between arc convex surface and the outer wall of mandrel, described transition face one is designed as the arc surface being inwardly recessed, described transition face two is designed as the cambered surface being inwardly recessed.The rubber method for designing profile of the drawing pull bar node of the present invention, fold and cracking of the rubber-type face in load bearing process are reduced, improve the fatigue life of drawing pull bar node under a large load, meet the non-linear rigidity requirement of drawing pull bar node under a large load.The present invention also provides a kind of drawing pull bar node.

Description

The rubber method for designing profile and drawing pull bar node of drawing pull bar node
Technical field
The present invention relates to a kind of rubber method for designing profile of drawing pull bar node, for improving the big of drawing pull bar node Fatigue life under load, the invention further relates to a kind of drawing pull bar node.
Background technology
Drawing pull bar node is B class important components, and installed in the both ends of bogie draw bar, one end is connected with car body, one End is fixed on bogie, primarily serves the effect for transmitting tractive force, but when bogie is crossing curve, drawing pull bar node is just Need to provide the elastic reaction such as torsional deflection and deflection distortion.Drawing pull bar node is total to together with air spring and other rubber elements Same-action, provided to car body and stablize comfortable runnability.The effect of its major function is to transmit traction and brake force, if product is firm Spend greatly, then influence damping cushion effect, influence the comfortableness of passenger.If product rigidity is too small, influence product uses the longevity Life.The failure of drawing pull bar node can cause draw bar failure, produce traction and braking impact, and comfortableness reduces.
Drawing pull bar node is made up of mandrel, overcoat and rubber layer, and rubber-type face uses the U-shape structure being inwardly recessed, such as Shown in Fig. 1, its shortcoming is:
1st, U-shaped rubber shape face occurs that rubber-type face is beaten in load bearing process and torn open, and crackle or fold are formed on type face.
2nd, rubber bodies bloat among rubber-type face to upper and lower ends in load bearing process, the reciprocal transformation of rubber layer, easily There is fold cracking and extruding cracking close to the position of overcoat and mandrel.
3rd, the stiffness variation of node under a large load, the rigidity requirement under big load can not be met.
4th, the initial stiffness and primary stress of node, can not be adjusted according to the carrying demand of different circuits.
Disadvantages described above causes drawing pull bar node of the prior art, and the fatigue life under big load operating mode is short, carries Stiffness variation in journey is small, can not meet the non-linear rigidity demand under big load.
The content of the invention
The present invention provides and is directed to problems of the prior art, there is provided a kind of rubber quasi spline of drawing pull bar node Method, fold and cracking of the rubber-type face in load bearing process are reduced, improve the tired longevity of drawing pull bar node under a large load Life, meets the non-linear rigidity requirement of drawing pull bar node under a large load.The present invention also provides a kind of drawing pull bar node.
It is to reach above-mentioned purpose the technical solution adopted by the present invention:
The rubber method for designing profile of drawing pull bar node, including mandrel, overcoat and vulcanization are bonded between mandrel and overcoat Rubber layer, it is characterised in that by the outer end quasi spline of rubber layer be outwardly arc convex surface, described arc convex surface by Move closer to outer casing inner wall outside to inside, and by the transition of transition face one between arc convex surface and the inwall of overcoat, arc convex surface with By the transition of transition face two between the outer wall of mandrel, described transition face one is designed as the arc surface being inwardly recessed, by described in Transition face two be designed as the cambered surface being inwardly recessed.
Preferably, design transition face one is come in the radial direction pre-extrusion contracting amount H of mandrel and outer inner room according to described rubber layer Arc radius R, H/4≤R≤H/2, the maximum spacing for making transition face one and outer casing inner wall is H/2 ~ 2R.
Preferably, the arc radius of transition face one is adjusted, so as to adjust the initial stiffness of drawing pull bar node.
Preferably, the outer end of described arc convex surface vertically is designed in the inner side of overcoat end face, and arc convex surface edge The outer end of axial direction is no more than 2mm with the axial distance of overcoat end face.
Preferably, the arc radius of described arc convex surface is R1, and width of the arc convex surface along mandrel axial direction is A, A≤R1 ≤ 2A, R1 and A value is designed, adjust the non-linear rigidity of drawing pull bar section.
Preferably, described the arc radius R of transition face one and the arc radius R1 of arc convex surface are adjusted, is led so as to adjust Draw the variation rigidity flex point of a bar node.
Drawing pull bar node, including mandrel, overcoat and vulcanization are bonded in the rubber layer between mandrel and overcoat, and its feature exists It is outwardly arc convex surface in the outer end type face of rubber layer, arc convex surface ecto-entad moves closer to outer casing inner wall, and institute By the transition of transition face one between the arc convex surface and the inwall of overcoat stated, pass through transition between arc convex surface and the outer wall of mandrel The transition of face two, described transition face one are along the arc surface being inwardly recessed, and described transition face two is the cambered surface being inwardly recessed.
Preferably, described rubber layer is in mandrel and the radial direction pre-extrusion contracting amount H of outer inner room, the arc radius of transition face one R, H/4≤R≤H/2, the maximum spacing of transition face one and outer casing inner wall is H/2 ~ 2R.
Preferably, the outer end of described arc convex surface vertically is located at the inner side of overcoat end face, and arc convex surface is vertically The axial distance of outer end and overcoat end face be no more than 2mm.
Preferably, the arc radius of described arc convex surface is R1, and width of the arc convex surface along mandrel axial direction is A, A≤R1 ≤2A。
The beneficial effects of the invention are as follows:
1st, the present invention by the outer end quasi spline of drawing pull bar node into outwardly arc convex surface, described arc convex surface by Outer casing inner wall is moved closer to outside to inside, and in load bearing process, arc convex surface is gradually pasted from the inside to the outside with the radial compression of node Lean against on outer casing inner wall, rubber-type face will not be beaten and tear open, reduce fold and cracking of the rubber-type face in load bearing process.
2nd, under big load, with the compression of rubber layer, the deformation of rubber layer is bloated from arc convex surface to outer casing inner wall direction, The deformation in outer end type face is carried out along the deformation rule of drawing pull bar node, can effectively be reduced rubber layer and is connected with overcoat with mandrel The rubber bulging at place, outer end type face is in reciprocal transformation, it is not easy to close to the position of overcoat and mandrel occur gauffer cracking and Extruding cracking, the fatigue life of drawing pull bar node can be effectively improved.
3rd, arc convex surface and the circular arc entered between outer casing inner wall by the transition of transition face one, transition face one for inside corrie Face, the arc radius of transition face one is adjusted according to the initial pre-extrusion amount of rubber layer, so as to realize that drawing pull bar node is initial The regulation of rigidity, make the initial stiffness requirement of drawing pull bar node adaptation different bearer operating mode.
4th, according to the initial pre-extrusion amount of rubber layer and the arc radius of transition face one, transition face one and outer casing inner wall are adjusted Maximum spacing so that the beginning initial stress in rubber layer outer end type face is minimum, improve rubber layer outer end type face in load bearing process Deformation characteristic.
5th, by design transition face one and circular arc convex arc, the variation rigidity flex point of drawing pull bar section load bearing process is realized, is met The non-linear rigidity demand of drawing pull bar node under a large load.
Brief description of the drawings
Fig. 1 is the structural representation of drawing pull bar node of the prior art.
Fig. 2 is the structural representation of the drawing pull bar node in embodiment.
Fig. 3 is Fig. 2 close-up schematic view.
Fig. 4 is stiffness curve of the drawing pull bar node in load bearing process in specific implementation examination.
Embodiment
2 to 4 pairs of embodiments of the invention elaborate below in conjunction with the accompanying drawings.
The rubber method for designing profile of drawing pull bar node, including mandrel 1, overcoat 2 and vulcanization are bonded in mandrel 1 and overcoat Rubber layer 3 between 2, it is characterised in that by the outer end quasi spline of rubber layer 3 it is outwardly arc convex surface 3.1, it is described The ecto-entad of arc convex surface 3.1 move closer to the inwall of overcoat 2, and pass through transition between the inwall of arc convex surface 3.1 and overcoat 2 By the transition of transition face 2 3.3 between the outer wall of the transition of face 1, arc convex surface 3.1 and mandrel 1, by described transition face one 3.2 are designed as the arc surface that is inwardly recessed, and described transition face 2 3.3 is designed as into the cambered surface being inwardly recessed.
As shown in Fig. 2 in order that the deformation in the outer end type face of rubber layer 3 and the radial compression of node deform consistent, reduction Close to the rubber fold and cracking of overcoat 2 and mandrel 1, by the outer end quasi spline of rubber layer 3 into outwardly arc convex surface 3.1, arc convex surface ecto-entad moves closer to the inwall of overcoat 2, during rubber layer 3 is pressed against both ends deformation, rubber layer Arc convex surface 3.1 is bloated to the direction of the inwall of overcoat 2, and arc convex surface 3.1 is gradually filled up to the space between the inwall of overcoat 2, Arc convex surface 3.1 gradually reclines with the increase of load with the inwall of overcoat 2, because arc convex surface 3.1 begins just in deformation process Bulging shape is remained out, will not be formed to beat in arc convex surface 3.1 and torn open, process of the outer end type face in the reciprocal radial compression of node In, fold will not be formed, the fatigue behaviour in outer end type face is more preferably.And in load bearing process, rubber is outside by arc convex surface 3.1 The inwall direction bulging of set 2, rubber can be effectively reduced from close to the bulging of the position of overcoat 2 and mandrel 1, outer end type face is back and forth becoming In shape, it is not easy to gauffer cracking and extruding cracking occurring close to the position of overcoat 2 and mandrel 1, drawing pull bar can be effectively improved The anti-fatigue performance of node, fatigue life of the drawing pull bar node under big load operating mode are longer.
Specifically, the radial direction pre-extrusion contracting amount H according to described rubber layer 3 between mandrel 1 and overcoat 2, carrys out design transition Arc radius R, H/4≤R≤H/2 in face 1, the maximum spacing for making transition face 1 and the inwall of overcoat 2 is H/2 ~ 2R.By In the arc radius R of transition face 1, when determining that arc convex surface 3.2 contacts with outer casing inner wall, the rubber of the generation of rubber layer 3 Radial-deformation, in the arc radius in design transition face 1, i.e., the initial stiffness and primary stress of node are taken into account, passed through Cross repeated tests, draw in the range of H/4≤R≤H/2, when drawing pull bar node does not carry, transition face 1 with The maximum spacing of the inwall of overcoat 2 is arc convex surface 3.1 and the minimum spacing of the inwall of overcoat 2 is H/2 ~ 2R, suffered by arc convex surface 3.1 Primary stress it is minimum, the deformation characteristic of arc convex surface 3.1 can be effectively improved, extend its fatigue life.
Due to the arc radius R of transition face 1, when determining that arc convex surface 3.2 contacts with outer casing inner wall, rubber layer 3 The rubber radial-deformation of generation, therefore in the range of H/4≤R≤H/2, the arc radius R of transition face 1 is adjusted, can The regulation of drawing pull bar node initial stiffness is realized, makes the initial stiffness of drawing pull bar node adaptation different bearer operating mode will Ask.
Specifically, the outer end of described arc convex surface 3.1 vertically is designed in the inner side of the end face of overcoat 2, and circular arc is convex The axial distance B of the outer end of face 3.1 vertically and the end face of overcoat 2 is no more than 2mm.Ensure that, in big load, arc convex surface 3.1 is complete The inwall with overcoat 2 is bonded entirely, and the bulging deformation of rubber layer 3 is carried out completely from arc convex surface 3.1 to the direction of the inwall of overcoat 2, Arc convex surface 3.1 is filled up to the space of the inwall of overcoat 2, the rubber bulging close to overcoat 2 and the position of mandrel 1 is avoided, is carrying greatly Lotus is back and forth in loading, and gauffer cracking and extruding cracking will not also occur for the rubber close to overcoat 2 and the position of mandrel 1, node Fatigue life under big load is effectively extended.
Specifically, the arc radius of described arc convex surface 3.1 is R1, width of the arc convex surface 3.1 along mandrel axial direction is A, A≤R1≤2A, R1 and A value is designed, adjust the non-linear rigidity of drawing pull bar section.As shown in figure 4, in drawing pull bar node After carrying, arc convex surface 3.1 contacts with the inwall of overcoat 2, the variation rigidity flex point S1 as in load bearing process, arc convex surface 3.1 Arc radius R1 and width A vertically, during determining load increase, arc convex surface 3.1 and overcoat 2 under different bearer The contact area of inwall, that is, the stiffness curve of variation rigidity flex point S1 rear haulage rod nodes is determined, therefore adjust R1's and A Value, can adjust the non-linear rigidity of drawing pull bar node, be obtained by repeated multiple times experiment in the range of A≤R1≤2A R1 value is adjusted, different bearer operating mode can be met, the non-linear rigidity requirement to drawing pull bar node.
Regulation described the arc radius R of transition face 1 and the arc radius R1 of arc convex surface 3.1, lead so as to adjust Draw the variation rigidity flex point of a bar node.Due to the arc radius R of transition face 1, arc convex surface 3.2 and outer casing inner wall are determined During contact, the rubber radial-deformation of the generation of rubber layer 3, and the arc radius R1 of arc convex surface 3.1, determine load increase During, arc convex surface 3.1 and the contact area of the inwall of overcoat 2 under different bearer, so the circular arc of regulation transition face 1 Radius R can adjust the position that variation rigidity flex point occurs in load bearing process, and variation rigidity can be adjusted by adjusting arc radius R1 The rigidity value of flex point, therefore the arc radius R of regulation transition face 1 and the arc radius R1 of arc convex surface 3.1 are drawn, can be real Now to the regulation of traction position bar node variation rigidity flex point.
The present invention also protects a kind of drawing pull bar node, including mandrel 1, overcoat 2 and vulcanization to be bonded in mandrel 1 and overcoat 2 Between rubber layer 3, it is characterised in that the outer end type face of rubber layer 3 is outwardly arc convex surface 3.1, arc convex surface 3.1 Ecto-entad moves closer to the inwall of overcoat 2, and passes through transition face 1 between described arc convex surface 3.1 and the inwall of overcoat 2 By the transition of transition face 2 3.3 between the outer wall of transition, arc convex surface 3.1 and mandrel 1, described transition face 1 be along to Interior recessed arc surface, described transition face 2 3.3 are the cambered surface being inwardly recessed.
As shown in Fig. 2 in order that the deformation in the outer end type face of rubber layer 3 and the radial compression of node deform consistent, reduction Close to the rubber fold and cracking of overcoat 2 and mandrel 1, by the outer end quasi spline of rubber layer 3 into outwardly arc convex surface 3.1, arc convex surface ecto-entad moves closer to the inwall of overcoat 2, during rubber layer 3 is pressed against both ends deformation, rubber layer Arc convex surface 3.1 is bloated to the direction of the inwall of overcoat 2, and arc convex surface 3.1 is gradually filled up to the space between the inwall of overcoat 2, Arc convex surface 3.1 gradually reclines with the increase of load with the inwall of overcoat 2, because arc convex surface 3.1 begins just in deformation process Bulging shape is remained out, will not be formed to beat in arc convex surface 3.1 and torn open, process of the outer end type face in the reciprocal radial compression of node In, fold will not be formed, the fatigue behaviour in outer end type face is more preferably.And in load bearing process, rubber is outside by arc convex surface 3.1 The inwall direction bulging of set 2, rubber can be effectively reduced from close to the bulging of the position of overcoat 2 and mandrel 1, outer end type face is back and forth becoming In shape, it is not easy to gauffer cracking and extruding cracking occurring close to the position of overcoat 2 and mandrel 1, drawing pull bar can be effectively improved The anti-fatigue performance of node, fatigue life of the drawing pull bar node under big load operating mode are longer.
Specifically, radial direction pre-extrusion contracting amount H of the described rubber layer 3 between mandrel 1 and overcoat 2, the circle of transition face 1 Arc radius R, H/4≤R≤H/2, the maximum spacing of transition face 1 and the inwall of overcoat 2 is H/2 ~ 2R.Due to transition face 1 Arc radius R, when determining that arc convex surface 3.2 contacts with outer casing inner wall, rubber layer 3 occur rubber radial-deformation, During the arc radius in design transition face 1, i.e., the initial stiffness and primary stress of node are taken into account, by repeated multiple times examination Test, draw in the range of H/4≤R≤H/2, when drawing pull bar node does not carry, transition face 1 and the inwall of overcoat 2 Maximum spacing is arc convex surface 3.1 and the minimum spacing of the inwall of overcoat 2 is H/2 ~ 2R, the primary stress suffered by arc convex surface 3.1 Minimum, the deformation characteristic of arc convex surface 3.1 can be effectively improved, extend its fatigue life.
Specifically, the outer end of described arc convex surface 3.1 vertically is located at the inner side of the end face of overcoat 2, and arc convex surface 3.1 The axial distance B of outer end vertically and the end face of overcoat 2 is no more than 2mm.Ensure in big load, arc convex surface 3.1 completely with The inwall fitting of overcoat 2, the bulging deformation of rubber layer 3 is carried out completely from arc convex surface 3.1 to the direction of the inwall of overcoat 2, by circle The space of arc convex surface 3.1 to the inwall of overcoat 2 is filled up, and avoids the rubber bulging close to overcoat 2 and the position of mandrel 1, past in big load It is added with load, gauffer cracking and extruding cracking will not also occur for the rubber close to overcoat 2 and the position of mandrel 1, and node is carrying greatly Fatigue life under lotus is effectively extended.
Specifically, the arc radius of described arc convex surface 3.1 is R1, width of the arc convex surface 3.1 along mandrel axial direction is A, A≤R1≤2A.As shown in figure 4, after the carrying of drawing pull bar node, arc convex surface 3.1 contacts with the inwall of overcoat 2, as holds Variation rigidity flex point S1 during load, the arc radius R1 of arc convex surface 3.1 and width A vertically, determine that load increases During, arc convex surface 3.1 and the contact area of the inwall of overcoat 2, that is, lead after determining variation rigidity flex point S1 under different bearer The stiffness curve for the bar node that is pulled, therefore R1 and A value is adjusted, the non-linear rigidity of drawing pull bar node can be adjusted, is passed through Repeated multiple times experiment obtains adjusting R1 value in the range of A≤R1≤2A, can meet different bearer operating mode, traction is drawn The non-linear rigidity requirement of bar node.Due to the arc radius R of transition face 1, arc convex surface 3.2 and outer casing inner wall are determined During contact, the rubber radial-deformation of the generation of rubber layer 3, and the arc radius R1 of arc convex surface 3.1, determine load increase During, arc convex surface 3.1 and the contact area of the inwall of overcoat 2 under different bearer, so the circular arc of regulation transition face 1 Radius R can adjust the position that variation rigidity flex point occurs in load bearing process, and variation rigidity can be adjusted by adjusting arc convex surface R1 The rigidity value of flex point, therefore the arc radius R of regulation transition face 1 and the arc radius R1 of arc convex surface 3.1 are drawn, can be real Now to the regulation of traction position bar node variation rigidity flex point.
The advantages of rubber method for designing profile and drawing pull bar node of above-described drawing pull bar node, is:
1st, in load bearing process, arc convex surface is gradually abutted on outer casing inner wall, rubber from the inside to the outside with the radial compression of node Glue-type face will not be beaten and tear open, reduce fold and cracking of the rubber-type face in load bearing process.
2nd, rubber layer and overcoat can effectively be reduced and the rubber of mandrel junction bloats, outer end type face in reciprocal transformation, It is not easy gauffer cracking and extruding cracking occurring close to the position of overcoat and mandrel, the tired of drawing pull bar node can be effectively improved The labor life-span.
3rd, the arc radius of transition face one is adjusted according to the initial pre-extrusion amount of rubber layer, so as to realize drawing pull bar section The regulation of point initial stiffness, makes the initial stiffness requirement of drawing pull bar node adaptation different bearer operating mode.
4th, the maximum spacing of transition face one and outer casing inner wall is adjusted, so that the beginning initial stress in rubber layer outer end type face is most It is small, improve deformation characteristic of the rubber layer outer end type face in load bearing process.
5th, by design transition face one and circular arc convex arc, the variation rigidity flex point of drawing pull bar section load bearing process is realized, is met The non-linear rigidity demand of drawing pull bar node under a large load.
Completely description is carried out to the technical scheme of embodiments of the invention, it is necessary to which explanation is described above in association with accompanying drawing Embodiment be only the present invention part of the embodiment.Based on the embodiment in the present invention, those of ordinary skill in the art exist The every other embodiment obtained on the premise of not making creative work, belongs to the scope of protection of the invention.

Claims (10)

1. the rubber method for designing profile of drawing pull bar node, including mandrel(1), overcoat(2)Mandrel is bonded in vulcanization(1)With Overcoat(2)Between rubber layer(3), it is characterised in that by rubber layer(3)Outer end quasi spline it is convex for outwardly circular arc Face(3.1), described arc convex surface(3.1)Ecto-entad moves closer to overcoat(2)Inwall, and arc convex surface(3.1)With overcoat (2)Inwall between pass through transition face one(3.2)Transition, arc convex surface(3.1)With mandrel(1)Outer wall between pass through transition face Two(3.3)Transition, by described transition face one(3.2)The arc surface being inwardly recessed is designed as, by described transition face two(3.3) It is designed as the cambered surface being inwardly recessed.
2. the rubber method for designing profile of drawing pull bar node according to claim 1, it is characterised in that according to described Rubber layer(3)In mandrel(1)With overcoat(2)Between radial direction pre-extrusion contracting amount H, come design transition face one(3.2)Arc radius R, H/4≤R≤H/2, make transition face one(3.2)With overcoat(2)The maximum spacing of inwall is H/2 ~ 2R.
3. the rubber method for designing profile of drawing pull bar node according to claim 2, it is characterised in that regulation transition face One(32.1)Arc radius, so as to adjust the initial stiffness of drawing pull bar node.
4. the rubber method for designing profile of drawing pull bar node according to claim 2, it is characterised in that by described circle Arc convex surface(3.1)Design in overcoat outer end vertically(2)The inner side of end face, and arc convex surface(3.1)Outer end vertically with Overcoat(2)The axial distance of end face is no more than 2mm.
5. the rubber method for designing profile of drawing pull bar node according to claim 2, it is characterised in that described circular arc Convex surface(3.1)Arc radius be R1, arc convex surface(3.1)Width along mandrel axial direction is A, A≤R1≤2A, designs R1 and A Value, adjust drawing pull bar section non-linear rigidity.
6. the rubber method for designing profile of drawing pull bar node according to claim 5, it is characterised in that described in adjusting Transition face one(3.2)Arc radius R and arc convex surface(3.1)Arc radius R1, so as to adjust traction position bar node change Rigidity flex point.
7. drawing pull bar node, including mandrel(1), overcoat(2)Mandrel is bonded in vulcanization(1)With overcoat(2)Between rubber Layer(3), it is characterised in that rubber layer(3)Outer end type face be outwardly arc convex surface(3.1), arc convex surface(3.1)By Overcoat is moved closer to outside to inside(2)Inwall, and described arc convex surface(3.1)With overcoat(2)Inwall between pass through transition face One(3.2)Transition, arc convex surface(3.1)With mandrel(1)Outer wall between pass through transition face two(3.3)Transition, described transition Face one(3.2)The arc surface being inwardly recessed for edge, described transition face two(3.3)For the cambered surface being inwardly recessed.
8. drawing pull bar node according to claim 7, it is characterised in that described rubber layer(3)In mandrel(1)With it is outer Set(2)Between radial direction pre-extrusion contracting amount H, transition face one(3.2)Arc radius R, H/4≤R≤H/2, transition face one(3.2)With Overcoat(2)The maximum spacing of inwall is H/2 ~ 2R.
9. according to the drawing pull bar node that claim 7 or 8 is brown, it is characterised in that described arc convex surface(3.1)Vertically Outer end be located at overcoat(2)The inner side of end face, and arc convex surface(3.1)Outer end vertically and overcoat(2)End face axially away from From no more than 2mm.
10. drawing pull bar node according to claim 7, described arc convex surface(3.1)Arc radius be R1, circular arc Convex surface(3.1)Width along mandrel axial direction is A, A≤R1≤2A.
CN201710617061.6A 2017-07-26 2017-07-26 Rubber profile design method of traction pull rod node and traction pull rod node Active CN107364463B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710617061.6A CN107364463B (en) 2017-07-26 2017-07-26 Rubber profile design method of traction pull rod node and traction pull rod node

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710617061.6A CN107364463B (en) 2017-07-26 2017-07-26 Rubber profile design method of traction pull rod node and traction pull rod node

Publications (2)

Publication Number Publication Date
CN107364463A true CN107364463A (en) 2017-11-21
CN107364463B CN107364463B (en) 2023-05-26

Family

ID=60307016

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710617061.6A Active CN107364463B (en) 2017-07-26 2017-07-26 Rubber profile design method of traction pull rod node and traction pull rod node

Country Status (1)

Country Link
CN (1) CN107364463B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108909755A (en) * 2018-07-23 2018-11-30 株洲时代新材料科技股份有限公司 A kind of double spherical surfaces traction rubber arthrosis and preparation method thereof
CN110329300A (en) * 2019-07-25 2019-10-15 株洲时代新材料科技股份有限公司 A kind of axlebox rod rubber arthrosis and improve anti-fatigue performance method
CN112026827A (en) * 2020-08-18 2020-12-04 株洲时代瑞唯减振装备有限公司 Pull rod node design method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274268A (en) * 1997-03-31 1998-10-13 Tokai Rubber Ind Ltd Vibration isolation bush and bush assembly
US20040084601A1 (en) * 2002-10-30 2004-05-06 Tokai Rubber Industries, Ltd. Suspension rubber bushing of vertical mount type
DE102005029614A1 (en) * 2005-06-23 2007-01-04 Zf Friedrichshafen Ag Bushing bearing with radial and / or axial stop and method for generating an axial stop in a bushing bearing
JP2007245890A (en) * 2006-03-15 2007-09-27 Tokai Rubber Ind Ltd Suspension bushing and double joint type suspension mechanism using the same
CN201566641U (en) * 2009-11-11 2010-09-01 青岛四方车辆研究所有限公司 Central rubber sleeve of lower draw bar for motor train unit bogie
CN102398619A (en) * 2010-09-15 2012-04-04 溧阳市振大铁路设备有限公司 Traction node for train bogie
CN106032832A (en) * 2015-03-10 2016-10-19 株洲时代新材料科技股份有限公司 A spherical hinge rubber elastic element
CN106314469A (en) * 2015-07-03 2017-01-11 株洲时代新材料科技股份有限公司 Method for improving overall performance of bogie of rail vehicle and suspension vibration absorption system
CN206984005U (en) * 2017-07-26 2018-02-09 株洲时代新材料科技股份有限公司 Drawing pull bar node

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10274268A (en) * 1997-03-31 1998-10-13 Tokai Rubber Ind Ltd Vibration isolation bush and bush assembly
US20040084601A1 (en) * 2002-10-30 2004-05-06 Tokai Rubber Industries, Ltd. Suspension rubber bushing of vertical mount type
DE102005029614A1 (en) * 2005-06-23 2007-01-04 Zf Friedrichshafen Ag Bushing bearing with radial and / or axial stop and method for generating an axial stop in a bushing bearing
JP2007245890A (en) * 2006-03-15 2007-09-27 Tokai Rubber Ind Ltd Suspension bushing and double joint type suspension mechanism using the same
CN201566641U (en) * 2009-11-11 2010-09-01 青岛四方车辆研究所有限公司 Central rubber sleeve of lower draw bar for motor train unit bogie
CN102398619A (en) * 2010-09-15 2012-04-04 溧阳市振大铁路设备有限公司 Traction node for train bogie
CN106032832A (en) * 2015-03-10 2016-10-19 株洲时代新材料科技股份有限公司 A spherical hinge rubber elastic element
CN106314469A (en) * 2015-07-03 2017-01-11 株洲时代新材料科技股份有限公司 Method for improving overall performance of bogie of rail vehicle and suspension vibration absorption system
CN206984005U (en) * 2017-07-26 2018-02-09 株洲时代新材料科技股份有限公司 Drawing pull bar node

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108909755A (en) * 2018-07-23 2018-11-30 株洲时代新材料科技股份有限公司 A kind of double spherical surfaces traction rubber arthrosis and preparation method thereof
CN110329300A (en) * 2019-07-25 2019-10-15 株洲时代新材料科技股份有限公司 A kind of axlebox rod rubber arthrosis and improve anti-fatigue performance method
CN112026827A (en) * 2020-08-18 2020-12-04 株洲时代瑞唯减振装备有限公司 Pull rod node design method
CN112026827B (en) * 2020-08-18 2021-11-26 株洲时代瑞唯减振装备有限公司 Pull rod node design method

Also Published As

Publication number Publication date
CN107364463B (en) 2023-05-26

Similar Documents

Publication Publication Date Title
CN107364463A (en) The rubber method for designing profile and drawing pull bar node of drawing pull bar node
CN100458209C (en) Axial precompression method for combined ball hinged rubber elastic element and product obtained thereby
CN108909755B (en) Double-spherical traction rubber joint and manufacturing method thereof
CN107161169A (en) Traction ball pivot and its stiffness design method used for rail vehicle
CN106032831A (en) Conical spring stiffness changing and wrinkle and cracking prevention method, and product
CN110588695A (en) Quasi-zero rigidity secondary suspension system of railway vehicle
CN206984005U (en) Drawing pull bar node
CN108266473A (en) A kind of traction flexural pivot nonlinear variable-stiffness method and I-shaped bushing
CN110285173A (en) A kind of method and structure of volute spring stiffness tuning
CN104675896A (en) Lower end surface of tapered spring rubber body, and method and product for preventing folds and cracks
CN105799722A (en) Secondary quasi-zero dynamic stiffness suspension device for low-floor tramcar and bogie
CN105774511B (en) A kind of engine mounting of rubber bushing formula
CN106949181A (en) A kind of volute spring and oscillation damping method of use horn mouth formula dividing plate
CN107776602A (en) By the method and structure that adjust rubber layer parameter change axle box guidance joint rigidity
CN101108581A (en) Thrust rod for over loading vehicle suspension frame
CN206106852U (en) Swing arm bush and swing arm liner assembly
CN207292022U (en) Axle box link
CN110217255A (en) Rod node component and its design method
CN108035999A (en) One kind traction flexural pivot nonlinear variable-stiffness method of adjustment and flexural pivot
CN207005167U (en) Draw rubber bushing
CN203335695U (en) Damping torque reactor
CN107269749A (en) Draw rubber bushing and its multiple rigidity-changing method
CN110285172A (en) It prevents volute spring rubber-type face fold and realizes rigidity-changing method and volute spring
CN206984004U (en) Traction ball pivot used for rail vehicle
CN112026827B (en) Pull rod node design method

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant