CN107357783A - A kind of English translation mass analysis method of translator of Chinese into English - Google Patents

A kind of English translation mass analysis method of translator of Chinese into English Download PDF

Info

Publication number
CN107357783A
CN107357783A CN201710535667.5A CN201710535667A CN107357783A CN 107357783 A CN107357783 A CN 107357783A CN 201710535667 A CN201710535667 A CN 201710535667A CN 107357783 A CN107357783 A CN 107357783A
Authority
CN
China
Prior art keywords
translation
english translation
english
word
standard
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710535667.5A
Other languages
Chinese (zh)
Other versions
CN107357783B (en
Inventor
黄桂敏
吴闯
黄思睿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Guilin University of Electronic Technology
Original Assignee
Guilin University of Electronic Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Guilin University of Electronic Technology filed Critical Guilin University of Electronic Technology
Priority to CN201710535667.5A priority Critical patent/CN107357783B/en
Publication of CN107357783A publication Critical patent/CN107357783A/en
Application granted granted Critical
Publication of CN107357783B publication Critical patent/CN107357783B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/205Parsing
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F40/00Handling natural language data
    • G06F40/20Natural language analysis
    • G06F40/279Recognition of textual entities
    • G06F40/289Phrasal analysis, e.g. finite state techniques or chunking

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Computational Linguistics (AREA)
  • General Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Machine Translation (AREA)

Abstract

本发明提供一种中文翻译成英文的英语译文质量分析方法,该方法是一个由顺序连接的翻译英语译文预处理模块、翻译英语译文忠实度分析模块、翻译英语译文语义相似度分析模块、翻译英语译文质量分析结果生成模块组成的分析模型。一篇翻译英语译文通过该分析模型处理后,最后能够得到这篇翻译英语译文的质量分析结果。本发明的方法解决了中文翻译成英文的英语译文质量自动分析问题,其分析结果比传统的中文翻译成英文的英语译文质量分析方法的分析结果更好。

The invention provides a method for analyzing the quality of an English translation from Chinese to English. The method is a translation English translation preprocessing module, a translation English translation fidelity analysis module, a translation English translation semantic similarity analysis module, and a translation English translation. An analysis model composed of translation quality analysis result generation modules. After an English translation is processed by the analysis model, the quality analysis results of the English translation can be obtained at last. The method of the invention solves the problem of automatically analyzing the quality of the English translation translated from Chinese into English, and its analysis result is better than that of the traditional method for analyzing the quality of the English translation translated from Chinese into English.

Description

一种中文翻译成英文的英语译文质量分析方法A method for quality analysis of English translations from Chinese to English

技术领域technical field

本发明涉及统计自然语言处理技术、中文翻译成英文的译文中的单词语法分析技术、中文翻译成英文中的内容分析技术、具体是一种中文翻译成英文的英语译文质量分析方法。The invention relates to statistical natural language processing technology, word grammar analysis technology in translation from Chinese to English, content analysis technology in translation from Chinese to English, and specifically a quality analysis method for English translation from Chinese to English.

背景技术Background technique

传统的中文翻译成英文的英语译文质量分析方法主要有完全匹配方法、编辑距离方法、基于N元语法方法。完全匹配方法对中文翻译成英文的英语译文要求过严,仅当翻译英语译文的内容与标准英语译文的内容完全相同时,才判定翻译的英语译文正确,这种方法完全忽略了英语单词的一词多形问题。编辑距离方法对中文翻译成英文的英语译文质量分析方法是:检查翻译英语译文变换到标准英语译文过程中英语单词的插入、删除、替换次数,然后根据这些次数来分析翻译英语译文的翻译质量,然而这种方法无法检查出翻译英语译文与标准英语译文之间的单词是否为同义词。N元语法方法是对翻译英语译文中出现的N元组与标准英语译文中出现的N元组进行匹配,根据匹配成功的个数来分析英语译文的翻译质量,然而这种方法无法检查出翻译英语译文与标准英语译文之间的语义相似度。本发明为了解决上述问题,提供了一种中文翻译成英文的英语译文质量分析方法。Traditional Chinese-to-English English translation quality analysis methods mainly include exact matching method, edit distance method, and N-gram-based method. The exact match method has too strict requirements on the English translation from Chinese to English. Only when the content of the translated English translation is exactly the same as the content of the standard English translation, the translated English translation is judged to be correct. This method completely ignores a part of the English word. word polymorphism problem. The edit distance method is to analyze the quality of the English translation from Chinese to English: check the number of insertions, deletions, and replacements of English words in the process of converting the English translation into a standard English translation, and then analyze the translation quality of the English translation based on these times. However, this method cannot check whether words between the translated English translation and the standard English translation are synonyms. The N-gram method is to match the N-tuples that appear in the translated English translation with the N-tuples that appear in the standard English translation, and analyze the translation quality of the English translation according to the number of successful matches. However, this method cannot check the translation The semantic similarity between the English translation and the standard English translation. In order to solve the above problems, the present invention provides a method for analyzing the quality of English translations from Chinese to English.

发明内容Contents of the invention

本发明的中文翻译成英语的英语译文质量分析方法的总体处理流程如图1所示,其中包括翻译英语译文预处理模块、翻译英语译文忠实度分析模块、翻译英语译文语义相似度分析模块、翻译英语译文质量分析结果生成模块。The overall processing flow of the English translation quality analysis method of Chinese translation into English of the present invention is as shown in Figure 1, wherein includes translation English translation preprocessing module, translation English translation fidelity analysis module, translation English translation semantic similarity analysis module, translation English translation quality analysis result generation module.

其中的翻译英语译文预处理模块的处理流程是:第一,输入翻译英语译文和标准英语译文,对翻译英语译文和标准英语译文分别进行分词、单词小写化、去除停用词;第二,对分词、单词小写化、去除停用词的翻译英语译文和标准英语译文进行词性标注、词性消歧、短语切块;第三,输出上述两步处理的翻译英语译文和标准英语译文的预处理结果。The processing flow of the translated English translation preprocessing module is as follows: first, input the translated English translation and the standard English translation, respectively perform word segmentation, lowercase words, and remove stop words on the translated English translation and the standard English translation; Part-of-speech tagging, part-of-speech disambiguation, and phrase segmentation of the translated English translation and standard English translation of word segmentation, word lowercase, and stop word removal; third, output the preprocessing results of the translated English translation and standard English translation of the above two-step processing .

其中的翻译英语译文忠实度分析模块的处理流程是:第一,输入翻译英语译文、标准英语译文、翻译英语译文预处理结果、标准英语译文预处理结果,编号翻译英语译文、标准英语译文、翻译英语译文预处理结果、标准英语译文预处理结果中的单词;第二,对翻译英语译文中的单词与标准英语译文中的单词进行精确匹配并记录匹配成功的单词及其编号;第三,对翻译英语译文和标准英语译文精确匹配剩余的单词进行词干匹配并记录匹配成功的单词及其编号;第四,对翻译英语译文和标准英语译文词干匹配剩余的单词进行同义词匹配并记录匹配成功的单词及其编号;第五,利用训练翻译英语译文集和标准英语译文集生成的单词匹配率准确率权重和翻译英语译文中匹配成功的单词总数计算并输出翻译英语译文的忠实度。The processing flow of the translation English translation loyalty analysis module is as follows: first, input translation English translation, standard English translation, translation English translation preprocessing result, standard English translation preprocessing result, number translation English translation, standard English translation, translation Words in the preprocessing results of the English translation and the preprocessing results of the standard English translation; second, perform an exact match between the words in the translated English translation and the words in the standard English translation, and record the words and their numbers that match successfully; The translated English translation and the standard English translation exactly match the remaining words for stem matching and record the words and numbers that match successfully; fourth, perform synonym matching for the remaining words between the translated English translation and the standard English translation for stem matching and record the matching success Fifth, use the word matching rate accuracy weights generated by the training translation English translation set and the standard English translation set and the total number of successfully matched words in the translated English translation to calculate and output the fidelity of the translated English translation.

其中的翻译英语译文语义相似度分析模块的处理流程是:第一,输入翻译英语译文、标准英语译文词性消歧结果;第二,根据词性消歧结果查找并记录单词在英语语义词典中对应的节点编号;第三,在英语语义词典中,从翻译英语译文单词对应的节点编号查找到标准英文单词对应的节点编号,记录下查找路径上每个单词对应的节点编号及节点之间有向边的概率;第四,根据查找路径上每个单词对应的节点编号和节点之间有向边的概率,生成翻译英语译文中单词概率分布二维向量,并迭代计算出标准英语译文中单词概率分布二维向量;第五,合并翻译英语译文中单词概率分布二维向量得到翻译英语译文概率分布二维向量,并从翻译英语译文概率分布二维向量中提取单词概率值,生成翻译英语译文概率分布一维向量;第六,合并标准英语译文单词概率分布二维向量得到标准英语译文概率分布二维向量,并从标准英语译文概率分布二维向量中提取单词概率值,生成标准英语译文概率分布一维向量;第七,根据翻译英语译文概率分布一维向量和标准英语译文概率分布一维向量计算并输出翻译英语译文语义相似度。The processing flow of the translation English translation semantic similarity analysis module is as follows: first, input the translated English translation and standard English translation part-of-speech disambiguation results; second, search and record the corresponding words in the English semantic dictionary according to the part-of-speech disambiguation results Node number; third, in the English semantic dictionary, find the node number corresponding to the standard English word from the node number corresponding to the translated English word, and record the node number corresponding to each word on the search path and the directed edges between the nodes Fourth, according to the node number corresponding to each word on the search path and the probability of directed edges between nodes, generate a two-dimensional vector of word probability distribution in the translated English translation, and iteratively calculate the word probability distribution in the standard English translation Two-dimensional vector; Fifth, merge the two-dimensional vector of word probability distribution in the translated English translation to obtain the two-dimensional vector of the probability distribution of the translated English translation, and extract the word probability value from the two-dimensional vector of the probability distribution of the translated English translation to generate the probability distribution of the translated English translation One-dimensional vector; sixth, combine the standard English translation word probability distribution two-dimensional vector to obtain the standard English translation probability distribution two-dimensional vector, and extract the word probability value from the standard English translation probability distribution two-dimensional vector to generate the standard English translation probability distribution one Seventh, calculate and output the semantic similarity of the translated English translation according to the one-dimensional vector of the probability distribution of the translated English translation and the one-dimensional vector of the probability distribution of the standard English translation.

其中的翻译英语译文质量分析结果生成模块的处理流程是:第一,输入翻译英语译文忠实度分析模块的输出结果、翻译英语译文语义相似度分析模块的输出结果;第二,根据翻译英语译文忠实度分析模块的输出结果、翻译英语译文语义相似度分析模块的输出结果生成翻译英语译文的质量分数和评语。The processing flow of the translation English translation quality analysis result generation module is as follows: first, input the output results of the translation English translation fidelity analysis module, and the output results of the translation English translation semantic similarity analysis module; second, according to the translation English translation faithfulness The output result of the degree analysis module and the output result of the semantic similarity analysis module of the translated English translation are used to generate the quality score and comments of the translated English translation.

本发明的定义如下:The definition of the invention is as follows:

1、单词词性标注集1. Word part-of-speech tagging set

本发明采用美国宾州大学宾州树库标注集,按照该标注集的规则对翻译英语译文和标准英语译文进行单词词性标注。The present invention adopts the Penn State Treebank tagging set of the University of Pennsylvania in the United States, and carries out word part-of-speech tagging on the translated English translation and the standard English translation according to the rules of the tagging set.

2、单词词性标注结构2. Word part-of-speech tagging structure

单词词性标注是对翻译英语译文和标准英语译文中的单词进行词性标注处理,下面是词性标注后的格式:Word part-of-speech tagging is the part-of-speech tagging process for words in the translated English translation and the standard English translation. The following is the format after the part-of-speech tagging:

单词1[词性1#词性2#词性3……]单词2[词性1#词性2#词性3……]……Word 1 [Part of Speech 1 #Part of Speech 2 #Part of Speech 3 ...] Word 2 [Part of Speech 1 #Part of Speech 2 #Part of Speech 3 ...]...

单词n[词性1#词性2#词性3……]Word n [Part of Speech 1 #Part of Speech 2 #Part of Speech 3 ...]

3、短语切块结构3. Phrase block structure

短语切块是对翻译英语译文和标准英语译文中的名词短语和动词短语进行切分,下面是短语切块的格式:Phrase segmentation is to segment the noun phrases and verb phrases in the translated English translation and the standard English translation. The following is the format of the phrase segmentation:

单词1/短语切块1,单词2/短语切块2,……单词n/短语切块n word 1 /phrase cut 1 , word 2 /phrase cut 2 , ... word n /phrase cut n

4、词性消歧结构4. Part-of-speech disambiguation structure

词性消歧是指,将翻译英语译文和标准英语译文的单词词性标注结果与英语词汇网络词典作对比,并从中去除标注错误的单词词性标注结果,下面是词性消歧后的格式:Part-of-speech disambiguation refers to comparing the part-of-speech tagging results of the translated English translation and the standard English translation with the English vocabulary online dictionary, and removing the incorrectly tagged word part-of-speech tagging results. The following is the format after the part-of-speech disambiguation:

单词1[词性1#词性2#词性3……]单词2[词性1#词性2#词性3……]……Word 1 [Part of Speech 1 #Part of Speech 2 #Part of Speech 3 ...] Word 2 [Part of Speech 1 #Part of Speech 2 #Part of Speech 3 ...]...

单词n[词性1#词性2#词性3……]Word n [Part of Speech 1 #Part of Speech 2 #Part of Speech 3 ...]

5、英语语义词典5. English Semantic Dictionary

英语语义词典是指按字母顺序组织词条信息,而且基于单词多个释义的语义词典,该词典包含了常见的名词、动词、形容词、副词和虚词五大部分,英语语义词典的格式如下:The English semantic dictionary refers to a semantic dictionary that organizes entry information in alphabetical order and is based on multiple interpretations of words. The dictionary includes five parts of common nouns, verbs, adjectives, adverbs, and function words. The format of the English semantic dictionary is as follows:

单词1[词性1][词频1][偏移量1][词典文件详细路径1][词义释义1][词义对应节点编号1][节点之间有向边概率1]Word 1 [part of speech 1 ] [word frequency 1 ] [offset 1 ] [dictionary file detailed path 1 ] [word meaning interpretation 1 ] [word meaning corresponding node number 1 ] [directed edge probability between nodes 1 ]

单词1[词性2][词频2][偏移量2][词典文件详细路径2][词义释义2][词义对应节点编号2][节点之间有向边概率2]Word 1 [part of speech 2 ] [word frequency 2 ] [offset 2 ] [dictionary file detailed path 2 ] [word meaning interpretation 2 ] [word meaning corresponding node number 2 ] [directed edge probability between nodes 2 ]

……...

单词1[词性n][词频n][偏移量n][词典文件详细路径n][词义释义n][词义对应节点编号n][节点之间有向边概率n]Word 1 [part of speech n ][word frequency n ][offset n ][detailed path of dictionary file n ][word meaning and definition n ][word meaning corresponding node number n ][directed edge probability n between nodes]

单词2[词性1][词频1][偏移量1][词典文件详细路径1][词义释义1][词义对应节点编号1][节点之间有向边概率1]Word 2 [part of speech 1 ] [word frequency 1 ] [offset 1 ] [dictionary file detailed path 1 ] [word meaning interpretation 1 ] [word meaning corresponding node number 1 ] [directed edge probability between nodes 1 ]

单词2[词性2][词频2][偏移量2][词典文件详细路径2][词义释义2][词义对应节点编号2][节点之间有向边概率2]Word 2 [part of speech 2 ] [word frequency 2 ] [offset 2 ] [dictionary file detailed path 2 ] [word meaning interpretation 2 ] [word meaning corresponding node number 2 ] [directed edge probability between nodes 2 ]

……...

单词2[词性n][词频n][偏移量n][词典文件详细路径n][词义释义n][词义对应节点编号n][节点之间有向边概率n]Word 2 [part of speech n ][word frequency n ][offset n ][detailed path of dictionary file n ][word meaning definition n ][word meaning corresponding node number n ][directed edge probability n between nodes]

单词n[词性1][词频1][偏移量1][词典文件详细路径1][词义释义1][词义对应节点编号1][节点之间有向边概率1]Word n [part of speech 1 ] [word frequency 1 ] [offset 1 ] [dictionary file detailed path 1 ] [word meaning interpretation 1 ] [word meaning corresponding node number 1 ] [directed edge probability between nodes 1 ]

单词n[词性2][词频2][偏移量2][词典文件详细路径2][词义释义2][词义对应节点编号2][节点之间有向边概率2]Word n [part of speech 2 ] [word frequency 2 ] [offset 2 ] [dictionary file detailed path 2 ] [word meaning interpretation 2 ] [word meaning corresponding node number 2 ] [directed edge probability between nodes 2 ]

……...

单词n[词性n][词频n][偏移量n][词典文件详细路径n][词义释义n][词义对应节点编号n][节点之间有向边概率n]Word n [part of speech n ] [word frequency n ] [offset n ] [dictionary file detailed path n ] [word meaning definition n ] [word meaning corresponding node number n ] [directed edge probability n between nodes]

6、单词匹配准确率计算公式6. Word matching accuracy calculation formula

单词匹配准确率是指翻译英语译文与标准英语译文之间单词匹配成功个数和翻译英语译文中单词总数的比值,它的计算公式如下:Word matching accuracy refers to the ratio of the number of words successfully matched between the translated English translation and the standard English translation to the total number of words in the translated English translation. Its calculation formula is as follows:

7、单词匹配召回率计算公式7. Word matching recall calculation formula

单词匹配召回率是指翻译英语译文与标准英语译文之间单词匹配成功个数和标准英语译文中单词总数的比值,它的计算公式如下:Word matching recall refers to the ratio of the number of successful word matches between the translated English translation and the standard English translation to the total number of words in the standard English translation. Its calculation formula is as follows:

8、调和平均值计算公式8. Calculation formula of harmonic mean

调和平均值是指计算公式(1)的单词匹配准确率与计算公式(2)的单词匹配召回率之间的平均值,它的计算公式如下:The harmonic mean refers to the average value between the word matching accuracy rate of calculation formula (1) and the word matching recall rate of calculation formula (2), and its calculation formula is as follows:

在计算公式(3)中,单词匹配成功率由计算公式(1)计算得出,单词匹配召回率由计算公式(2)计算得出,a是单词匹配准确率的权重,1-a是单词匹配召回率的权重。In the calculation formula (3), the word matching success rate is calculated by the calculation formula (1), the word matching recall rate is calculated by the calculation formula (2), a is the weight of the word matching accuracy rate, and 1-a is the word Weight for matching recall.

9、惩罚系数值计算公式9. Calculation formula of penalty coefficient value

惩罚系数值是减少调和平均值引起的翻译英语译文内容与标准英语译文内容之间误差的系数,它的计算公式如下:The penalty coefficient value is a coefficient to reduce the error between the content of the translated English translation and the content of the standard English translation caused by the harmonic mean, and its calculation formula is as follows:

在计算公式(4)中,短语数是指翻译英语译文中名词短语和动词短语的总数;b是惩罚系数值大小的调整参数;c是短语数与翻译英语译文中匹配成功的单词数比值大小的调整参数;b和c均由翻译英语译文忠实度分析模块计算得出。In the calculation formula (4), the number of phrases refers to the total number of noun phrases and verb phrases in the translated English translation; b is the adjustment parameter of the penalty coefficient value; c is the ratio of the number of phrases to the number of words that are successfully matched in the translated English translation The adjustment parameters of b and c are both calculated by the English translation fidelity analysis module.

10、翻译英语译文忠实度计算公式10. Calculation formula for English translation fidelity

翻译英语译文忠实度是指翻译英语译文的单词与标准英语译文的单词语义相似程度,它的计算公式如下:The English translation fidelity refers to the semantic similarity between the words in the translated English translation and the words in the standard English translation. Its calculation formula is as follows:

翻译英语译文忠实度=(1-惩罚系数值)×调和平均值 (5)English translation fidelity = (1- penalty coefficient value) × harmonic mean (5)

在计算公式(5)中,调和平均数值由计算公式(3)计算得出,惩罚系数值由计算公式(4)计算得出。In the calculation formula (5), the harmonic mean value is calculated by the calculation formula (3), and the penalty coefficient value is calculated by the calculation formula (4).

11、概率分布向量计算公式11. Probability distribution vector calculation formula

概率分布向量是指在英语语义词典中,从翻译英语译文单词对应的节点查找标准英文单词对应的节点,查找路径上每个单词对应的节点编号及节点之间有向边的概率构成的向量,它的计算公式如下:The probability distribution vector refers to the English semantic dictionary, from the node corresponding to the translated English translation word to find the node corresponding to the standard English word, the node number corresponding to each word on the search path and the vector formed by the probability of the directed edge between the nodes, Its calculation formula is as follows:

概率分布向量t=(1-a)×邻接矩阵×概率分布向量t-1+a×概率分布向量0 (6)Probability distribution vector t = (1-a) × adjacency matrix × probability distribution vector t-1 + a × probability distribution vector 0 (6)

在计算公式(6)中,t表示查找的次数,a表示第t次查找路径上有向边的概率,邻接矩阵表示英语语义词典中的单词邻接矩阵,概率分布向量0表示查找起始位置节点的概率分布向量,概率分布向量t-1表示第t-1次查找节点的概率分布向量,概率分布向量t表示第t次查找节点的概率分布向量。In the calculation formula (6), t represents the number of searches, a represents the probability of directed edges on the t-th search path, the adjacency matrix represents the word adjacency matrix in the English semantic dictionary, and the probability distribution vector 0 represents the search start position node The probability distribution vector of , the probability distribution vector t-1 represents the probability distribution vector of the node searched for the t-1th time, and the probability distribution vector t represents the probability distribution vector of the node searched for the t-th time.

12、翻译英语译文语义相似度计算公式12. The formula for calculating the semantic similarity of the translated English translation

翻译英语译文语义相似度是指翻译英语译文内容与标准英语译文内容之间语义相似程度,它的计算公式如下:The semantic similarity of the translated English translation refers to the semantic similarity between the content of the translated English translation and the content of the standard English translation. Its calculation formula is as follows:

在计算公式(7)中,翻译英语译文概率分布一维向量是指在英语语义词典中,从翻译英语译文单词对应的节点编号查找标准英文单词对应的节点编号,查找路径上每个单词对应的节点之间有向边的概率构成的一维向量;标准英语译文概率分布一维向量是指在英语语义词典中,从翻译英语译文单词对应的节点编号查找标准英文单词对应的节点编号,查找路径结束位置节点连接的有向边的概率构成的一维向量;||翻译英语译文概率分布一维向量||是指翻译英语译文概率分布一维向量的模;||标准英语译文概率分布一维向量||是指标准英语译文概率分布一维向量的模。In the calculation formula (7), the one-dimensional vector of the probability distribution of the English translation means that in the English semantic dictionary, the node number corresponding to the standard English word is found from the node number corresponding to the English translation word, and the corresponding node number of each word on the search path A one-dimensional vector composed of the probability of directed edges between nodes; the one-dimensional vector of the probability distribution of the standard English translation means that in the English semantic dictionary, the node number corresponding to the translated English word is searched for the node number corresponding to the standard English word, and the search path A one-dimensional vector composed of the probability of the directed edge connected by the node at the end position; ||The one-dimensional vector of the probability distribution of the translated English translation || refers to the modulus of the one-dimensional vector of the probability distribution of the English translation; ||The one-dimensional probability distribution of the standard English translation The vector || refers to the modulus of the one-dimensional vector of the standard English translation probability distribution.

13、翻译英语译文质量分数计算公式13. The formula for calculating the quality score of the translated English translation

翻译英语译文质量分数是指翻译英语译文的内容与标准英语译文的内容语义相似程度,它的计算公式如下:The quality score of the translated English translation refers to the semantic similarity between the content of the translated English translation and the standard English translation. Its calculation formula is as follows:

英语译文质量分数=0.5×英语译文忠实度+0.5×英语译文语义相似度 (8)English translation quality score = 0.5 × English translation fidelity + 0.5 × English translation semantic similarity (8)

在计算公式(8)中,翻译英语译文忠实度得分由计算公式(5)计算得出,翻译英语译文语义相似度由计算公式(7)计算得出。In the calculation formula (8), the English translation fidelity score is calculated by the calculation formula (5), and the English translation semantic similarity is calculated by the calculation formula (7).

具体步骤Specific steps

本发明分析方法的翻译英语译文预处理模块、翻译英语译文忠实度分析模块、翻译英语译文语义相似度分析模块、翻译英语译文质量分析结果生成模块的处理流程图如下所述。The processing flow charts of the English translation preprocessing module, the English translation fidelity analysis module, the English translation semantic similarity analysis module, and the English translation quality analysis result generation module of the analysis method of the present invention are as follows.

如图2所示,所述的翻译英语译文预处理模块处理流程如下:As shown in Figure 2, the processing flow of the described English translation preprocessing module is as follows:

P201开始;P201 start;

P202读入翻译英语译文和标准英语译文;P202 Read and translate English translations and standard English translations;

P203判断翻译英语译文与标准英语译文数量是否相同,如果是则转P204,否则转P202;P203 Judging whether the number of translated English translations and standard English translations is the same, if yes, go to P204, otherwise go to P202;

P204对翻译英语译文分词并将翻译英语译文分词后的单词小写化;P204 Segment the translated English translation and lowercase the word after the translated English translation;

P205输出翻译英语译文的分词结果和翻译英语译文的单词小写化结果;P205 outputs the participle result of translation English translation and the word lowercase result of translation English translation;

P206统计翻译英语译文单词总数;P206 Statistically translates the total number of English translation words;

P207对翻译英语译文的分词结果进行词性标注;P207 Perform part-of-speech tagging on the word segmentation results of the translated English translation;

P208对翻译英语译文的词性标注结果进行短语切块;P208 performs phrase segmentation on the part-of-speech tagging results of the translated English translation;

P209对翻译英语译文的短语切块结果进行词性消歧;P209 performs part-of-speech disambiguation on the phrase segmentation results of the translated English translation;

P210输出翻译英语译文的词性标注结果、翻译英语译文的词性消歧结果、翻译英语译文的短语切块结果;P210 outputs the part-of-speech tagging result of the translated English translation, the part-of-speech disambiguation result of the translated English translation, and the phrase segmentation result of the translated English translation;

P211对标准英语译文分词并将标准英语译文分词后的单词小写化;P211 Segment the standard English translation and lowercase the words after the standard English translation;

P212输出标准英语译文的分词结果和标准英语译文的单词小写化结果;P212 output the participle result of standard English translation and the word lowercase result of standard English translation;

P213统计标准英语批译文单词总数;P213 Count the total number of words in standard English batch translations;

P214对标准英语译文的分词结果进行词性标注;P214 Perform part-of-speech tagging on the part-of-speech results of the standard English translation;

P215对标准英语译文的词性标注结果进行短语切块;P215 performs phrase segmentation on the part-of-speech tagging results of the standard English translation;

P216对标准英语译文的短语切块结果进行词性消歧;P216 Perform part-of-speech disambiguation on the phrase segmentation results of the standard English translation;

P217输出标准英语译文的词性标注结果、标准英语译文的词性消歧结果、标准英语译文的短语切块结果;P217 outputs the part-of-speech tagging result of the standard English translation, the part-of-speech disambiguation result of the standard English translation, and the phrase segmentation result of the standard English translation;

P218结束。End of P218.

如图3所示,所述的翻译英语译文忠实度分析模块处理流程如下:As shown in Figure 3, the processing flow of the English translation fidelity analysis module is as follows:

P301开始;P301 start;

P302读入翻译英语译文的分词结果和翻译英语译文的单词小写化结果;P302 Read in the word segmentation results of the translated English translation and the lowercase results of the translated English translation;

P303读入标准英语译文的分词结果和标准英语译文的单词小写化结果;P303 Read the word segmentation results of the standard English translation and the word lowercase results of the standard English translation;

P304根据翻译英语译文的分词结果和翻译英语译文的单词小写化结果、标准英语译文的分词结果和标准英语译文的单词小写化结果,生成翻译英语译文-标准英语译文的文本对;P304 According to the word segmentation result of the translated English translation and the word lowercase result of the translated English translation, the word segmentation result of the standard English translation and the word lowercase result of the standard English translation, generate a text pair of the translated English translation-standard English translation;

P305读入一组翻译英语译文-标准英语译文的文本对;P305 reads in a set of translation English translation-standard English translation text pairs;

P306将翻译英语译文-标准英语译文的文本对中翻译英语译文每个单词从零开始编号;P306 will translate the English translation-standard English translation text pair, and each word of the Chinese translation English translation will be numbered from zero;

P307将翻译英语译文-标准英语译文的文本对中标准英语译文每个单词从零开始编号;P307 will translate the English translation-standard English translation text pair, and each word in the standard English translation will be numbered from zero;

P308将翻译英语译文-标准英语译文的文本对中翻译英语译文每个单词,以及翻译英语译文-标准英语译文的文本对中的标准英语译文每个单词进行精确匹配;P308 will translate each word of the English translation in the English translation-standard English translation text pair, and perform an exact match on each word of the standard English translation in the translation English translation-standard English translation text pair;

P309统计翻译英语译文-标准英语译文的文本对中翻译英语译文,以及翻译英语译文-标准英语译文的文本对中标准英语译文精确匹配成功的单词及编号;P309 Statistically translate the English translation of the English translation-standard English translation text pair, and the English translation of the translation English translation-standard English translation text pair, the words and numbers that are accurately matched with the standard English translation;

P310判断翻译英语译文-标准英语译文的文本对中翻译英语译文是否还有未精确匹配的单词,如果是则转P308,否则转P311;P310 judges whether there are words that are not exactly matched in the translation English translation-standard English translation text pair, if so, turn to P308, otherwise turn to P311;

P311将翻译英语译文-标准英语译文的文本对中翻译英语译文,以及翻译英语译文-标准英语译文的文本对中标准英语译文没有精确匹配成功的单词进行词干化;P311 will stem the English translation of the English translation-standard English translation text pair, and the English translation-standard English translation text pair that does not have an exact match in the standard English translation;

P312将词干化后翻译英语译文-标准英语译文的文本对中翻译英语译文中单词,以及词干化后的翻译英语译文-标准英语译文的文本对中标准英语译文的单词进行词干匹配;P312 Stem-matching the words in the English translation in the translated English translation-standard English translation text pair after stemming, and the word in the standard English translation in the stemmed English translation-standard English translation text pair;

P313统计翻译英语译文-标准英语译文的文本对中翻译英语译文,以及翻译英语译文-标准英语译文的文本对中标准英语译文词干匹配成功的单词及编号;P313 Statistically translate the English translation in the English translation-standard English translation text pair, and the words and numbers of the standard English translation in the translation English translation-standard English translation text pair;

P314判断翻译英语译文-标准英语译文的文本对中翻译英语译文中是否还有未词干化匹配的单词,如果是则转P312,否则转P315;P314 judges whether there are any unstemmed matching words in the text pair of translation English translation-standard English translation, if so, turn to P312, otherwise turn to P315;

P315将翻译英语译文-标准英语译文的文本对中翻译英语译文,以及翻译英语译文-标准英语译文的文本对中标准英语译文没有词干匹配成功的单词进行词义释义化;P315 translates the English translation of the English translation-standard English translation text pair into the English translation, and translates the English translation-standard English translation text pair into the standard English translation for word meanings that do not have a successful match in the standard English translation;

P316将词义释义化后翻译英语译文-标准英语译文的文本对中翻译英语译文的单词,以及词义释义化后翻译英语译文-标准英语译文的文本对中标准英语译文的单词进行同义词匹配;P316 Translating words in the English translation-standard English translation text pair after paraphrasing the word meaning, and performing synonym matching on words in the standard English translation text translation in the English translation-standard English translation text pair after paraphrasing the word meaning;

P317统计翻译英语译文-标准英语译文的文本对中翻译英语译文,以及翻译英语译文-标准英语译文的文本对中标准英语译文同义词匹配成功的单词及编号;P317 Statistically translate the English translation in the English translation-standard English translation text pair, and the words and numbers of the standard English translation in the English translation-standard English translation text pair that successfully match the synonyms;

P318判断翻译英语译文-标准英语译文的文本对中翻译英语译文中是否还有未同义词匹配的单词,如果是则转P315,否则转P319;P318 judges whether there are words that are not matched by synonyms in the text pair of translation English translation-standard English translation, if so, turn to P315, otherwise turn to P319;

P319判断是否还有未批改的翻译英语译文-标准英语译文的文本对,如果是则转P305,否则转P320;P319 judges whether there is any uncorrected English translation-standard English translation text pair, if so, turn to P305, otherwise turn to P320;

P320读入翻译英语译文-标准英语译文的文本对中翻译英语译文单词,以及翻译英语译文-标准英语译文的文本对中标准英语译文单词精确匹配的结果;P320 reads in the translation English translation-standard English translation text pair and the translated English translation word, and the translation English translation-standard English translation text pair and the exact matching result of the standard English translation word;

P321读入翻译英语译文-标准英语译文的文本对中翻译英语译文单词,以及翻译英语译文-标准英语译文的文本对中标准英语译文单词词干匹配的结果;P321 reads in the translation English translation-standard English translation text pair in the translation English translation word, and the translation English translation-standard English translation text pair in the standard English translation word stem match result;

P322读入翻译英语译文-标准英语译文的文本对中翻译英语译文单词,以及翻译英语译文-标准英语译文的文本对中标准英语译文单词同义词匹配的结果;P322 read in the translation English translation-standard English translation text pair of translation English translation words, and the translation English translation-standard English translation text pair of standard English translation word synonyms matching results;

P323标出翻译英语译文-标准英语译文的文本对中翻译英语译文匹配成功的单词;P323 marks the words that are successfully matched in the translated English translation in the text pair of translated English translation-standard English translation;

P324读入翻译英语译文-标准英语译文的文本对中翻译英语译文单词总数;P324 The total number of words in the translated English translation in the text pair of the translated English translation-standard English translation;

P325读入翻译英语译文-标准英语译文的文本对中标准英语译文单词总数;P325 The total number of words in the standard English translation in the text pair of the translated English translation-standard English translation;

P326将翻译英语译文-标准英语译文的文本对中翻译英语译文的单词总数,以及翻译英语译文-标准英语译文的文本对中标准英语译文中单词总数,翻译英语译文-标准英语译文的文本对中翻译英语译文精确匹配、词干匹配、同义词匹配成功的单词总数,代入翻译英语译文忠实度分析模块的计算公式(1)、计算公式(2)计算翻译英语译文-标准英语译文的文本对中翻译英语译文单词匹配的准确率和召回率;P326 will translate the total number of words in the translated English translation in the text pairs of the translated English translation-Standard English translation, and the total number of words in the translated English translation-Standard English translation text pairs, and the translation of the English translation-standard English translation The total number of words that are successfully matched, stem-matched, and synonymous in the translated English translation is substituted into the calculation formula (1) and calculation formula (2) of the English translation loyalty analysis module to calculate the text-to-text translation of the translated English translation-standard English translation Precision and recall of English translation word matching;

P327利用翻译英语译文集和标准英语译文集训练得出最优参数a,b,c的值;P327 uses the translated English translation set and the standard English translation set to train to obtain the values of the optimal parameters a, b, and c;

P328将a的值、翻译英语译文-标准英语译文的文本对中翻译英语译文单词匹配的准确率、翻译英语译文-标准英语译文的文本对中翻译英语译文单词匹配的召回率代入翻译英语译文忠实度分析模块的计算公式(3)计算调和平均数;P328 Substitute the value of a, the accuracy rate of word matching between the translated English translation and the standard English translation, and the recall rate of the word matching between the translated English translation and the standard English translation into the English translation faithfulness The calculation formula (3) of the degree analysis module calculates the harmonic mean;

P329将参数b、c的值,翻译英语译文-标准英语译文的文本对中翻译英语译文短语的数量,翻译英语译文-标准英语译文的文本对中翻译英语译文精确匹配、词干匹配、同义词匹配成功的单词总数,代入翻译英语译文忠实度分析模块的计算公式(4)计算惩罚系数;P329 will use the values of parameters b and c, the number of English translation phrases in the translation English translation-standard English translation text pair, and the translation English translation exact match, word stem match, and synonym match in the translation English translation-standard English translation text pair Successful total number of words, substitute into the calculation formula (4) of the English translation fidelity analysis module to calculate the penalty coefficient;

P330将调和平均数,惩罚系数代入翻译英语译文忠实度分析模块的计算公式(5)计算翻译英语译文忠实度;In P330, the harmonic mean and the penalty coefficient are substituted into the calculation formula (5) of the English translation fidelity analysis module to calculate the English translation fidelity;

P331结束。End of P331.

如图4所示,所述的翻译英语译文语义相似度分析模块处理流程如下:As shown in Figure 4, the processing flow of the English translation semantic similarity analysis module is as follows:

P401开始;P401 start;

P402读取翻译英语译文单词词性消歧结果;P402 Read and translate English translation word part-of-speech disambiguation results;

P403遍历翻译英语译文单词词性消歧结果;P403 traversing the English translation word disambiguation results;

P404根据翻译英语译文单词词性消歧结果查找并记录单词在英语语义词典中对应的节点编号;P404 finds and records the corresponding node number of the word in the English semantic dictionary according to the English translation word part-of-speech disambiguation result;

P405判断是否还有未遍历的翻译英语译文单词词性消歧结果,如果是则转P403,否则转P406;P405 judges whether there is any untraversed translation English translation word part-of-speech disambiguation result, if it is then turn to P403, otherwise turn to P406;

P406读取标准英语译文单词词性消歧结果;P406 Read the word part-of-speech disambiguation results of the standard English translation;

P407遍历标准英语译文单词词性消歧结果;P407 Traverse standard English translation word part-of-speech disambiguation results;

P408根据标准英语译文单词词性消歧结果查找并记录单词在英语语义词典中对应的节点编号;P408 Find and record the corresponding node number of the word in the English semantic dictionary according to the part-of-speech disambiguation result of the standard English translation word;

P409判断是否还有未遍历的标准英语译文单词词性消歧结果,如果是则转P407,否则转P410;P409 judges whether there are untraversed standard English translation word part-of-speech disambiguation results, if so, turn to P407, otherwise turn to P410;

P410在英语语义词典中,从翻译英语译文单词对应的节点编号查找标准英文单词对应的节点编号;P410 In the English semantic dictionary, search for the corresponding node number of the standard English word from the node number corresponding to the translated English translation word;

P411记录下查找路径上每个单词对应的节点编号及节点之间有向边的概率;P411 records the node number corresponding to each word on the search path and the probability of directed edges between nodes;

P412根据查找路径上每个单词对应的节点编号和节点之间有向边的概率,生成翻译英语译文单词概率分布二维向量;P412 generates a two-dimensional vector of the probability distribution of the English translation word according to the node number corresponding to each word on the search path and the probability of the directed edge between the nodes;

P413根据翻译英语译文语义相似度分析模块的计算公式(6)计算出标准英语译文中单词概率分布二维向量;P413 Calculate the two-dimensional vector of word probability distribution in the standard English translation according to the calculation formula (6) of the English translation semantic similarity analysis module;

P414判断翻译英语译文中是否还有未查找的单词,如果是则转P410,否则转P415;P414 judges whether there are words not searched in the translated English translation, if so, turn to P410, otherwise turn to P415;

P415合并翻译英语译文单词概率分布二维向量得到翻译英语译文概率分布二维向量;P415 Combine the two-dimensional vector of the probability distribution of the translated English translation words to obtain the two-dimensional vector of the probability distribution of the translated English translation;

P416从翻译英语译文概率分布二维向量中提取单词概率值,生成翻译英语译文概率分布一维向量;P416 Extract the word probability value from the two-dimensional vector of the probability distribution of the translated English translation, and generate a one-dimensional vector of the probability distribution of the translated English translation;

P417合并标准英语译文单词概率分布二维向量得到标准英语译文概率分布二维向量;P417 Combine the two-dimensional vector of the probability distribution of the words in the standard English translation to obtain the two-dimensional vector of the probability distribution of the standard English translation;

P418从标准英语译文概率分布二维向量中提取单词概率值,生成标准英语译文概率分布一维向量;P418 Extract word probability values from the standard English translation probability distribution two-dimensional vector to generate a standard English translation probability distribution one-dimensional vector;

P419根据翻译英语译文语义相似度分析模块的计算公式(7)计算并输出翻译英语译文语义相似度;P419 calculates and outputs the semantic similarity of the English translation according to the calculation formula (7) of the translation English translation semantic similarity analysis module;

P420结束。P420 ends.

如图5所示,所述的翻译英语译文质量分析结果生成模块处理流程如下:As shown in Figure 5, the described translation English translation quality analysis result generation module processing flow is as follows:

P501开始;P501 start;

P502读取翻译英语译文忠实度;P502 Read and translate English translation fidelity;

P503读取翻译英语译文语义相似度;P503 Read and translate the semantic similarity of the English translation;

P504根据翻译英语译文质量分析结果生成模块的计算公式(8)计算并输出翻译英语译文质量分数;P504 calculates and outputs the English translation quality score according to the calculation formula (8) of the translation English translation quality analysis result generation module;

P505根据翻译英语译文质量分数输出翻译英语译文评语;P505 outputs the comments of the translated English translation according to the quality score of the translated English translation;

P506结束。End of P506.

附图说明Description of drawings

图1是本发明方法的总体处理流程图;Fig. 1 is the overall processing flowchart of the inventive method;

图2是本发明方法的翻译英语译文预处理模块处理流程图;Fig. 2 is the processing flowchart of the translation English translation preprocessing module of the inventive method;

图3是本发明方法的翻译英语译文忠实度分析模块处理流程图;Fig. 3 is the processing flowchart of the translation English translation fidelity analysis module of the inventive method;

图4是本发明方法的翻译英语译文语义相似度分析模块处理流程图;Fig. 4 is the processing flowchart of the translation English translation semantic similarity analysis module of the inventive method;

图5是本发明方法的翻译英语译文质量分析结果生成模块处理流程图。Fig. 5 is the process flowchart of the English translation quality analysis result generating module of the method of the present invention.

具体实施方式detailed description

本发明的一种中译英短文翻译质量的分析方法的具体实施方式分为如下五个步骤。The specific implementation of the method for analyzing the translation quality of a Chinese-to-English essay of the present invention is divided into the following five steps.

第一步骤:执行“翻译英语译文预处理模块”Step 1: Execute the "Translation English Translation Preprocessing Module"

本发明实施方式中输入的英语译文取材于全国大学生英语六级翻译题目,中文翻译题目、某学生作答的翻译英文译文、官方给出的标准英语译文结果如下:The English translation input in the embodiment of the present invention is drawn from the English translation questions of CET-6 for college students across the country. The Chinese translation questions, the English translation of a student’s answer, and the official standard English translation results are as follows:

中文翻译题目:Chinese translation title:

中国的创新正以前所未有的速度蓬勃发展。为了在科学技术上尽快赶超世界发达国家,中国近年来大幅度增加了研究开发资金。中国的大学和研究所正在积极开展创新研究,这些研究覆盖了从大数据到生物化学,从新能源到机器人等各类高科技领域。它们还与各地的科技园合作,使创新成果商业化。与此同时,无论在产品还是商业模式上,中国企业家也在努力争做创新的先锋,以适应国内外消费市场不断变化和增长的需求。Innovation in China is booming at an unprecedented rate. In order to catch up with the world's developed countries as soon as possible in science and technology, China has greatly increased research and development funds in recent years. Chinese universities and research institutes are actively carrying out innovative research covering various high-tech fields, from big data to biochemistry, from new energy to robotics. They also collaborate with technology parks around the world to commercialize innovations. At the same time, whether in terms of products or business models, Chinese entrepreneurs are also striving to be the pioneers of innovation to adapt to the ever-changing and growing needs of domestic and foreign consumer markets.

翻译英语译文:Translate the English translation:

Innovation is progressing in an unprecedented speed in China.In orderto catch up with those developed countries in the world as fast as it can inthe science and technology field,China has increased funds for developmentresearch substantially in recent years.Universities and research institutionsin China are actively carrying out innovation researches,which cover high-technology fields such as big data,biochemistry,new energy and robots,etc.They also cooperate with science park in various regions,commercializingthe research results of innovation.Meanwhile,no matter in production andbusiness model,entrepreneurs in China are competing to be pioneers ininnovation to adapt to the constantly changing and increasing needs of theconsumer market at home and abroad.Innovation is progressing in an unprecedented speed in China. In order to catch up with those developed countries in the world as fast as it can in the science and technology field, China has increased funds for development research substantially in recent years. Universities and research institutions are active in China carrying out innovation researches, which cover high-technology fields such as big data, biochemistry, new energy and robots, etc. They also cooperate with science park in various regions, commercializing the research results of innovation. Meanwhile, no matter in production, business model Entrepreneurs in China are competing to be pioneers innovation to adapt to the constantly changing and increasing needs of the consumer market at home and abroad.

标准英语译文:Standard English translation:

China's innovation is flourishing faster than ever before.In order tosurpass developed countries on science and technology as soon as possible,China has sharply increased research and development fund.Chineseuniversities and institutes are actively doing innovative researches,coveringvarious fields of high technology,from big data to biochemistry,and from newenergy to robots.They are also cooperating with science and technology parksin different places,so as to commercialize their fruits of innovation.In themeantime,to adapt to the changing foreign and domestic market,and to satisfythe growing demand,Chinese entrepreneurs are also making pioneering effortsto innovate their products and business models.China's innovation is flourishing faster than ever before. In order to surpass developed countries on science and technology as soon as possible, China has sharply increased research and development fund. Chinese universities and institutes are actively doing innovative researches, covering various high field data no to biochemistry, and from newenergy to robots. They are also cooperating with science and technology parks in different places, so as to commercialize their fruits of innovation. In themeantime, to adapt to the changing foreign and domestic market, and to satisfy the growing demand, Chinese Entrepreneurs are also making pioneering efforts to innovate their products and business models.

(1)对翻译英语译文和标准英语译文进行词性标注后,生成的词性标注结果如下所示:(1) After part-of-speech tagging is performed on the translated English translation and the standard English translation, the generated part-of-speech tagging results are as follows:

翻译英语译文词性标注结果:Translate English translation part-of-speech tagging results:

[Innovation[innovation#NN:UN*],[#null*],is[be#VBZ*],[#null*],progressing[progress#VBG*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],an[a#DT*],[#null*],unprecedented[unprecedented#JJ*],[#null*],speed[speed#NN:UN*,speed#VB*,speed#VBP*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],China[China#NNP*,china#JJ*,china#NN:U*],.[.#.*]][Innovation[innovation#NN:UN*],[#null*],is[be#VBZ*],[#null*],progressing[progress#VBG*],[#null*],in[in#IN *,in#NN*,in#RP*],[#null*],an[a#DT*],[#null*],unprecedented[unprecedented#JJ*],[#null*],speed[speed #NN:UN*,speed#VB*,speed#VBP*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],China[China #NNP*,china#JJ*,china#NN:U*],.[.#.*]]

[In[In#NNP*,in#IN*,in#NN*,in#RP*],[#null*],order[order#NN:UN*,order#UH*,order#VB*,order#VBP*],[#null*],to[to#IN*,to#TO*],[#null*],catch[catch#NN*,catch#VB*,catch#VBP*],[#null*],up[up#IN*,up#JJ*,up#NN*,up#RP*,up#VB*,up#VBP*],[#null*],with[with#IN*,with#RP*],[#null*],those[those#DT*],[#null*],developed[develop#VBD*,develop#VBN*],[#null*],countries[country#NNS*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],the[the#DT*],[#null*],world[world#JJ*,world#NN:UN*],[#null*],as[as#CC*,as#IN*,as#RB*],[#null*],fast[fast#JJ*,fast#NN*,fast#RP*,fast#VB*,fast#VBP*],[#null*],as[as#CC*,as#IN*,as#RB*],[#null*],it[it#PRP*],[#null*],can[can#MD*,can#NN*,can#VB*,can#VBP*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],the[the#DT*],[#null*],science[science#NN:UN*],[#null*],and[and#CC*],[#null*],technology[technology#NN:UN*],[#null*],field[field#NN*,field#VB*,field#VBP*],,[,#,*],[#null*],China[China#NNP*,china#JJ*,china#NN:U*],[#null*],has[have#VBZ*],[#null*],increased[increase#VBD*,increase#VBN*],[#null*],funds[fund#NNS*,fund#VBZ*],[#null*],for[for#CC*,for#IN*,for#RP*],[#null*],development[development#NN:UN*],[#null*],research[research#NN:U*,research#VB*,research#VBP*],[#null*],substantially[substantially#RB*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],recent[recent#JJ*],[#null*],years[year#NNS*],.[.#.*]][In[In#NNP*,in#IN*,in#NN*,in#RP*],[#null*],order[order#NN:UN*,order#UH*,order#VB*,order #VBP*],[#null*],to[to#IN*,to#TO*],[#null*],catch[catch#NN*,catch#VB*,catch#VBP*],[# null*],up[up#IN*,up#JJ*,up#NN*,up#RP*,up#VB*,up#VBP*],[#null*],with[with#IN*, with#RP*],[#null*],those[those#DT*],[#null*],developed[develop#VBD*,develop#VBN*],[#null*],countries[country#NNS *],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],the[the#DT*],[#null*],world[world #JJ*,world#NN:UN*],[#null*],as[as#CC*,as#IN*,as#RB*],[#null*],fast[fast#JJ*,fast #NN*,fast#RP*,fast#VB*,fast#VBP*],[#null*],as[as#CC*,as#IN*,as#RB*],[#null*], it[it#PRP*],[#null*],can[can#MD*,can#NN*,can#VB*,can#VBP*],[#null*],in[in#IN*, in#NN*,in#RP*],[#null*],the[the#DT*],[#null*],science[science#NN:UN*],[#null*],and[and #CC*],[#null*],technology[technology#NN:UN*],[#null*],field[field#NN*,field#VB*,field#VBP*],,[,#, *],[#null*],China[China#NNP*,china#JJ*,china#NN:U*],[#null*],has[have#VBZ*],[#null*],increased [increase#VBD*,increase#VBN*],[#null*],funds[fund# NNS*,fund#VBZ*],[#null*],for[for#CC*,for#IN*,for#RP*],[#null*],development[development#NN:UN*],[ #null*],research[research#NN:U*,research#VB*,research#VBP*],[#null*],substantially[substantially#RB*],[#null*],in[in#IN *,in#NN*,in#RP*],[#null*],recent[recent#JJ*],[#null*],years[year#NNS*],.[.#.*]]

[Universities[university#NNS*],[#null*],and[and#CC*],[#null*],research[research#NN:U*,research#VB*,research#VBP*],[#null*],institutions[institution#NNS*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],China[China#NNP*,china#JJ*,china#NN:U*],[#null*],are[are#NN*,be#VBP*],[#null*],actively[actively#RB*],[#null*],carrying[carry#VBG*],[#null*],out[out#IN*,out#NN*,out#RB*,out#RP*,out#UH*,out#VB*,out#VBP*],[#null*],innovation[innovation#NN:UN*],[#null*],researches[research#NNS*,research#VBZ*],,[,#,*],[#null*],which[which#WDT*,which#WP*],[#null*],cover[cover#NN:UN*,cover#VB*,cover#VBP*],[#null*],high-technology[high-technology#JJ*],[#null*],fields[field#NNS*,field#VBZ*],[#null*],such[such#DT*,such#PDT*],[#null*],as[as#CC*,as#IN*,as#RB*],[#null*],big[big#JJ*,big#RB*],[#null*],data[data#NN:UN*,datum#NNS*],,[,#,*],[#null*],biochemistry[biochemistry#NN:U*],,[,#,*],[#null*],new[new#JJ*],[#null*],energy[energy#NN:UN*],[#null*],and[and#CC*],[#null*],robots[robot#NNS*],,[,#,*],[#null*],etc[etc#null*],.[.#.*],[#null*],They[they#PRP*],[#null*],also[also#RB*],[#null*],cooperate[cooperate#VB*,cooperate#VBP*],[#null*],with[with#IN*,with#RP*],[#null*],science[science#NN:UN*],[#null*],park[park#NN*,park#VB*,park#VBP*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],various[various#JJ*],[#null*],regions[region#NNS*],,[,#,*],[#null*],commercializing[commercialize#VBG*],[#null*],the[the#DT*],[#null*],research[research#NN:U*,research#VB*,research#VBP*],[#null*],results[result#NNS*,result#VBZ*],[#null*],of[of#IN*],[#null*],innovation[innovation#NN:UN*],.[.#.*]][Universities[university#NNS*],[#null*],and[and#CC*],[#null*],research[research#NN:U*,research#VB*,research#VBP*],[ #null*],institutions[institution#NNS*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],China[China#NNP*, china#JJ*,china#NN:U*],[#null*],are[are#NN*,be#VBP*],[#null*],actively[actively#RB*],[#null* ],carrying[carry#VBG*],[#null*],out[out#IN*,out#NN*,out#RB*,out#RP*,out#UH*,out#VB*,out# VBP*],[#null*],innovation[innovation#NN:UN*],[#null*],researches[research#NNS*,research#VBZ*],,[,#,*],[#null *],which[which#WDT*,which#WP*],[#null*],cover[cover#NN:UN*,cover#VB*,cover#VBP*],[#null*],high- technology[high-technology#JJ*],[#null*],fields[field#NNS*,field#VBZ*],[#null*],such[such#DT*,such#PDT*],[# null*],as[as#CC*,as#IN*,as#RB*],[#null*],big[big#JJ*,big#RB*],[#null*],data[data #NN:UN*,datum#NNS*],,[,#,*],[#null*],biochemistry[biochemistry#NN:U*],,[,#,*],[#null*], new[new#JJ*],[#null*],energy[energy#NN:UN*],[#null*],and[and#CC*],[#null*],robots[robot#NNS* ],,[,#,*],[#null*],etc[etc#null*],.[. #.*],[#null*],They[they#PRP*],[#null*],also[also#RB*],[#null*],cooperate[cooperate#VB*,cooperate#VBP* ],[#null*],with[with#IN*,with#RP*],[#null*],science[science#NN:UN*],[#null*],park[park#NN*, park#VB*,park#VBP*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],various[various#JJ*],[ #null*],regions[region#NNS*],,[,#,*],[#null*],commercializing[commercialize#VBG*],[#null*],the[the#DT*],[ #null*],research[research#NN:U*,research#VB*,research#VBP*],[#null*],results[result#NNS*,result#VBZ*],[#null*], of[of#IN*],[#null*],innovation[innovation#NN:UN*],.[.#.*]]

[Meanwhile[meanwhile#JJ*,meanwhile#NN:U*,meanwhile#RB*],,[,#,*],[#null*],no[no#DT*,no#NN*],[#null*],matter[matter#NN:UN*,matter#VB*,matter#VBP*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],production[production#NN:UN*],[#null*],and[and#CC*],[#null*],business[business#JJ*,business#NN:UN*],[#null*],model[model#JJ*,model#NN*,model#VB*,model#VBP*],,[,#,*],[#null*],entrepreneurs[entrepreneur#NNS*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],China[China#NNP*,china#JJ*,china#NN:U*],[#null*],are[are#NN*,be#VBP*],[#null*],competing[compete#VBG*],[#null*],to[to#IN*,to#TO*],[#null*],be[be#VB*],[#null*],pioneers[pioneer#NNS*,pioneer#VBZ*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],innovation[innovation#NN:UN*],[#null*],to[to#IN*,to#TO*],[#null*],adapt[adapt#VB*,adapt#VBP*],[#null*],to[to#IN*,to#TO*],[#null*],the[the#DT*],[#null*],constantly[constantly#RB*],[#null*],changing[change#VBG*],[#null*],and[and#CC*],[#null*],increasing[increasing#JJ*,increasing#NN:UN*,increase#VBG*],[#null*],needs[needs#RB*,need#NNS*,need#VBZ*],[#null*],of[of#IN*],[#null*],the[the#DT*],[#null*],consumer[consumer#NN:UN*],[#null*],market[market#NN:UN*,market#VB*,market#VBP*],[#null*],at[at#IN*,at#RP*],[#null*],home[home#JJ*,home#NN:UN*,home#VB*,home#VBP*],[#null*],and[and#CC*],[#null*],abroad[abroad#JJ*,abroad#RB*],.[.#.*]][Meanwhile[meanwhile#JJ*,meanwhile#NN:U*,while#RB*],,[,#,*],[#null*],no[no#DT*,no#NN*],[# null*],matter[matter#NN:UN*,matter#VB*,matter#VBP*],[#null*],in[in#IN*,in#NN*,in#RP*],[# null*],production[production#NN:UN*],[#null*],and[and#CC*],[#null*],business[business#JJ*,business#NN:UN*],[ #null*],model[model#JJ*,model#NN*,model#VB*,model#VBP*],,[,#,*],[#null*],entrepreneurs[entrepreneur#NNS*], [#null*],in[in#IN*,in#NN*,in#RP*],[#null*],China[China#NNP*,china#JJ*,china#NN:U*], [#null*],are[are#NN*,be#VBP*],[#null*],competing[compete#VBG*],[#null*],to[to#IN*,to#TO* ],[#null*],be[be#VB*],[#null*],pioneers[pioneer#NNS*,pioneer#VBZ*],[#null*],in[in#IN*,in# NN*,in#RP*],[#null*],innovation[innovation#NN:UN*],[#null*],to[to#IN*,to#TO*],[#null*], adapt[adapt#VB*,adapt#VBP*],[#null*],to[to#IN*,to#TO*],[#null*],the[the#DT*],[#null* ], constantly[constantly#RB*],[#null*],changing[change#VBG*],[#null*],and[and#CC*],[#null*],increasing[increasing#JJ* ,increasing#NN:UN*,increase#VBG*],[#null*],needs[needs#RB* ,need#NNS*,need#VBZ*],[#null*],of[of#IN*],[#null*],the[the#DT*],[#null*],consumer[consumer# NN:UN*],[#null*],market[market#NN:UN*,market#VB*,market#VBP*],[#null*],at[at#IN*,at#RP*] ,[#null*],home[home#JJ*,home#NN:UN*,home#VB*,home#VBP*],[#null*],and[and#CC*],[#null* ],abroad[abroad#JJ*,abroad#RB*],.[.#.*]]

标准英语译文词性标注结果:Standard English translation part-of-speech tagging results:

[China[China#NNP*,china#JJ*,china#NN:U*],'['#null*],s[s#POS*],[#null*],innovation[innovation#NN:UN*],[#null*],is[be#VBZ*],[#null*],flourishing[flourishing#JJ*,flourish#VBG*],[#null*],faster[faster#NN*,faster#RB*,faster#RBR*,fast#JJR*],[#null*],than[than#IN*],[#null*],ever[ever#JJ*,ever#RB*,ever#RP*],[#null*],before[before#IN*,before#RP*],.[.#.*]][China[China#NNP*,china#JJ*,china#NN:U*],'['#null*],s[s#POS*],[#null*],innovation[innovation#NN:UN *],[#null*],is[be#VBZ*],[#null*],flourishing[flourishing#JJ*,flourish#VBG*],[#null*],faster[faster#NN*,faster #RB*,faster#RBR*,fast#JJR*],[#null*],than[than#IN*],[#null*],ever[ever#JJ*,ever#RB*,ever#RP *],[#null*],before[before#IN*,before#RP*],.[.#.*]]

[In[In#NNP*,in#IN*,in#NN*,in#RP*],[#null*],order[order#NN:UN*,order#UH*,order#VB*,order#VBP*],[#null*],to[to#IN*,to#TO*],[#null*],surpass[surpass#VB*,surpass#VBP*],[#null*],developed[develop#VBD*,develop#VBN*],[#null*],countries[country#NNS*],[#null*],on[on#IN*,on#JJ*,on#RP*],[#null*],science[science#NN:UN*],[#null*],and[and#CC*],[#null*],technology[technology#NN:UN*],[#null*],as[as#CC*,as#IN*,as#RB*],[#null*],soon[soon#JJ*,soon#RB*],[#null*],as[as#CC*,as#IN*,as#RB*],[#null*],possible[possible#JJ*,possible#NN*],,[,#,*],[#null*],China[China#NNP*,china#JJ*,china#NN:U*],[#null*],has[have#VBZ*],[#null*],sharply[sharply#RB*],[#null*],increased[increase#VBD*,increase#VBN*],[#null*],research[research#NN:U*,research#VB*,research#VBP*],[#null*],and[and#CC*],[#null*],development[development#NN:UN*],[#null*],fund[fund#NN:UN*,fund#VB*,fund#VBP*],.[.#.*]][In[In#NNP*,in#IN*,in#NN*,in#RP*],[#null*],order[order#NN:UN*,order#UH*,order#VB*,order #VBP*],[#null*],to[to#IN*,to#TO*],[#null*],surpass[surpass#VB*,surpass#VBP*],[#null*],developed [develop#VBD*,develop#VBN*],[#null*],countries[country#NNS*],[#null*],on[on#IN*,on#JJ*,on#RP*], [#null*],science[science#NN:UN*],[#null*],and[and#CC*],[#null*],technology[technology#NN:UN*],[#null* ],as[as#CC*,as#IN*,as#RB*],[#null*],soon[soon#JJ*,soon#RB*],[#null*],as[as#CC *,as#IN*,as#RB*],[#null*],possible[possible#JJ*,possible#NN*],,[,#,*],[#null*],China[China# NNP*,china#JJ*,china#NN:U*],[#null*],has[have#VBZ*],[#null*],sharply[sharply#RB*],[#null*], increased[increase#VBD*,increase#VBN*],[#null*],research[research#NN:U*,research#VB*,research#VBP*],[#null*],and[and#CC *],[#null*],development[development#NN:UN*],[#null*],fund[fund#NN:UN*,fund#VB*,fund#VBP*],.[.#. *]]

[Chinese[Chinese#JJ*,Chinese#NN:U*,Chinese#NNP*],[#null*],universities[university#NNS*],[#null*],and[and#CC*],[#null*],institutes[institute#NNS*,institute#VBZ*],[#null*],are[are#NN*,be#VBP*],[#null*],actively[actively#RB*],[#null*],doing[doing#NN:UN*,do#VBG*],[#null*],innovative[innovative#JJ*],[#null*],researches[research#NNS*,research#VBZ*],,[,#,*],[#null*],covering[covering#JJ*,covering#NN:UN*,cover#VBG*],[#null*],various[various#JJ*],[#null*],fields[field#NNS*,field#VBZ*],[#null*],of[of#IN*],[#null*],high[high#JJ*,high#NN*,high#RP*],[#null*],technology[technology#NN:UN*],,[,#,*],[#null*],from[from#IN*,from#RP*],[#null*],big[big#JJ*,big#RB*],[#null*],data[data#NN:UN*,datum#NNS*],[#null*],to[to#IN*,to#TO*],[#null*],biochemistry[biochemistry#NN:U*],,[,#,*],[#null*],and[and#CC*],[#null*],from[from#IN*,from#RP*],[#null*],new[new#JJ*],[#null*],energy[energy#NN:UN*],[#null*],to[to#IN*,to#TO*],[#null*],robots[robot#NNS*],.[.#.*]][Chinese[Chinese#JJ*,Chinese#NN:U*,Chinese#NNP*],[#null*],universities[university#NNS*],[#null*],and[and#CC*],[ #null*], institutes[institute#NNS*, institute#VBZ*],[#null*],are[are#NN*,be#VBP*],[#null*],actively[actively#RB*] ,[#null*],doing[doing#NN:UN*,do#VBG*],[#null*],innovative[innovative#JJ*],[#null*],researches[research#NNS*,research #VBZ*],,[,#,*],[#null*],covering[covering#JJ*,covering#NN:UN*,cover#VBG*],[#null*],various[various#JJ *],[#null*],fields[field#NNS*,field#VBZ*],[#null*],of[of#IN*],[#null*],high[high#JJ*,high #NN*,high#RP*],[#null*],technology[technology#NN:UN*],,[,#,*],[#null*],from[from#IN*,from#RP *],[#null*],big[big#JJ*,big#RB*],[#null*],data[data#NN:UN*,datum#NNS*],[#null*],to [to#IN*,to#TO*],[#null*],biochemistry[biochemistry#NN:U*],[,#,*],[#null*],and[and#CC*], [#null*],from[from#IN*,from#RP*],[#null*],new[new#JJ*],[#null*],energy[energy#NN:UN*],[ #null*],to[to#IN*,to#TO*],[#null*],robots[robot#NNS*],.[.#.*]]

[They[they#PRP*],[#null*],are[are#NN*,be#VBP*],[#null*],also[also#RB*],[#null*],cooperating[cooperate#VBG*],[#null*],with[with#IN*,with#RP*],[#null*],science[science#NN:UN*],[#null*],and[and#CC*],[#null*],technology[technology#NN:UN*],[#null*],parks[park#NNS*,park#VBZ*],[#null*],in[in#IN*,in#NN*,in#RP*],[#null*],different[different#JJ*],[#null*],places[place#NNS*,place#VBZ*],,[,#,*],[#null*],so[so#CC*,so#JJ*,so#NN:U*],[#null*],as[as#CC*,as#IN*,as#RB*],[#null*],to[to#IN*,to#TO*],[#null*],commercialize[commercialize#VB*,commercialize#VBP*],[#null*],their[their#PRP$*],[#null*],fruits[fruit#NNS*,fruit#VBZ*],[#null*],of[of#IN*],[#null*],innovation[innovation#NN:UN*],.[.#.*]][They[they#PRP*],[#null*],are[are#NN*,be#VBP*],[#null*],also[also#RB*],[#null*],cooperating[ cooperate#VBG*],[#null*],with[with#IN*,with#RP*],[#null*],science[science#NN:UN*],[#null*],and[and #CC*],[#null*],technology[technology#NN:UN*],[#null*],parks[park#NNS*,park#VBZ*],[#null*],in[in# IN*,in#NN*,in#RP*],[#null*],different[different#JJ*],[#null*],places[place#NNS*,place#VBZ*],,[, #,*],[#null*],so[so#CC*,so#JJ*,so#NN:U*],[#null*],as[as#CC*,as#IN*,as #RB*],[#null*],to[to#IN*,to#TO*],[#null*],commercialize[commercialize#VB*,commercialize#VBP*],[#null*],their [their#PRP$*],[#null*],fruits[fruit#NNS*,fruit#VBZ*],[#null*],of[of#IN*],[#null*],innovation[innovation #NN:UN*],.[.#.*]]

[In[In#NNP*,in#IN*,in#NN*,in#RP*],[#null*],the[the#DT*],[#null*],meantime[meantime#JJ*,meantime#NN:U*],,[,#,*],[#null*],to[to#IN*,to#TO*],[#null*],adapt[adapt#VB*,adapt#VBP*],[#null*],to[to#IN*,to#TO*],[#null*],the[the#DT*],[#null*],changing[change#VBG*],[#null*],foreign[foreign#JJ*],[#null*],and[and#CC*],[#null*],domestic[domestic#JJ*,domestic#NN*],[#null*],market[market#NN:UN*,market#VB*,market#VBP*],,[,#,*],[#null*],and[and#CC*],[#null*],to[to#IN*,to#TO*],[#null*],satisfy[satisfy#VB*,satisfy#VBP*],[#null*],the[the#DT*],[#null*],growing[growing#NN:UN*,grow#VBG*],[#null*],demand[demand#NN:UN*,demand#VB*,demand#VBP*],,[,#,*],[#null*],Chinese[Chinese#JJ*,Chinese#NN:U*,Chinese#NNP*],[#null*],entrepreneurs[entrepreneur#NNS*],[#null*],are[are#NN*,be#VBP*],[#null*],also[also#RB*],[#null*],making[making#NN:UN*,make#VBG*],[#null*],pioneering[pioneer#VBG*],[#null*],efforts[effort#NNS*],[#null*],to[to#IN*,to#TO*],[#null*],innovate[innovate#VB*,innovate#VBP*],[#null*],their[their#PRP$*],[#null*],products[product#NNS*],[#null*],and[and#CC*],[#null*],business[business#JJ*,business#NN:UN*],[#null*],models[model#NNS*,model#VBZ*],.[.#.*]][In[In#NNP*,in#IN*,in#NN*,in#RP*],[#null*],the[the#DT*],[#null*],meantime[meantime#JJ* ,meantime#NN:U*],,[,#,*],[#null*],to[to#IN*,to#TO*],[#null*],adapt[adapt#VB*,adapt #VBP*],[#null*],to[to#IN*,to#TO*],[#null*],the[the#DT*],[#null*],changing[change#VBG* ],[#null*],foreign[foreign#JJ*],[#null*],and[and#CC*],[#null*],domestic[domestic#JJ*,domestic#NN*],[ #null*],market[market#NN:UN*,market#VB*,market#VBP*],,[,#,*],[#null*],and[and#CC*],[#null *],to[to#IN*,to#TO*],[#null*],satisfy[satisfy#VB*,satisfy#VBP*],[#null*],the[the#DT*],[ #null*],growing[growing#NN:UN*,grow#VBG*],[#null*],demand[demand#NN:UN*,demand#VB*,demand#VBP*],,[,# ,*],[#null*],Chinese[Chinese#JJ*,Chinese#NN:U*,Chinese#NNP*],[#null*],entrepreneurs[entrepreneur#NNS*],[#null*], are[are#NN*,be#VBP*],[#null*],also[also#RB*],[#null*],making[making#NN:UN*,make#VBG*],[# null*],pioneering[pioneer#VBG*],[#null*],efforts[effort#NNS*],[#null*],to[to#IN*,to#TO*],[#null*] ,innovate[innovate#VB*,innovate#VBP*],[#null*],their[their#PRP$*],[#null*] ,products[product#NNS*],[#null*],and[and#CC*],[#null*],business[business#JJ*,business#NN:UN*],[#null*], models[model#NNS*,model#VBZ*],.[.#.*]]

(2)对翻译英语译文和标准英语译文进行短语切块后,生成的短语切块结果如下所示:(2) After performing phrase segmentation on the translated English translation and the standard English translation, the generated phrase segmentation results are as follows:

翻译英语译文短语切块结果:Translating the English translation phrase chopping results:

/Innovation/innovation#NN:UN*,B-NP-singular|E-NP-singular/,/#null*/,is/be#VBZ*,B-VP/,/#null*/,progressing/progress#VBG*,I-VP/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,an/a#DT*,B-NP-singular/,/#null*/,unprecedented/unprecedented#JJ*,I-NP-singular/,/#null*/,speed/speed#NN:UN*,speed#VB*,speed#VBP*,E-NP-singular/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,China/China#NNP*,china#JJ*,china#NN:U*,B-NP-singular|E-NP-singular/,./.#.*,O///Innovation/innovation#NN:UN*,B-NP-singular|E-NP-singular/,/#null*/,is/be#VBZ*,B-VP/,/#null*/,progressing/progress #VBG*,I-VP/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,an/a#DT*, B-NP-singular/,/#null*/,unprecedented/unprecedented#JJ*,I-NP-singular/,/#null*/,speed/speed#NN:UN*,speed#VB*,speed#VBP *,E-NP-singular/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,China/China#NNP*, china#JJ*,china#NN:U*,B-NP-singular|E-NP-singular/,./.#.*,O//

/In/In#NNP*,in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,order/order#NN:UN*,order#UH*,order#VB*,order#VBP*,B-NP-singular|E-NP-singular/,/#null*/,to/to#IN*,to#TO*,B-VP/,/#null*/,catch/catch#NN*,catch#VB*,catch#VBP*,I-VP/,/#null*/,up/up#IN*,up#JJ*,up#NN*,up#RP*,up#VB*,up#VBP*,B-PRT/,/#null*/,with/with#IN*,with#RP*,B-PP/,/#null*/,those/those#DT*,B-NP-plural/,/#null*/,developed/develop#VBD*,develop#VBN*,I-NP-plural/,/#null*/,countries/country#NNS*,E-NP-plural/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,the/the#DT*,B-NP-singular/,/#null*/,world/world#JJ*,world#NN:UN*,E-NP-singular/,/#null*/,as/as#CC*,as#IN*,as#RB*,B-ADVP/,/#null*/,fast/fast#JJ*,fast#NN*,fast#RP*,fast#VB*,fast#VBP*,I-ADVP/,/#null*/,as/as#CC*,as#IN*,as#RB*,B-SBAR/,/#null*/,it/it#PRP*,B-NP-singular|E-NP-singular/,/#null*/,can/can#MD*,can#NN*,can#VB*,can#VBP*,B-VP/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,the/the#DT*,B-NP-singular/,/#null*/,science/science#NN:UN*,I-NP-singular/,/#null*/,and/and#CC*,I-NP-singular/,/#null*/,technology/technology#NN:UN*,I-NP-singular/,/#null*/,field/field#NN*,field#VB*,field#VBP*,E-NP-singular/,,/,#,*,O/,/#null*/,China/China#NNP*,china#JJ*,china#NN:U*,B-NP-singular|E-NP-singular/,/#null*/,has/have#VBZ*,B-VP/,/#null*/,increased/increase#VBD*,increase#VBN*,I-VP/,/#null*/,funds/fund#NNS*,fund#VBZ*,B-NP-plural|E-NP-plural/,/#null*/,for/for#CC*,for#IN*,for#RP*,B-PP/,/#null*/,development/development#NN:UN*,B-NP-singular/,/#null*/,research/research#NN:U*,research#VB*,research#VBP*,E-NP-singular/,/#null*/,substantially/substantially#RB*,B-ADVP/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,recent/recent#JJ*,B-NP-plural/,/#null*/,years/year#NNS*,E-NP-plural/,./.#.*,O///In/In#NNP*,in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,order/order#NN:UN*,order#UH*,order# VB*,order#VBP*,B-NP-singular|E-NP-singular/,/#null*/,to/to#IN*,to#TO*,B-VP/,/#null*/, catch/catch#NN*,catch#VB*,catch#VBP*,I-VP/,/#null*/,up/up#IN*,up#JJ*,up#NN*,up#RP*, up#VB*,up#VBP*,B-PRT/,/#null*/,with/with#IN*,with#RP*,B-PP/,/#null*/,those/those#DT* ,B-NP-plural/,/#null*/,developed/develop#VBD*,develop#VBN*,I-NP-plural/,/#null*/,countries/country#NNS*,E-NP- plural/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,the/the#DT*,B-NP-singular/ ,/#null*/,world/world#JJ*,world#NN:UN*,E-NP-singular/,/#null*/,as/as#CC*,as#IN*,as#RB* ,B-ADVP/,/#null*/,fast/fast#JJ*,fast#NN*,fast#RP*,fast#VB*,fast#VBP*,I-ADVP/,/#null*/, as/as#CC*,as#IN*,as#RB*,B-SBAR/,/#null*/,it/it#PRP*,B-NP-singular|E-NP-singular/,/# null*/,can/can#MD*,can#NN*,can#VB*,can#VBP*,B-VP/,/#null*/,in/in#IN*,in#NN*,in #RP*,B-PP/,/#null*/,the/the#DT*,B-NP-singular/,/#null*/,science/science#NN:UN*,I-NP-singular/ ,/#null*/,and/and#CC*,I-NP-singular/,/#null*/,te chnology/technology#NN:UN*,I-NP-singular/,/#null*/,field/field#NN*,field#VB*,field#VBP*,E-NP-singular/,,/,# ,*,O/,/#null*/,China/China#NNP*,china#JJ*,china#NN:U*,B-NP-singular|E-NP-singular/,/#null*/, has/have#VBZ*,B-VP/,/#null*/,increased/increase#VBD*,increase#VBN*,I-VP/,/#null*/,funds/fund#NNS*,fund# VBZ*,B-NP-plural|E-NP-plural/,/#null*/,for/for#CC*,for#IN*,for#RP*,B-PP/,/#null*/, development/development#NN:UN*,B-NP-singular/,/#null*/,research/research#NN:U*,research#VB*,research#VBP*,E-NP-singular/,/# null*/,substantially/substantially#RB*,B-ADVP/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/, recent/recent#JJ*,B-NP-plural/,/#null*/,years/year#NNS*,E-NP-plural/,./.#.*,O//

/Universities/university#NNS*,B-NP-plural/,/#null*/,and/and#CC*,I-NP-plural/,/#null*/,research/research#NN:U*,research#VB*,research#VBP*,I-NP-plural/,/#null*/,institutions/institution#NNS*,E-NP-plural/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,China/China#NNP*,china#JJ*,china#NN:U*,B-NP-singular|E-NP-singular/,/#null*/,are/are#NN*,be#VBP*,B-VP/,/#null*/,actively/actively#RB*,I-VP/,/#null*/,carrying/carry#VBG*,I-VP/,/#null*/,out/out#IN*,out#NN*,out#RB*,out#RP*,out#UH*,out#VB*,out#VBP*,B-PRT/,/#null*/,innovation/innovation#NN:UN*,B-NP-plural/,/#null*/,researches/research#NNS*,research#VBZ*,E-NP-plural/,,/,#,*,O/,/#null*/,which/which#WDT*,which#WP*,B-NP-singular|E-NP-singular/,/#null*/,cover/cover#NN:UN*,cover#VB*,cover#VBP*,B-VP/,/#null*/,high-technology/high-technology#JJ*,B-NP-plural/,/#null*/,fields/field#NNS*,field#VBZ*,E-NP-plural/,/#null*/,such/such#DT*,such#PDT*,B-PP/,/#null*/,as/as#CC*,as#IN*,as#RB*,I-PP/,/#null*/,big/big#JJ*,big#RB*,B-NP-plural/,/#null*/,data/data#NN:UN*,datum#NNS*,E-NP-plural/,,/,#,*,O/,/#null*/,biochemistry/biochemistry#NN:U*,B-NP-singular|E-NP-singular/,,/,#,*,O/,/#null*/,new/new#JJ*,B-NP-plural/,/#null*/,energy/energy#NN:UN*,I-NP-plural/,/#null*/,and/and#CC*,I-NP-plural/,/#null*/,robots/robot#NNS*,E-NP-plural/,,/,#,*,O/,/#null*/,etc/etc#null*,B-NP-singular|E-NP-singular/,./.#.*,O/,/#null*/,They/they#PRP*,B-NP-singular|E-NP-singular/,/#null*/,also/also#RB*,B-ADVP/,/#null*/,cooperate/cooperate#VB*,cooperate#VBP*,B-VP/,/#null*/,with/with#IN*,with#RP*,B-PP/,/#null*/,science/science#NN:UN*,B-NP-singular/,/#null*/,park/park#NN*,park#VB*,park#VBP*,E-NP-singular/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,various/various#JJ*,B-NP-plural/,/#null*/,regions/region#NNS*,E-NP-plural/,,/,#,*,O/,/#null*/,commercializing/commercialize#VBG*,B-VP/,/#null*/,the/the#DT*,B-NP-plural/,/#null*/,research/research#NN:U*,research#VB*,research#VBP*,I-NP-plural/,/#null*/,results/result#NNS*,result#VBZ*,E-NP-plural/,/#null*/,of/of#IN*,B-PP/,/#null*/,innovation/innovation#NN:UN*,B-NP-singular|E-NP-singular/,./.#.*,O///Universities/university#NNS*,B-NP-plural/,/#null*/,and/and#CC*,I-NP-plural/,/#null*/,research/research#NN:U*, research#VB*,research#VBP*,I-NP-plural/,/#null*/,institutions/institution#NNS*,E-NP-plural/,/#null*/,in/in#IN*, in#NN*,in#RP*,B-PP/,/#null*/,China/China#NNP*,china#JJ*,china#NN:U*,B-NP-singular|E-NP- singular/,/#null*/,are/are#NN*,be#VBP*,B-VP/,/#null*/,actively/actively#RB*,I-VP/,/#null*/, carrying/carry#VBG*,I-VP/,/#null*/,out/out#IN*,out#NN*,out#RB*,out#RP*,out#UH*,out#VB*, out#VBP*,B-PRT/,/#null*/,innovation/innovation#NN:UN*,B-NP-plural/,/#null*/,researches/research#NNS*,research#VBZ*, E-NP-plural/,,/,#,*,O/,/#null*/,which/which#WDT*,which#WP*,B-NP-singular|E-NP-singular/,/# null*/,cover/cover#NN:UN*,cover#VB*,cover#VBP*,B-VP/,/#null*/,high-technology/high-technology#JJ*,B-NP-plural /,/#null*/,fields/field#NNS*,field#VBZ*,E-NP-plural/,/#null*/,such/such#DT*,such#PDT*,B-PP/, /#null*/,as/as#CC*,as#IN*,as#RB*,I-PP/,/#null*/,big/big#JJ*,big#RB*,B-NP- plural/,/#null*/,data/data#NN:UN*,d atum#NNS*,E-NP-plural/,,/,#,*,O/,/#null*/,biochemistry/biochemistry#NN:U*,B-NP-singular|E-NP-singular/, ,/,#,*,O/,/#null*/,new/new#JJ*,B-NP-plural/,/#null*/,energy/energy#NN:UN*,I-NP-plural /,/#null*/,and/and#CC*,I-NP-plural/,/#null*/,robots/robot#NNS*,E-NP-plural/,,/,#,*,O /,/#null*/,etc/etc#null*,B-NP-singular|E-NP-singular/,./.#.*,O/,/#null*/,They/they#PRP* ,B-NP-singular|E-NP-singular/,/#null*/,also/also#RB*,B-ADVP/,/#null*/,cooperate/cooperate#VB*,cooperate#VBP*, B-VP/,/#null*/,with/with#IN*,with#RP*,B-PP/,/#null*/,science/science#NN:UN*,B-NP-singular/, /#null*/,park/park#NN*,park#VB*,park#VBP*,E-NP-singular/,/#null*/,in/in#IN*,in#NN*,in# RP*,B-PP/,/#null*/,various/various#JJ*,B-NP-plural/,/#null*/,regions/region#NNS*,E-NP-plural/,,/ ,#,*,O/,/#null*/,commercializing/commercialize#VBG*,B-VP/,/#null*/,the/the#DT*,B-NP-plural/,/#null* /,research/research#NN:U*,research#VB*,research#VBP*,I-NP-plural/,/#null*/,results/result#NNS*,result#VBZ*,E-NP- plural/,/#null*/,of/of#IN*,B-PP/,/#null*/,innova tion/innovation#NN:UN*,B-NP-singular|E-NP-singular/,./.#.*,O//

/Meanwhile/meanwhile#JJ*,meanwhile#NN:U*,meanwhile#RB*,B-ADVP/,,/,#,*,O/,/#null*/,no/no#DT*,no#NN*,B-NP-singular/,/#null*/,matter/matter#NN:UN*,matter#VB*,matter#VBP*,E-NP-singular/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,production/production#NN:UN*,B-NP-singular/,/#null*/,and/and#CC*,I-NP-singular/,/#null*/,business/business#JJ*,business#NN:UN*,I-NP-singular/,/#null*/,model/model#JJ*,model#NN*,model#VB*,model#VBP*,E-NP-singular/,,/,#,*,O/,/#null*/,entrepreneurs/entrepreneur#NNS*,B-NP-plural|E-NP-plural/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,China/China#NNP*,china#JJ*,china#NN:U*,B-NP-singular|E-NP-singular/,/#null*/,are/are#NN*,be#VBP*,B-VP/,/#null*/,competing/compete#VBG*,I-VP/,/#null*/,to/to#IN*,to#TO*,I-VP/,/#null*/,be/be#VB*,I-VP/,/#null*/,pioneers/pioneer#NNS*,pioneer#VBZ*,B-NP-plural|E-NP-plural/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,innovation/innovation#NN:UN*,B-NP-singular|E-NP-singular/,/#null*/,to/to#IN*,to#TO*,B-VP/,/#null*/,adapt/adapt#VB*,adapt#VBP*,I-VP/,/#null*/,to/to#IN*,to#TO*,B-PP/,/#null*/,the/the#DT*,B-NP-singular/,/#null*/,constantly/constantly#RB*,I-NP-singular/,/#null*/,changing/change#VBG*,E-NP-singular/,/#null*/,and/and#CC*,O/,/#null*/,increasing/increasing#JJ*,increasing#NN:UN*,increase#VBG*,B-VP/,/#null*/,needs/needs#RB*,need#NNS*,need#VBZ*,B-NP-plural|E-NP-plural/,/#null*/,of/of#IN*,B-PP/,/#null*/,the/the#DT*,B-NP-singular/,/#null*/,consumer/consumer#NN:UN*,I-NP-singular/,/#null*/,market/market#NN:UN*,market#VB*,market#VBP*,E-NP-singular/,/#null*/,at/at#IN*,at#RP*,B-PP/,/#null*/,home/home#JJ*,home#NN:UN*,home#VB*,home#VBP*,B-NP-singular|E-NP-singular/,/#null*/,and/and#CC*,O/,/#null*/,abroad/abroad#JJ*,abroad#RB*,B-ADVP/,./.#.*,O///Meanwhile/meanwhile#JJ*,meanwhile#NN:U*,while#RB*,B-ADVP/,,/,#,*,O/,/#null*/,no/no#DT*,no# NN*,B-NP-singular/,/#null*/,matter/matter#NN:UN*,matter#VB*,matter#VBP*,E-NP-singular/,/#null*/,in/ in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,production/production#NN:UN*,B-NP-singular/,/#null*/,and/ and#CC*,I-NP-singular/,/#null*/,business/business#JJ*,business#NN:UN*,I-NP-singular/,/#null*/,model/model#JJ *,model#NN*,model#VB*,model#VBP*,E-NP-singular/,,/,#,*,O/,/#null*/,entrepreneurs/entrepreneur#NNS*,B-NP -plural|E-NP-plural/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,China/China#NNP* ,china#JJ*,china#NN:U*,B-NP-singular|E-NP-singular/,/#null*/,are/are#NN*,be#VBP*,B-VP/,/ #null*/,competing/compete#VBG*,I-VP/,/#null*/,to/to#IN*,to#TO*,I-VP/,/#null*/,be/be# VB*,I-VP/,/#null*/,pioneers/pioneer#NNS*,pioneer#VBZ*,B-NP-plural|E-NP-plural/,/#null*/,in/in#IN *,in#NN*,in#RP*,B-PP/,/#null*/,innovation/innovation#NN:UN*,B-NP-singular|E-NP-singular/,/#null*/ ,to/to#IN*,to#TO*,B-VP/,/#null*/,adapt/adapt#VB*,adapt pt#VBP*,I-VP/,/#null*/,to/to#IN*,to#TO*,B-PP/,/#null*/,the/the#DT*,B-NP- singular/,/#null*/,constantly/constantly#RB*,I-NP-singular/,/#null*/,changing/change#VBG*,E-NP-singular/,/#null*/,and /and#CC*,O/,/#null*/,increasing/increasing#JJ*,increasing#NN:UN*,increase#VBG*,B-VP/,/#null*/,needs/needs#RB *,need#NNS*,need#VBZ*,B-NP-plural|E-NP-plural/,/#null*/,of/of#IN*,B-PP/,/#null*/,the /the#DT*,B-NP-singular/,/#null*/,consumer/consumer#NN:UN*,I-NP-singular/,/#null*/,market/market#NN:UN*, market#VB*,market#VBP*,E-NP-singular/,/#null*/,at/at#IN*,at#RP*,B-PP/,/#null*/,home/home# JJ*,home#NN:UN*,home#VB*,home#VBP*,B-NP-singular|E-NP-singular/,/#null*/,and/and#CC*,O/,/ #null*/,abroad/abroad#JJ*,abroad#RB*,B-ADVP/,./.#.*,O//

标准英语译文短语切块结果:Standard English translation phrase segmentation results:

/China/China#NNP*,china#JJ*,china#NN:U*,B-NP-singular|E-NP-singular/,'/'#null*/,s/s#POS*/,/#null*/,innovation/innovation#NN:UN*,E-NP-singular/,/#null*/,is/be#VBZ*,B-VP/,/#null*/,flourishing/flourishing#JJ*,flourish#VBG*,I-VP/,/#null*/,faster/faster#NN*,faster#RB*,faster#RBR*,fast#JJR*,B-ADVP/,/#null*/,than/than#IN*,B-PP/,/#null*/,ever/ever#JJ*,ever#RB*,ever#RP*,B-ADVP/,/#null*/,before/before#IN*,before#RP*,I-ADVP/,./.#.*,O///China/China#NNP*,china#JJ*,china#NN:U*,B-NP-singular|E-NP-singular/,'/'#null*/,s/s#POS*/,/ #null*/,innovation/innovation#NN:UN*,E-NP-singular/,/#null*/,is/be#VBZ*,B-VP/,/#null*/,flourishing/flourishing#JJ *,flourish#VBG*,I-VP/,/#null*/,faster/faster#NN*,faster#RB*,faster#RBR*,fast#JJR*,B-ADVP/,/#null*/ ,than/than#IN*,B-PP/,/#null*/,ever/ever#JJ*,ever#RB*,ever#RP*,B-ADVP/,/#null*/,before/before #IN*,before#RP*,I-ADVP/,./.#.*,O//

/In/In#NNP*,in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,order/order#NN:UN*,order#UH*,order#VB*,order#VBP*,B-NP-singular|E-NP-singular/,/#null*/,to/to#IN*,to#TO*,B-VP/,/#null*/,surpass/surpass#VB*,surpass#VBP*,I-VP/,/#null*/,developed/develop#VBD*,develop#VBN*,B-NP-plural/,/#null*/,countries/country#NNS*,E-NP-plural/,/#null*/,on/on#IN*,on#JJ*,on#RP*,B-PP/,/#null*/,science/science#NN:UN*,B-NP-singular/,/#null*/,and/and#CC*,I-NP-singular/,/#null*/,technology/technology#NN:UN*,E-NP-singular/,/#null*/,as/as#CC*,as#IN*,as#RB*,B-ADVP/,/#null*/,soon/soon#JJ*,soon#RB*,I-ADVP/,/#null*/,as/as#CC*,as#IN*,as#RB*,B-PP/,/#null*/,possible/possible#JJ*,possible#NN*,B-ADJP/,,/,#,*,O/,/#null*/,China/China#NNP*,china#JJ*,china#NN:U*,B-NP-singular|E-NP-singular/,/#null*/,has/have#VBZ*,B-VP/,/#null*/,sharply/sharply#RB*,I-VP/,/#null*/,increased/increase#VBD*,increase#VBN*,I-VP/,/#null*/,research/research#NN:U*,research#VB*,research#VBP*,B-NP-singular/,/#null*/,and/and#CC*,I-NP-singular/,/#null*/,development/development#NN:UN*,I-NP-singular/,/#null*/,fund/fund#NN:UN*,fund#VB*,fund#VBP*,E-NP-singular/,./.#.*,O///In/In#NNP*,in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,order/order#NN:UN*,order#UH*,order# VB*,order#VBP*,B-NP-singular|E-NP-singular/,/#null*/,to/to#IN*,to#TO*,B-VP/,/#null*/, surpass/surpass#VB*,surpass#VBP*,I-VP/,/#null*/,developed/develop#VBD*,develop#VBN*,B-NP-plural/,/#null*/,countries/ country#NNS*,E-NP-plural/,/#null*/,on/on#IN*,on#JJ*,on#RP*,B-PP/,/#null*/,science/science# NN:UN*,B-NP-singular/,/#null*/,and/and#CC*,I-NP-singular/,/#null*/,technology/technology#NN:UN*,E-NP -singular/,/#null*/,as/as#CC*,as#IN*,as#RB*,B-ADVP/,/#null*/,soon/soon#JJ*,soon#RB*, I-ADVP/,/#null*/,as/as#CC*,as#IN*,as#RB*,B-PP/,/#null*/,possible/possible#JJ*,possible#NN* ,B-ADJP/,,/,#,*,O/,/#null*/,China/China#NNP*,china#JJ*,china#NN:U*,B-NP-singular|E-NP -singular/,/#null*/,has/have#VBZ*,B-VP/,/#null*/,sharply/sharply#RB*,I-VP/,/#null*/,increased/increase# VBD*,increase#VBN*,I-VP/,/#null*/,research/research#NN:U*,research#VB*,research#VBP*,B-NP-singular/,/#null*/ ,and/and#CC*,I-NP-singular/,/#null*/,development/development ment#NN:UN*,I-NP-singular/,/#null*/,fund/fund#NN:UN*,fund#VB*,fund#VBP*,E-NP-singular/,./.# .*,O//

/Chinese/Chinese#JJ*,Chinese#NN:U*,Chinese#NNP*,B-NP-plural/,/#null*/,universities/university#NNS*,I-NP-plural/,/#null*/,and/and#CC*,I-NP-plural/,/#null*/,institutes/institute#NNS*,institute#VBZ*,E-NP-plural/,/#null*/,are/are#NN*,be#VBP*,B-VP/,/#null*/,actively/actively#RB*,I-VP/,/#null*/,doing/doing#NN:UN*,do#VBG*,I-VP/,/#null*/,innovative/innovative#JJ*,B-NP-plural/,/#null*/,researches/research#NNS*,research#VBZ*,E-NP-plural/,,/,#,*,O/,/#null*/,covering/covering#JJ*,covering#NN:UN*,cover#VBG*,B-VP/,/#null*/,various/various#JJ*,B-NP-plural/,/#null*/,fields/field#NNS*,field#VBZ*,E-NP-plural/,/#null*/,of/of#IN*,B-PP/,/#null*/,high/high#JJ*,high#NN*,high#RP*,B-NP-singular/,/#null*/,technology/technology#NN:UN*,E-NP-singular/,,/,#,*,O/,/#null*/,from/from#IN*,from#RP*,B-PP/,/#null*/,big/big#JJ*,big#RB*,B-NP-plural/,/#null*/,data/data#NN:UN*,datum#NNS*,E-NP-plural/,/#null*/,to/to#IN*,to#TO*,B-VP/,/#null*/,biochemistry/biochemistry#NN:U*,I-VP/,,/,#,*,O/,/#null*/,and/and#CC*,O/,/#null*/,from/from#IN*,from#RP*,B-PP/,/#null*/,new/new#JJ*,B-NP-singular/,/#null*/,energy/energy#NN:UN*,E-NP-singular/,/#null*/,to/to#IN*,to#TO*,B-PP/,/#null*/,robots/robot#NNS*,B-NP-plural|E-NP-plural/,./.#.*,O///Chinese/Chinese#JJ*,Chinese#NN:U*,Chinese#NNP*,B-NP-plural/,/#null*/,universities/university#NNS*,I-NP-plural/,/#null */,and/and#CC*,I-NP-plural/,/#null*/,institutes/institute#NNS*,institute#VBZ*,E-NP-plural/,/#null*/,are/ are#NN*,be#VBP*,B-VP/,/#null*/,actively/actively#RB*,I-VP/,/#null*/,doing/doing#NN:UN*,do# VBG*,I-VP/,/#null*/,innovative/innovative#JJ*,B-NP-plural/,/#null*/,researches/research#NNS*,research#VBZ*,E-NP- plural/,,/,#,*,O/,/#null*/,covering/covering#JJ*,covering#NN:UN*,cover#VBG*,B-VP/,/#null*/,various /various#JJ*,B-NP-plural/,/#null*/,fields/field#NNS*,field#VBZ*,E-NP-plural/,/#null*/,of/of#IN* ,B-PP/,/#null*/,high/high#JJ*,high#NN*,high#RP*,B-NP-singular/,/#null*/,technology/technology#NN:UN* ,E-NP-singular/,,/,#,*,O/,/#null*/,from/from#IN*,from#RP*,B-PP/,/#null*/,big/big #JJ*,big#RB*,B-NP-plural/,/#null*/,data/data#NN:UN*,datum#NNS*,E-NP-plural/,/#null*/,to /to#IN*,to#TO*,B-VP/,/#null*/,biochemistry/biochemistry#NN:U*,I-VP/,,/,#,*,O/,/#null* /,and/and#CC*,O/,/#null*/,from/ from#IN*,from#RP*,B-PP/,/#null*/,new/new#JJ*,B-NP-singular/,/#null*/,energy/energy#NN:UN*, E-NP-singular/,/#null*/,to/to#IN*,to#TO*,B-PP/,/#null*/,robots/robot#NNS*,B-NP-plural|E -NP-plural/,./.#.*,O//

/They/they#PRP*,B-NP-singular|E-NP-singular/,/#null*/,are/are#NN*,be#VBP*,B-VP/,/#null*/,also/also#RB*,I-VP/,/#null*/,cooperating/cooperate#VBG*,I-VP/,/#null*/,with/with#IN*,with#RP*,B-PP/,/#null*/,science/science#NN:UN*,B-NP-plural/,/#null*/,and/and#CC*,I-NP-plural/,/#null*/,technology/technology#NN:UN*,I-NP-plural/,/#null*/,parks/park#NNS*,park#VBZ*,E-NP-plural/,/#null*/,in/in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,different/different#JJ*,B-NP-plural/,/#null*/,places/place#NNS*,place#VBZ*,E-NP-plural/,,/,#,*,O/,/#null*/,so/so#CC*,so#JJ*,so#NN:U*,O/,/#null*/,as/as#CC*,as#IN*,as#RB*,O/,/#null*/,to/to#IN*,to#TO*,B-VP/,/#null*/,commercialize/commercialize#VB*,commercialize#VBP*,I-VP/,/#null*/,their/their#PRP$*,B-NP-plural/,/#null*/,fruits/fruit#NNS*,fruit#VBZ*,E-NP-plural/,/#null*/,of/of#IN*,B-PP/,/#null*/,innovation/innovation#NN:UN*,B-NP-singular|E-NP-singular/,./.#.*,O///They/they#PRP*,B-NP-singular|E-NP-singular/,/#null*/,are/are#NN*,be#VBP*,B-VP/,/#null*/, also/also#RB*,I-VP/,/#null*/,cooperating/cooperate#VBG*,I-VP/,/#null*/,with/with#IN*,with#RP*,B- PP/,/#null*/,science/science#NN:UN*,B-NP-plural/,/#null*/,and/and#CC*,I-NP-plural/,/#null*/ ,technology/technology#NN:UN*,I-NP-plural/,/#null*/,parks/park#NNS*,park#VBZ*,E-NP-plural/,/#null*/,in/ in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,different/different#JJ*,B-NP-plural/,/#null*/,places/place# NNS*,place#VBZ*,E-NP-plural/,,/,#,*,O/,/#null*/,so/so#CC*,so#JJ*,so#NN:U*, O/,/#null*/,as/as#CC*,as#IN*,as#RB*,O/,/#null*/,to/to#IN*,to#TO*,B-VP /,/#null*/,commercialize/commercialize#VB*,commercialize#VBP*,I-VP/,/#null*/,their/their#PRP$*,B-NP-plural/,/#null* /,fruits/fruit#NNS*,fruit#VBZ*,E-NP-plural/,/#null*/,of/of#IN*,B-PP/,/#null*/,innovation/innovation#NN :UN*,B-NP-singular|E-NP-singular/,./.#.*,O//

/In/In#NNP*,in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,the/the#DT*,B-NP-singular/,/#null*/,meantime/meantime#JJ*,meantime#NN:U*,E-NP-singular/,,/,#,*,O/,/#null*/,to/to#IN*,to#TO*,B-VP/,/#null*/,adapt/adapt#VB*,adapt#VBP*,I-VP/,/#null*/,to/to#IN*,to#TO*,B-PP/,/#null*/,the/the#DT*,B-NP-singular/,/#null*/,changing/change#VBG*,I-NP-singular/,/#null*/,foreign/foreign#JJ*,I-NP-singular/,/#null*/,and/and#CC*,I-NP-singular/,/#null*/,domestic/domestic#JJ*,domestic#NN*,I-NP-singular/,/#null*/,market/market#NN:UN*,market#VB*,market#VBP*,E-NP-singular/,,/,#,*,O/,/#null*/,and/and#CC*,O/,/#null*/,to/to#IN*,to#TO*,B-VP/,/#null*/,satisfy/satisfy#VB*,satisfy#VBP*,I-VP/,/#null*/,the/the#DT*,B-NP-singular/,/#null*/,growing/growing#NN:UN*,grow#VBG*,I-NP-singular/,/#null*/,demand/demand#NN:UN*,demand#VB*,demand#VBP*,E-NP-singular/,,/,#,*,O/,/#null*/,Chinese/Chinese#JJ*,Chinese#NN:U*,Chinese#NNP*,B-NP-plural/,/#null*/,entrepreneurs/entrepreneur#NNS*,E-NP-plural/,/#null*/,are/are#NN*,be#VBP*,B-VP/,/#null*/,also/also#RB*,I-VP/,/#null*/,making/making#NN:UN*,make#VBG*,I-VP/,/#null*/,pioneering/pioneer#VBG*,B-NP-plural/,/#null*/,efforts/effort#NNS*,E-NP-plural/,/#null*/,to/to#IN*,to#TO*,B-VP/,/#null*/,innovate/innovate#VB*,innovate#VBP*,I-VP/,/#null*/,their/their#PRP$*,B-NP-plural/,/#null*/,products/product#NNS*,I-NP-plural/,/#null*/,and/and#CC*,I-NP-plural/,/#null*/,business/business#JJ*,business#NN:UN*,I-NP-plural/,/#null*/,models/model#NNS*,model#VBZ*,E-NP-plural/,./.#.*,O///In/In#NNP*,in#IN*,in#NN*,in#RP*,B-PP/,/#null*/,the/the#DT*,B-NP-singular/,/# null*/,meantime/meantime#JJ*,meantime#NN:U*,E-NP-singular/,,/,#,*,O/,/#null*/,to/to#IN*,to# TO*,B-VP/,/#null*/,adapt/adapt#VB*,adapt#VBP*,I-VP/,/#null*/,to/to#IN*,to#TO*,B -PP/,/#null*/,the/the#DT*,B-NP-singular/,/#null*/,changing/change#VBG*,I-NP-singular/,/#null*/, foreign/foreign#JJ*,I-NP-singular/,/#null*/,and/and#CC*,I-NP-singular/,/#null*/,domestic/domestic#JJ*,domestic#NN *,I-NP-singular/,/#null*/,market/market#NN:UN*,market#VB*,market#VBP*,E-NP-singular/,,/,#,*,O/ ,/#null*/,and/and#CC*,O/,/#null*/,to/to#IN*,to#TO*,B-VP/,/#null*/,satisfy/satisfy# VB*,satisfy#VBP*,I-VP/,/#null*/,the/the#DT*,B-NP-singular/,/#null*/,growing/growing#NN:UN*,grow# VBG*,I-NP-singular/,/#null*/,demand/demand#NN:UN*,demand#VB*,demand#VBP*,E-NP-singular/,,/,#,*,O /,/#null*/,Chinese/Chinese#JJ*,Chinese#NN:U*,Chinese#NNP*,B-NP-plural/,/#null*/,entrepreneurs/entrepreneur#NNS*,E-NP -plural/,/#null*/,are/are#NN*,be#VBP*,B-VP/,/#null*/,also/als o#RB*,I-VP/,/#null*/,making/making#NN:UN*,make#VBG*,I-VP/,/#null*/,pioneering/pioneer#VBG*,B- NP-plural/,/#null*/,efforts/effort#NNS*,E-NP-plural/,/#null*/,to/to#IN*,to#TO*,B-VP/,/# null*/,innovate/innovate#VB*,innovate#VBP*,I-VP/,/#null*/,their/their#PRP$*,B-NP-plural/,/#null*/,products/ product#NNS*,I-NP-plural/,/#null*/,and/and#CC*,I-NP-plural/,/#null*/,business/business#JJ*,business#NN:UN *,I-NP-plural/,/#null*/,models/model#NNS*,model#VBZ*,E-NP-plural/,./.#.*,O//

(3)对翻译英语译文和标准英语译文进行词性消歧后,生成的词性消歧结果如下所示:(3) After performing part-of-speech disambiguation on the translated English translation and the standard English translation, the generated part-of-speech disambiguation results are as follows:

翻译英语译文词性消歧结果:Translate English translation part-of-speech disambiguation results:

<S>Innovation[innovation#NN:UN,B-NP-singular|E-NP-singular]is[be#VBZ,B-VP]progressing[progress#VBG,I-VP]in[in#IN,B-PP]an[a#DT,B-NP-singular]unprecedented[unprecedented#JJ,I-NP-singular]speed[speed#NN:UN,E-NP-singular]in[in#IN,B-PP]China[China#NNP,B-NP-singular|E-NP-singular].[.#.,<#S>,O]<S>Innovation[innovation#NN:UN,B-NP-singular|E-NP-singular]is[be#VBZ,B-VP]progressing[progress#VBG,I-VP]in[in#IN,B -PP]an[a#DT,B-NP-singular]unprecedented[unprecedented#JJ,I-NP-singular]speed[speed#NN:UN,E-NP-singular]in[in#IN,B-PP ]China[China#NNP,B-NP-singular|E-NP-singular].[.#.,<#S>,O]

<S>In[in#IN,B-PP]order[order#NN:UN,B-NP-singular|E-NP-singular]to[to#IN,to#TO,B-VP]catch[catch#NN,catch#VB,catch#VBP,I-VP]up[up#IN,up#JJ,up#NN,up#RP,up#VB,up#VBP,B-PRT]with[with#IN,with#RP,B-PP]those[those#DT,B-NP-plural]developed[develop#VBD,develop#VBN,I-NP-plural]countries[country#NNS,E-NP-plural]in[in#IN,B-PP]the[the#DT,B-NP-singular]world[world#NN:UN,E-NP-singular]as[as#RB,B-ADVP]fast[fast#JJ,fast#NN,fast#RP,fast#VB,fast#VBP,I-ADVP]as[as#RB,B-SBAR]it[it#PRP,B-NP-singular|E-NP-singular]can[can#MD,B-VP]in[in#IN,B-PP]the[the#DT,B-NP-singular]science[science#NN:UN,I-NP-singular]and[and#CC,I-NP-singular]technology[technology#NN:UN,I-NP-singular]field[field#NN,field#VB,field#VBP,E-NP-singular],[,#,,O]China[China#NNP,B-NP-singular|E-NP-singular]has[have#VBZ,B-VP]increased[increase#VBN,I-VP]funds[fund#NNS,fund#VBZ,B-NP-plural|E-NP-plural]for[for#CC,for#IN,for#RP,B-PP]development[development#NN:UN,B-NP-singular]research[research#NN:U,research#VB,research#VBP,E-NP-singular]substantially[substantially#RB,B-ADVP]in[in#IN,in#NN,in#RP,B-PP]recent[recent#JJ,B-NP-plural]years[year#NNS,E-NP-plural].[.#.,<#S>,O]<S>In[in#IN,B-PP]order[order#NN:UN,B-NP-singular|E-NP-singular]to[to#IN,to#TO,B-VP]catch[catch #NN,catch#VB,catch#VBP,I-VP]up[up#IN,up#JJ,up#NN,up#RP,up#VB,up#VBP,B-PRT]with[with#IN ,with#RP,B-PP]those[those#DT,B-NP-plural]developed[develop#VBD,develop#VBN,I-NP-plural]countries[country#NNS,E-NP-plural]in [in#IN,B-PP]the[the#DT,B-NP-singular]world[world#NN:UN,E-NP-singular]as[as#RB,B-ADVP]fast[fast#JJ ,fast#NN,fast#RP,fast#VB,fast#VBP,I-ADVP]as[as#RB,B-SBAR]it[it#PRP,B-NP-singular|E-NP-singular]can [can#MD,B-VP]in[in#IN,B-PP]the[the#DT,B-NP-singular]science[science#NN:UN,I-NP-singular]and[and#CC ,I-NP-singular]technology[technology#NN:UN,I-NP-singular]field[field#NN,field#VB,field#VBP,E-NP-singular],[,#,,O]China [China#NNP,B-NP-singular|E-NP-singular]has[have#VBZ,B-VP]increased[increase#VBN,I-VP]funds[fund#NNS,fund#VBZ,B-NP -plural|E-NP-plural]for[for#CC,for#IN,for#RP,B-PP]development[development#NN:UN,B-NP-singular]research[research#NN:U,research #VB,research#VBP,E-NP-singular]substantially[sub constantly#RB,B-ADVP]in[in#IN,in#NN,in#RP,B-PP]recent[recent#JJ,B-NP-plural]years[year#NNS,E-NP-plural] .[.#.,<#S>,O]

<S>Universities[university#NNS,B-NP-plural]and[and#CC,I-NP-plural]research[research#NN:U,research#VB,research#VBP,I-NP-plural]institutions[institution#NNS,E-NP-plural]in[in#IN,B-PP]China[China#NNP,B-NP-singular|E-NP-singular]are[be#VBP,B-VP]actively[actively#RB,I-VP]carrying[carry#VBG,I-VP]out[out#IN,out#NN,out#RB,out#RP,out#UH,B-PRT]innovation[innovation#NN:UN,B-NP-plural]researches[research#NNS,research#VBZ,E-NP-plural],[,#,,O]which[which#WDT,B-NP-singular|E-NP-singular]cover[cover#NN:UN,cover#VB,cover#VBP,B-VP]high-technology[high-technology#JJ,B-NP-plural]fields[field#NNS,E-NP-plural]such[such#DT,B-PP]as[as#CC,as#IN,as#RB,I-PP]big[big#JJ,big#RB,B-NP-plural]data[data#NN:UN,datum#NNS,E-NP-plural],[,#,,O]biochemistry[biochemistry#NN:U,B-NP-singular|E-NP-singular],[,#,,O]new[new#JJ,B-NP-plural]energy[energy#NN:UN,I-NP-plural]and[and#CC,I-NP-plural]robots[robot#NNS,E-NP-plural],[,#,,O]etc[etc#null,B-NP-singular|E-NP-singular].[.#.,O]They[they#PRP,B-NP-singular|E-NP-singular]also[also#RB,B-ADVP]cooperate[cooperate#VB,cooperate#VBP,B-VP]with[with#IN,with#RP,B-PP]science[science#NN:UN,B-NP-singular]park[park#NN,park#VB,park#VBP,E-NP-singular]in[in#IN,in#NN,in#RP,B-PP]various[various#JJ,B-NP-plural]regions[region#NNS,E-NP-plural],[,#,,O]commercializing[commercialize#VBG,B-VP]the[the#DT,B-NP-plural]research[research#NN:U,I-NP-plural]results[result#NNS,result#VBZ,E-NP-plural]of[of#IN,B-PP]innovation[innovation#NN:UN,B-NP-singular|E-NP-singular].[.#.,<#S>,O]<S>Universities[university#NNS,B-NP-plural]and[and#CC,I-NP-plural]research[research#NN:U,research#VB,research#VBP,I-NP-plural]institutions [institution#NNS,E-NP-plural]in[in#IN,B-PP]China[China#NNP,B-NP-singular|E-NP-singular]are[be#VBP,B-VP]actively [actively#RB,I-VP]carrying[carry#VBG,I-VP]out[out#IN,out#NN,out#RB,out#RP,out#UH,B-PRT]innovation[innovation#NN :UN,B-NP-plural]researches[research#NNS,research#VBZ,E-NP-plural],[,#,,O]which[which#WDT,B-NP-singular|E-NP-singular ]cover[cover#NN:UN,cover#VB,cover#VBP,B-VP]high-technology[high-technology#JJ,B-NP-plural]fields[field#NNS,E-NP-plural]such [such#DT,B-PP]as[as#CC,as#IN,as#RB,I-PP]big[big#JJ,big#RB,B-NP-plural]data[data#NN:UN ,datum#NNS,E-NP-plural],[,#,,O]biochemistry[biochemistry#NN:U,B-NP-singular|E-NP-singular],[,#,,O]new[new #JJ,B-NP-plural]energy[energy#NN:UN,I-NP-plural]and[and#CC,I-NP-plural]robots[robot#NNS,E-NP-plural],[, #,,O]etc[etc#null,B-NP-singular|E-NP-singular].[.#.,O]They[they#PRP,B-NP-singular|E-NP-singular]also [also #RB ,B-ADVP]cooperate[cooperate#VB,cooperate#VBP,B-VP]with[with#IN,with#RP,B-PP]science[science#NN:UN,B-NP-singular]park[park #NN,park#VB,park#VBP,E-NP-singular]in[in#IN,in#NN,in#RP,B-PP]various[various#JJ,B-NP-plural]regions[region #NNS,E-NP-plural],[,#,,O]commercializing[commercialize#VBG,B-VP]the[the#DT,B-NP-plural]research[research#NN:U,I-NP -plural]results[result#NNS,result#VBZ,E-NP-plural]of[of#IN,B-PP]innovation[innovation#NN:UN,B-NP-singular|E-NP-singular]. [.#.,<#S>,O]

<S>Meanwhile[meanwhile#JJ,meanwhile#NN:U,meanwhile#RB,B-ADVP],[,#,,O]no[no#DT,B-NP-singular]matter[matter#NN:UN,E-NP-singular]in[in#IN,B-PP]production[production#NN:UN,B-NP-singular]and[and#CC,I-NP-singular]business[business#JJ,I-NP-singular]model[model#JJ,model#NN,model#VB,model#VBP,E-NP-singular],[,#,,O]entrepreneurs[entrepreneur#NNS,B-NP-plural|E-NP-plural]in[in#IN,B-PP]China[China#NNP,B-NP-singular|E-NP-singular]are[be#VBP,B-VP]competing[compete#VBG,I-VP]to[to#IN,to#TO,I-VP]be[be#VB,I-VP]pioneers[pioneer#NNS,B-NP-plural|E-NP-plural]in[in#IN,B-PP]innovation[innovation#NN:UN,B-NP-singular|E-NP-singular]to[to#IN,to#TO,B-VP]adapt[adapt#VB,adapt#VBP,I-VP]to[to#IN,to#TO,B-PP]the[the#DT,B-NP-singular]constantly[constantly#RB,I-NP-singular]changing[change#VBG,E-NP-singular]and[and#CC,O]increasing[increasing#JJ,increasing#NN:UN,increase#VBG,B-VP]needs[need#NNS,B-NP-plural|E-NP-plural]of[of#IN,B-PP]the[the#DT,B-NP-singular]consumer[consumer#NN:UN,I-NP-singular]market[market#NN:UN,E-NP-singular]at[at#IN,at#RP,B-PP]home[home#NN:UN,B-NP-singular|E-NP-singular]and[and#CC,O]abroad[abroad#JJ,abroad#RB,B-ADVP].[.#.,<#S>,O]<S>Meanwhile[meanwhile#JJ,meanwhile#NN:U,while#RB,B-ADVP],[,#,,O]no[no#DT,B-NP-singular]matter[matter#NN:UN ,E-NP-singular]in[in#IN,B-PP]production[production#NN:UN,B-NP-singular]and[and#CC,I-NP-singular]business[business#JJ,I -NP-singular]model[model#JJ,model#NN,model#VB,model#VBP,E-NP-singular],[,#,,O]entrepreneurs[entrepreneur#NNS,B-NP-plural|E -NP-plural]in[in#IN,B-PP]China[China#NNP,B-NP-singular|E-NP-singular]are[be#VBP,B-VP]competing[compete#VBG,I -VP]to[to#IN,to#TO,I-VP]be[be#VB,I-VP]pioneers[pioneer#NNS,B-NP-plural|E-NP-plural]in[in#IN ,B-PP] innovation[innovation#NN:UN,B-NP-singular|E-NP-singular]to[to#IN,to#TO,B-VP]adapt[adapt#VB,adapt#VBP,I -VP]to[to#IN,to#TO,B-PP]the[the#DT,B-NP-singular]constantly[constantly#RB,I-NP-singular]changing[change#VBG,E-NP -singular]and[and#CC,O]increasing[increasing#JJ,increasing#NN:UN,increase#VBG,B-VP]needs[need#NNS,B-NP-plural|E-NP-plural]of [of#IN,B-PP]the[the#DT,B-NP-singular]consumer[consumer#NN:UN,I-NP-singular]market[market#NN:UN,E-NP-singular] ar]at[at#IN,at#RP,B-PP]home[home#NN:UN,B-NP-singular|E-NP-singular]and[and#CC,O]abroad[abroad#JJ, abroad#RB,B-ADVP].[.#.,<#S>,O]

标准英语译文词性消歧结果:Standard English translation part-of-speech disambiguation results:

<S><S>

China[China#NNP,china#JJ,china#NN:U,B-NP-singular|E-NP-singular]'['#POS]s[s#POS]innovation[innovation#NN:UN,E-NP-singular]is[be#VBZ,B-VP]flourishing[flourish#VBG,I-VP]faster[faster#RBR,fast#JJR,B-ADVP]than[than#IN,B-PP]ever[ever#JJ,ever#RB,ever#RP,B-ADVP]before[before#IN,before#RP,I-ADVP].[.#.,<#S>,O]China[China#NNP,china#JJ,china#NN:U,B-NP-singular|E-NP-singular]'['#POS]s[s#POS]innovation[innovation#NN:UN,E- NP-singular]is[be#VBZ,B-VP]flourishing[flourish#VBG,I-VP]faster[faster#RBR,fast#JJR,B-ADVP]than[than#IN,B-PP]ever[ ever#JJ,ever#RB,ever#RP,B-ADVP]before[before#IN,before#RP,I-ADVP].[.#.,<#S>,O]

<S>In[in#IN,B-PP]order[order#NN:UN,B-NP-singular|E-NP-singular]to[to#IN,to#TO,B-VP]surpass[surpass#VB,surpass#VBP,I-VP]developed[develop#VBD,develop#VBN,B-NP-plural]countries[country#NNS,E-NP-plural]on[on#IN,on#JJ,on#RP,B-PP]science[science#NN:UN,B-NP-singular]and[and#CC,I-NP-singular]technology[technology#NN:UN,E-NP-singular]as[as#RB,B-ADVP]soon[soon#JJ,soon#RB,I-ADVP]as[as#RB,B-PP]possible[possible#JJ,possible#NN,B-ADJP],[,#,,O]China[China#NNP,B-NP-singular|E-NP-singular]has[have#VBZ,B-VP]sharply[sharply#RB,I-VP]increased[increase#VBN,I-VP]research[research#NN:U,B-NP-singular]and[and#CC,I-NP-singular]development[development#NN:UN,I-NP-singular]fund[fund#NN:UN,fund#VB,fund#VBP,E-NP-singular].[.#.,<#S>,O]<S>In[in#IN,B-PP]order[order#NN:UN,B-NP-singular|E-NP-singular]to[to#IN,to#TO,B-VP]surpass[surpass #VB,surpass#VBP,I-VP]developed[develop#VBD,develop#VBN,B-NP-plural]countries[country#NNS,E-NP-plural]on[on#IN,on#JJ,on #RP,B-PP]science[science#NN:UN,B-NP-singular]and[and#CC,I-NP-singular]technology[technology#NN:UN,E-NP-singular]as[as #RB,B-ADVP]soon[soon#JJ,soon#RB,I-ADVP]as[as#RB,B-PP]possible[possible#JJ,possible#NN,B-ADJP],[,#, ,O]China[China#NNP,B-NP-singular|E-NP-singular]has[have#VBZ,B-VP]sharply[sharply#RB,I-VP]increased[increase#VBN,I-VP ]research[research#NN:U,B-NP-singular]and[and#CC,I-NP-singular]development[development#NN:UN,I-NP-singular]fund[fund#NN:UN,fund #VB,fund#VBP,E-NP-singular].[.#.,<#S>,O]

<S>Chinese[Chinese#JJ,B-NP-plural]universities[university#NNS,I-NP-plural]and[and#CC,I-NP-plural]institutes[institute#NNS,E-NP-plural]are[be#VBP,B-VP]actively[actively#RB,I-VP]doing[doing#NN:UN,do#VBG,I-VP]innovative[innovative#JJ,B-NP-plural]researches[research#NNS,E-NP-plural],[,#,,O]covering[covering#JJ,covering#NN:UN,cover#VBG,B-VP]various[various#JJ,B-NP-plural]fields[field#NNS,E-NP-plural]of[of#IN,B-PP]high[high#JJ,high#NN,high#RP,B-NP-singular]technology[technology#NN:UN,E-NP-singular],[,#,,O]from[from#IN,from#RP,B-PP]big[big#JJ,big#RB,B-NP-plural]data[data#NN:UN,datum#NNS,E-NP-plural]to[to#IN,to#TO,B-VP]biochemistry[biochemistry#NN:U,I-VP],[,#,,O]and[and#CC,O]from[from#IN,from#RP,B-PP]new[new#JJ,B-NP-singular]energy[energy#NN:UN,E-NP-singular]to[to#IN,to#TO,B-PP]robots[robot#NNS,B-NP-plural|E-NP-plural].[.#.,<#S>,O]<S>Chinese[Chinese#JJ,B-NP-plural]universities[university#NNS,I-NP-plural]and[and#CC,I-NP-plural]institutes[institute#NNS,E-NP-plural] ]are[be#VBP,B-VP]actively[actively#RB,I-VP]doing[doing#NN:UN,do#VBG,I-VP]innovative[innovative#JJ,B-NP-plural]researches [research#NNS,E-NP-plural],[,#,,O]covering[covering#JJ,covering#NN:UN,cover#VBG,B-VP]various[various#JJ,B-NP-plural ]fields[field#NNS,E-NP-plural]of[of#IN,B-PP]high[high#JJ,high#NN,high#RP,B-NP-singular]technology[technology#NN:UN ,E-NP-singular],[,#,,O]from[from#IN,from#RP,B-PP]big[big#JJ,big#RB,B-NP-plural]data[data#NN :UN,datum#NNS,E-NP-plural]to[to#IN,to#TO,B-VP]biochemistry[biochemistry#NN:U,I-VP],[,#,,O]and[and #CC,O]from[from#IN,from#RP,B-PP]new[new#JJ,B-NP-singular]energy[energy#NN:UN,E-NP-singular]to[to#IN ,to#TO,B-PP]robots[robot#NNS,B-NP-plural|E-NP-plural].[.#.,<#S>,O]

<S>They[they#PRP,B-NP-singular|E-NP-singular]are[be#VBP,B-VP]also[also#RB,I-VP]cooperating[cooperate#VBG,I-VP]with[with#IN,with#RP,B-PP]science[science#NN:UN,B-NP-plural]and[and#CC,I-NP-plural]technology[technology#NN:UN,I-NP-plural]parks[park#NNS,park#VBZ,E-NP-plural]in[in#IN,in#NN,in#RP,B-PP]different[different#JJ,B-NP-plural]places[place#NNS,E-NP-plural],[,#,,O]so[so#RB,O]as[as#CC,as#IN,O]to[to#TO,B-VP]commercialize[commercialize#VB,I-VP]their[their#PRP$,B-NP-plural]fruits[fruit#NNS,E-NP-plural]of[of#IN,B-PP]innovation[innovation#NN:UN,B-NP-singular|E-NP-singular].[.#.,<#S>,O]<S>They[they#PRP,B-NP-singular|E-NP-singular]are[be#VBP,B-VP]also[also#RB,I-VP]cooperating[cooperate#VBG,I-VP ]with[with#IN,with#RP,B-PP]science[science#NN:UN,B-NP-plural]and[and#CC,I-NP-plural]technology[technology#NN:UN,I -NP-plural]parks[park#NNS,park#VBZ,E-NP-plural]in[in#IN,in#NN,in#RP,B-PP]different[different#JJ,B-NP-plural] ]places[place#NNS,E-NP-plural],[,#,,O]so[so#RB,O]as[as#CC,as#IN,O]to[to#TO,B-VP ]commercialize[commercialize#VB,I-VP]their[their#PRP$,B-NP-plural]fruits[fruit#NNS,E-NP-plural]of[of#IN,B-PP]innovation[innovation# NN:UN,B-NP-singular|E-NP-singular].[.#.,<#S>,O]

<S>In[in#IN,B-PP]the[the#DT,B-NP-singular]meantime[meantime#JJ,meantime#NN:U,E-NP-singular],[,#,,O]to[to#IN,to#TO,B-VP]adapt[adapt#VB,adapt#VBP,I-VP]to[to#IN,to#TO,B-PP]the[the#DT,B-NP-singular]changing[change#VBG,I-NP-singular]foreign[foreign#JJ,I-NP-singular]and[and#CC,I-NP-singular]domestic[domestic#JJ,I-NP-singular]market[market#NN:UN,E-NP-singular],[,#,,O]and[and#CC,O]to[to#TO,B-VP]satisfy[satisfy#VB,I-VP]the[the#DT,B-NP-singular]growing[growing#NN:UN,grow#VBG,I-NP-singular]demand[demand#NN:UN,E-NP-singular],[,#,,O]Chinese[Chinese#JJ,B-NP-plural]entrepreneurs[entrepreneur#NNS,E-NP-plural]are[be#VBP,B-VP]also[also#RB,I-VP]making[making#NN:UN,make#VBG,I-VP]pioneering[pioneer#VBG,B-NP-plural]efforts[effort#NNS,E-NP-plural]to[to#TO,B-VP]innovate[innovate#VB,I-VP]their[their#PRP$,B-NP-plural]products[product#NNS,I-NP-plural]and[and#CC,I-NP-plural]business[business#JJ,I-NP-plural]models[model#NNS,E-NP-plural].[.#.,<#S>,O]<S>In[in#IN,B-PP]the[the#DT,B-NP-singular]meantime[meantime#JJ,meantime#NN:U,E-NP-singular],[,#,,O ]to[to#IN,to#TO,B-VP]adapt[the#VB,adapt#VBP,I-VP]to[to#IN,to#TO,B-PP]the[the#DT,B -NP-singular]changing[change#VBG,I-NP-singular]foreign[foreign#JJ,I-NP-singular]and[and#CC,I-NP-singular]domestic[domestic#JJ,I-NP -singular]market[market#NN:UN,E-NP-singular],[,#,,O]and[and#CC,O]to[to#TO,B-VP]satisfy[satisfy#VB,I -VP]the[the#DT,B-NP-singular]growing[growing#NN:UN,grow#VBG,I-NP-singular]demand[demand#NN:UN,E-NP-singular],[, #,,O]Chinese[Chinese#JJ,B-NP-plural]entrepreneurs[entrepreneur#NNS,E-NP-plural]are[be#VBP,B-VP]also[also#RB,I-VP]making [making#NN:UN,make#VBG,I-VP]pioneering[pioneer#VBG,B-NP-plural]efforts[effort#NNS,E-NP-plural]to[to#TO,B-VP]innovate [innovate#VB,I-VP]their[their#PRP$,B-NP-plural]products[product#NNS,I-NP-plural]and[and#CC,I-NP-plural]business[business# JJ,I-NP-plural]models[model#NNS,E-NP-plural].[.#.,<#S>,O]

第二步骤:执行“翻译英语译文忠实度分析模块”Step 2: Execute the "Translation English Translation Loyalty Analysis Module"

翻译英语译文忠实度分析模块是利用第一步骤生成的翻译英语译文和标准翻译英语译文预处理模块的分词结果,然后对翻译英语译文中的单词进行精确匹配、词干匹配、及同义词匹配,并记录匹配成功的单词及其编号,最后利用训练英语文本集生成的精确匹配权重、词干匹配权重、同义词匹配权重和翻译英语译文中匹配成功的单词总数计算翻译英语译文的忠实度。本实施方式的翻译英语译文忠实度分析结果如下所示:The English translation fidelity analysis module uses the English translation generated in the first step and the word segmentation results of the standard English translation preprocessing module, and then performs exact matching, word stem matching, and synonym matching on the words in the translated English translation, and Record the successfully matched words and their numbers, and finally use the exact match weight, stem match weight, synonym match weight generated by the training English text set and the total number of successfully matched words in the translated English translation to calculate the fidelity of the translated English translation. The English translation faithfulness analysis result of this embodiment is as follows:

标出翻译英语译文中翻译正确的英语单词:Mark the correct English word in the translated English translation:

Innovation is progressing in an unprecedented speed in China.In order to catch up with those developed countries in the world as fast as it can inthe science and technology field,China has increased funds for development research substantially in recent years.Universities and research institutionsin China are actively carrying out innovation researches,which cover high-technology fields such as big data,biochemistry,new energy and robots,etc.They also cooperate with science park in various regions,commercializing the research results of innovation.Meanwhile,no matter in production and business model,entrepreneurs in China are competing to be pioneers in innovation to adapt to the constantly changing and increasing needs of theconsumer market at home and abroad. Innovation is progressing in an unprecedented speed in China . In order to catch up with those developed countries in the world as fast as it can in the science and technology field, China has increased funds for development research substantially in recent years. Universities and research institutions in China are actively carrying out innovation researches , which cover high - technology fields such as big data , biochemistry , new energy and robots ,etc. They also cooperate with science park in various regions, commercializing the research results of innovation , Meanwhile production and business model , entrepreneurs in China are competing to be pioneers in innovation to adapt to the constantly changing and increasing needs of the consumer market at home and abroad.

翻译英语译文忠实度:63分。English translation fidelity: 63 points.

第三步骤:执行“翻译英语译文语义相似度分析模块”Step 3: Execute the "Semantic Similarity Analysis Module of Translated English Translation"

翻译英语译文语义相似度分析模块是利用第一步骤生成的翻译英语译文、标准英语译文词性消歧结果,根据词性消歧结果查找并记录单词在英语语义词典中对应的节点编号,在英语语义词典中,从翻译英语译文单词对应的节点编号查找到标准英文单词对应的节点编号,记录下查找路径上每个单词对应的节点编号及节点之间有向边的概率,根据查找路径上每个单词对应的节点编号和节点之间有向边的概率,生成翻译英语译文概率分布一维向量和标准英语译文概率分布一维向量,根据翻译英语译文概率分布一维向量和标准英语译文概率分布一维向量计算并输出翻译英语译文的语义相似度。本实施方式的翻译英语译文的语义相似度分析结果如下所示:The English translation semantic similarity analysis module is to use the translation English translation generated in the first step and the standard English translation part-of-speech disambiguation results to find and record the node numbers corresponding to the words in the English semantic dictionary according to the part-of-speech disambiguation results. , find the node number corresponding to the standard English word from the node number corresponding to the translated English word, record the node number corresponding to each word on the search path and the probability of the directed edge between nodes, according to each word on the search path The corresponding node number and the probability of the directed edge between the nodes generate a one-dimensional vector of the probability distribution of the translated English translation and a one-dimensional vector of the probability distribution of the standard English translation. According to the one-dimensional vector of the probability distribution of the translated English translation and the one-dimensional probability distribution of the standard English translation Vector computes and outputs the semantic similarity of the translated English text. The semantic similarity analysis results of the translated English translation of the present embodiment are as follows:

翻译英语译文概率分布二维向量:Translate the English translation probability distribution two-dimensional vector:

节点编号=2156概率值=3.0124842E-4Node number = 2156 Probability value = 3.0124842E-4

节点编号=4370概率值=5.800353E-4Node number = 4370 Probability value = 5.800353E-4

节点编号=6845概率值=6.6988135E-4node number = 6845 probability value = 6.6988135E-4

节点编号=100600概率值=2.8010816E-4Node number = 100600 Probability value = 2.8010816E-4

节点编号=10177概率值=2.602892E-4Node number = 10177 Probability value = 2.602892E-4

节点编号=46299概率值=0.021831261node number = 46299 probability value = 0.021831261

节点编号=15673概率值=2.3386389E-4Node number = 15673 Probability value = 2.3386389E-4

节点编号=105382概率值=0.0012974822node number = 105382 probability value = 0.0012974822

节点编号=54185概率值=2.3650641E-4Node number = 54185 Probability value = 2.3650641E-4

节点编号=17634概率值=5.919267E-4Node number = 17634 Probability value = 5.919267E-4

节点编号=20446概率值=0.00863843node number = 20446 probability value = 0.00863843

节点编号=14347概率值=4.175197E-4node number = 14347 probability value = 4.175197E-4

节点编号=20828概率值=6.5931125E-4Node number = 20828 Probability value = 6.5931125E-4

节点编号=19141概率值=2.867145E-4node number = 19141 probability value = 2.867145E-4

节点编号=26691概率值=9.737723E-4node number = 26691 probability value = 9.737723e-4

节点编号=102174概率值=0.0026993442node number = 102174 probability value = 0.0026993442

节点编号=28336概率值=2.3122136E-4Node number = 28336 Probability value = 2.3122136E-4

节点编号=29957概率值=7.412297E-4node number = 29957 probability value = 7.412297e-4

节点编号=22319概率值=2.4179148E-4node number = 22319 probability value = 2.4179148E-4

节点编号=43079概率值=0.0014851018node number = 43079 probability value = 0.0014851018

节点编号=32419概率值=0.00199511node number = 32419 probability value = 0.00199511

节点编号=35642概率值=2.8142944E-4node number = 35642 probability value = 2.8142944E-4

节点编号=4743概率值=3.0917602E-4node number = 4743 probability value = 3.0917602E-4

节点编号=40963概率值=6.0513936E-4node number = 40963 probability value = 6.0513936E-4

节点编号=89379概率值=2.4311275E-4node number = 89379 probability value = 2.4311275E-4

节点编号=44605概率值=2.668955E-4Node number = 44605 Probability value = 2.668955E-4

节点编号=55839概率值=3.0124842E-4node number = 55839 probability value = 3.0124842E-4

节点编号=46581概率值=4.294111E-4node number = 46581 probability value = 4.294111E-4

节点编号=48312概率值=2.906783E-4node number = 48312 probability value = 2.906783e-4

节点编号=52569概率值=0.018896732node number = 52569 probability value = 0.018896732

节点编号=53413概率值=4.294111E-4Node number = 53413 Probability value = 4.294111E-4

节点编号=97348概率值=4.2544733E-4Node number = 97348 Prob value = 4.2544733E-4

节点编号=41450概率值=0.002328069node number = 41450 probability value = 0.002328069

节点编号=58665概率值=2.8142944E-4node number = 58665 probability value = 2.8142944E-4

节点编号=30269概率值=3.052122E-4Node number = 30269 Probability value = 3.052122E-4

节点编号=59301概率值=5.1132956E-4Node number = 59301 Probability value = 5.1132956E-4

节点编号=62168概率值=4.2676856E-4Node number = 62168 Probability value = 4.2676856E-4

节点编号=62590概率值=6.276009E-4Node number = 62590 Probability value = 6.276009E-4

节点编号=65360概率值=2.4707653E-4Node number = 65360 Probability value = 2.4707653E-4

节点编号=6306概率值=0.002806367Node number = 6306 Probability value = 0.002806367

节点编号=67688概率值=3.4881395E-4node number = 67688 probability value = 3.4881395E-4

节点编号=19078概率值=4.6640655E-4node number = 19078 probability value = 4.6640655E-4

节点编号=71778概率值=3.5013523E-4node number = 71778 probability value = 3.5013523e-4

节点编号=72009概率值=4.2676856E-4node number = 72009 probability value = 4.2676856E-4

节点编号=6295概率值=3.3428005E-4Node number = 6295 Probability value = 3.3428005E-4

节点编号=19068概率值=2.3386389E-4Node number = 19068 Probability value = 2.3386389E-4

节点编号=113288概率值=4.928318E-4node number = 113288 probability value = 4.928318E-4

节点编号=43019概率值=2.4179148E-4node number = 43019 probability value = 2.4179148E-4

节点编号=81309概率值=0.001411111node number = 81309 probability value = 0.001411111

节点编号=81657概率值=7.346233E-4node number = 81657 probability value = 7.346233e-4

……...

标准英语译文概率分布二维向量:Standard English translation probability distribution two-dimensional vector:

节点编号=2200概率值=2.9596334E-4Node number = 2200 Probability value = 2.9596334E-4

节点编号=98019概率值=5.4436113E-4Node number = 98019 Probability value = 5.4436113E-4

节点编号=59686概率值=9.3413435E-4Node number = 59686 Prob value = 9.3413435E-4

节点编号=67669概率值=0.0016846128node number = 67669 probability value = 0.0016846128

节点编号=34130概率值=3.4881395E-4node number = 34130 probability value = 3.4881395E-4

节点编号=91621概率值=0.0010200165Node number = 91621 Probability value = 0.0010200165

节点编号=75648概率值=3.7788178E-4node number = 75648 probability value = 3.7788178E-4

节点编号=46900概率值=6.5931125E-4Node number = 46900 Probability value = 6.5931125E-4

节点编号=43701概率值=3.1578232E-4Node number = 43701 Probability value = 3.1578232E-4

节点编号=101190概率值=5.813566E-4Node number = 101190 Probability value = 5.813566E-4

节点编号=30921概率值=3.8977317E-4Node number = 30921 Probability value = 3.8977317E-4

节点编号=45290概率值=0.0020875987node number = 45290 probability value = 0.0020875987

节点编号=109167概率值=6.540261E-4node number = 109167 probability value = 6.540261e-4

节点编号=66046概率值=6.196732E-4node number = 66046 probability value = 6.196732E-4

节点编号=107567概率值=5.602163E-4node number = 107567 probability value = 5.602163E-4

节点编号=46880概率值=3.1049727E-4node number = 46880 probability value = 3.1049727e-4

节点编号=53598概率值=2.5500412E-4Node number = 53598 Probability value = 2.5500412E-4

节点编号=104364概率值=0.0020572094node number = 104364 probability value = 0.0020572094

节点编号=38884概率值=2.3386389E-4node number = 38884 probability value = 2.3386389E-4

节点编号=10136概率值=4.1619848E-4Node number = 10136 Probability value = 4.1619848E-4

节点编号=78469概率值=3.9241568E-4node number = 78469 probability value = 3.9241568E-4

节点编号=56445概率值=0.0011851747node number = 56445 probability value = 0.0011851747

节点编号=58041概率值=4.1619848E-4node number = 58041 probability value = 4.1619848E-4

节点编号=42070概率值=4.716916E-4node number = 42070 probability value = 4.716916E-4

节点编号=13323概率值=3.0124842E-4Node number = 13323 Probability value = 3.0124842E-4

节点编号=115514概率值=2.9332083E-4Node number = 115514 Probability value = 2.9332083E-4

节点编号=62812概率值=3.7523927E-4Node number = 62812 Probability value = 3.7523927E-4

节点编号=53222概率值=2.4839782E-4Node number = 53222 Probability value = 2.4839782E-4

节点编号=45236概率值=4.18841E-4node number = 45236 probability value = 4.18841e-4

节点编号=24464概率值=2.6293172E-4Node number = 24464 Probability value = 2.6293172E-4

节点编号=101119概率值=0.002129879Node number = 101119 Probability value = 0.002129879

节点编号=97923概率值=4.0827086E-4node number = 97923 probability value = 4.0827086E-4

节点编号=86740概率值=0.001301446node number = 86740 probability value = 0.001301446

节点编号=73962概率值=5.1265076E-4node number = 73962 probability value = 5.1265076E-4

节点编号=80341概率值=2.8803575E-4node number = 80341 probability value = 2.8803575E-4

节点编号=32429概率值=0.0033599767node number = 32429 probability value = 0.0033599767

节点编号=112272概率值=4.0430707E-4node number = 112272 probability value = 4.0430707E-4

节点编号=46792概率值=0.0010358717node number = 46792 probability value = 0.0010358717

节点编号=30814概率值=3.567415E-4Node number = 30814 Probability value = 3.567415E-4

节点编号=61155概率值=0.0028195793node number = 61155 probability value = 0.0028195793

节点编号=37190概率值=5.958905E-4node number = 37190 probability value = 5.958905E-4

节点编号=91486概率值=0.002388847Node number = 91486 Probability value = 0.002388847

节点编号=43574概率值=0.0017638888node number = 43574 probability value = 0.0017638888

节点编号=24409概率值=3.1974612E-4node number = 24409 probability value = 3.1974612E-4

节点编号=61139概率值=5.6946516E-4Node number = 61139 Probability value = 5.6946516E-4

节点编号=59537概率值=6.196732E-4node number = 59537 probability value = 6.196732e-4

节点编号=67519概率值=3.54099E-4node number = 67519 probability value = 3.54099E-4

节点编号=61129概率值=2.4707653E-4Node number = 61129 Probability value = 2.4707653E-4

节点编号=88276概率值=2.906783E-4node number = 88276 probability value = 2.906783E-4

节点编号=439概率值=3.4485015E-4Node number = 439 Probability value = 3.4485015E-4

……...

翻译英语译文语义相似度:78.5分。The semantic similarity of the translated English translation: 78.5 points.

第四步骤:执行“翻译英语译文质量分析结果生成模块”Step 4: Execute the "Translation English Translation Quality Analysis Result Generation Module"

翻译英语译文质量分析结果生成模块是综合第二步骤输出的翻译英语译文忠实度分析结果、第三步骤输出的翻译英语译文语义相似度分析结果,生成并输出翻译英语译文质量分数和评语。本实施方式的英语译文质量分析结果生成格式如下所示:The English translation quality analysis result generation module is to synthesize the English translation fidelity analysis results output in the second step and the English translation semantic similarity analysis results output in the third step to generate and output the English translation quality score and comments. The English translation quality analysis result generation format of this embodiment is as follows:

翻译英语译文质量分数:70.8分。Translated English translation quality score: 70.8 points.

翻译英语译文质量评语:英语译文与标准英语译文保持一致性好,能正确表达原文意思。Comments on the quality of the translated English translation: the English translation is consistent with the standard English translation and can correctly express the meaning of the original text.

Claims (8)

1. a kind of translator of Chinese into English English translation mass analysis method, it is characterized in that:Including one by being linked in sequence Translate English translation pretreatment module, translation English translation informativeness analysis module, the semantic similarity analysis of translation English translation The analysis model of module, translation English translation quality analysis results generation module composition, its analysis method comprise the following steps:
(1) English translation pretreatment module input translation English translation and standard English translation are translated, to translation English translation and Standard English translation is segmented respectively, word small letter, removal stop words;To participle, word small letter, remove stop words Translate English translation and standard English translation carries out part-of-speech tagging, part of speech disambiguation, phrase stripping and slicing;Export turning over for above-mentioned two-step pretreatment Translate the pre-processed results of English translation and standard English translation;
(2) it is pre- that English translation informativeness analysis module input translation English translation, standard English translation, translation English translation are translated Result, standard English translation pre-processed results, numbering translation English translation, standard English translation, translation English translation are pre- Word in result, standard English translation pre-processed results;To the word and standard English translation in translation English translation In word carry out accurate matching and the successful word of record matching and its numbering;To translation English translation and standard English translation Accurately match remaining word and carry out stem matching and the successful word of record matching and its numbering;To translation English translation and mark Quasi- English translation stem matches remaining word and carries out synonym matching and the successful word of record matching and its numbering;5th, Translated using the word matched rate accuracy rate weight and translation English of training translation English translation collection and the generation of standard English collection of translations The total words that the match is successful in text calculate and export the informativeness of translation English translation;
(3) English translation semantic similarity analysis module input translation English translation, standard English translation part of speech disambiguation knot are translated Fruit;Searched according to part of speech disambiguation result and record word corresponding node serial number in English Semantic dictionary;In English Semantic word In allusion quotation, from translation English translation word corresponding to node serial number find standard English word corresponding to node serial number, record On accessed path corresponding to each word between node serial number and node directed edge probability;According to each word on accessed path Word probability distribution bivector in English translation is translated in the probability of directed edge between corresponding node serial number and node, generation, And iterate to calculate out word probability in standard English translation and be distributed bivector;Merge word probability in translation English translation to be distributed Bivector obtains translating English translation probability distribution bivector, and is carried from translation English translation probability distribution bivector Take word probability value, generation translation English translation probability distribution one-dimensional vector;Merge standard English translation word probability distribution two Dimensional vector obtains standard English translation probability distribution bivector, and is extracted from standard English translation probability distribution bivector Word probability value, generate standard English translation probability distribution one-dimensional vector;According to translation English translation probability distribution one-dimensional vector Calculated with standard English translation probability distribution one-dimensional vector and export translation English translation semantic similarity;
(4) the output knot of English translation quality analysis results generation module input translation English translation informativeness analysis module is translated Fruit, the output result for translating English translation semantic similarity analysis module;According to translation English translation informativeness analysis module Output result, translate English translation semantic similarity analysis module output result generation translation English translation mass fraction and Comment.
2. analysis method according to claim 1, it is characterized in that:Described translation English translation pretreatment module processing step It is rapid as follows:
P201 starts;
P202 reads in translation English translation and standard English translation;
P203 judges to translate English translation and whether standard English translation quantity is identical, if it is turns P204, otherwise turns P202;
P204 is to translation English translation participle and will translate the word small letter after English translation segments;
The word segmentation result of P205 output translation English translations and the word small letter result of translation English translation;
P206 statistical translation English translation total words;
P207 carries out part-of-speech tagging to the word segmentation result for translating English translation;
P208 carries out phrase stripping and slicing to the part-of-speech tagging result for translating English translation;
P209 carries out part of speech disambiguation to the phrase stripping and slicing result for translating English translation;
The part-of-speech tagging result of P210 output translation English translations, the part of speech disambiguation result for translating English translation, translation English are translated The phrase stripping and slicing result of text;
P211 to standard English translation segment and by standard English translation segment after word small letter;
The word segmentation result of P212 outputting standard English translations and the word small letter result of standard English translation;
P213 SSs English batch translation total words;
P214 carries out part-of-speech tagging to the word segmentation result of standard English translation;
P215 carries out phrase stripping and slicing to the part-of-speech tagging result of standard English translation;
Phrase stripping and slicing results of the P216 to standard English translation carries out part of speech disambiguation;
The part-of-speech tagging result of P217 outputting standard English translations, the part of speech disambiguation result of standard English translation, standard English are translated The phrase stripping and slicing result of text;
P218 terminates.
3. analysis method according to claim 1, it is characterized in that:Described translation English translation informativeness analysis module Calculation formula is defined as follows:
(1) word matched accuracy rate calculation formula
Word matched accuracy rate refers to translate word matched success number and translation English between English translation and standard English translation The ratio of total words in language translation, its calculation formula are as follows:
(2) word matched recall rate calculation formula
Word matched recall rate refers to translate word matched success number and standard English between English translation and standard English translation The ratio of total words in language translation, its calculation formula are as follows:
(3) harmonic-mean calculation formula
Harmonic-mean refer to the word matched accuracy rate of calculation formula (1) and calculation formula (2) word matched recall rate it Between average value, its calculation formula is as follows:
In calculation formula (3), word matched success rate is calculated by calculation formula (1), and word matched recall rate is by calculating Formula (2) is calculated, and a is the weight of word matched accuracy rate, and 1-a is the weight of word matched recall rate.
(4) penalty coefficient value calculation formula
Penalty coefficient value is to reduce to miss between translation English translation content and standard English translation content caused by harmonic-mean The coefficient of difference, its calculation formula are as follows:
In calculation formula (4), phrase number refers to translate the sum of noun phrase and verb phrase in English translation;B is punishment The adjusting parameter of coefficient value size;C is phrase number and the adjustment of the word number ratio size that the match is successful in translation English translation Parameter;B and c is calculated by translation English translation informativeness analysis module.
(5) English translation informativeness calculation formula is translated
Translation English translation informativeness refers to semanteme of word similarity degree of the word with standard English translation for translating English translation, Its calculation formula is as follows:
Translate English translation informativeness=(1- penalty coefficients value) × harmonic-mean (5)
In calculation formula (5), harmonic average numerical value is calculated by calculation formula (3), and penalty coefficient value is by calculation formula (4) It is calculated.
4. analysis method according to claim 1, it is characterized in that:At described translation English translation informativeness analysis module It is as follows to manage step:
P301 starts;
P302 reads in the word segmentation result of translation English translation and the word small letter result of translation English translation;
P303 reads in the word segmentation result of standard English translation and the word small letter result of standard English translation;
P304 is according to the word segmentation result of translation English translation and word small letter result, the standard English translation of translation English translation Word segmentation result and standard English translation word small letter result, generation translation English translation-standard English translation text It is right;
P305 reads in the text pair of one group of translation English translation-standard English translation;
P306 starts from scratch the text pair translation English translation each word for translating English translation-standard English translation volume Number;
P307 starts from scratch the text pair standard English translation each word for translating English translation-standard English translation volume Number;
The text pair for translating English translation-standard English translation is translated each word of English translation, and translation English by P308 The each word of standard English translation of the text pair of language translation-standard English translation is accurately matched;
The text pair translation English translation of P309 statistical translations English translation-standard English translation, and translation English translation- The accurate word that the match is successful of the text pair standard English translation of standard English translation and numbering;
P310 judges whether the text pair translation English translation for translating English translation-standard English translation also has inaccurate matching Word, if it is turn P308, otherwise turn P311;
The text pair for translating English translation-standard English translation is translated English translation, and translation English translation-mark by P311 The text pair standard English translation of quasi- English translation carries out stemmed without the accurate word that the match is successful;
Word in the text pair translation English translation of translation English translation-standard English translation after P312 will be stemmed, and The word of the text pair standard English translation of translation English translation-standard English translation after stemmed carries out stem matching;
The text pair translation English translation of P313 statistical translations English translation-standard English translation, and translation English translation- The text pair standard English translation stem word that the match is successful and numbering of standard English translation;
P314 judges whether the text pair for translating English translation-standard English translation is translated also not stemmed in English translation The word of matching, if it is turn P312, otherwise turn P315;
The text pair for translating English translation-standard English translation is translated English translation, and translation English translation-mark by P315 The text pair standard English translation of quasi- English translation does not have the stem word that the match is successful to carry out meaning of a word lexical or textual analysis;
P316 translates the text pair that English translation-standard English translation is translated after the meaning of a word lexical or textual analysis word of English translation, And after meaning of a word lexical or textual analysis translate English translation-standard English translation text pair standard English translation word carry out it is synonymous Word matches;
The text pair translation English translation of P317 statistical translations English translation-standard English translation, and translation English translation- The text pair standard English translation synonym word that the match is successful and numbering of standard English translation;
P318 judges that the text pair for translating English translation-standard English translation translates in English translation whether also have non-synonym The word of matching, if it is turn P315, otherwise turn P319;
P319 judges whether the text pair for the translation English translation-standard English translation do not corrected also, if it is turns P305, Otherwise P320 is turned;
P320 reads in the text pair translation English translation word of translation English translation-standard English translation, and translation English The result that the text pair standard English translation word of translation-standard English translation accurately matches;
P321 reads in the text pair translation English translation word of translation English translation-standard English translation, and translation English The result of the text pair standard English translation word stem matching of translation-standard English translation;
P322 reads in the text pair translation English translation word of translation English translation-standard English translation, and translation English The result of the text pair standard English translation word synonym matching of translation-standard English translation;
P323 marks the text pair translation English translation word that the match is successful of translation English translation-standard English translation;
P324 reads in the text pair translation English translation total words of translation English translation-standard English translation;
P325 reads in the text pair standard English translation total words of translation English translation-standard English translation;
P326 translates the text pair for translating English translation-standard English translation the total words of English translation, and translation Total words in the text pair standard English translation of English translation-standard English translation, translation English translation-standard English are translated The text pair translation English translation of text accurately matches, stem matches, the synonym total words that the match is successful, substitutes into translation English Calculation formula (1), the calculation formula (2) of language translation informativeness analysis module calculate translation English translation-standard English translation Text pair translates the accuracy rate and recall rate of English translation word matched;
P327 is using translating English translation collection and the training of standard English collection of translations draws optimized parameter a, b, c value;
The text pair of a value, translation English translation-standard English translation is translated the accurate of English translation word matched by P328 Rate, the recall rate for the text pair translation English translation word matched for translating English translation-standard English translation substitute into translation English The calculation formula (3) of language translation informativeness analysis module calculates harmonic-mean;
The value of parameter b, c, the text pair of translation English translation-standard English translation are translated the number of English translation phrase by P329 Amount, translation English translation-standard English translation text pair translation English translation accurately match, stem matching, synonym With successful total words, the calculation formula (4) for substituting into translation English translation informativeness analysis module calculates penalty coefficient;
By harmonic-mean, the calculation formula (5) that penalty coefficient substitutes into translation English translation informativeness analysis module calculates P330 Translate English translation informativeness;
P331 terminates.
5. analysis method according to claim 1, it is characterized in that:Described translation English translation semantic similarity analysis mould The calculation formula of block is defined as follows:
(1) ProbabilityDistribution Vector calculation formula
ProbabilityDistribution Vector refers in English Semantic dictionary, from node checks standard English corresponding to translation English translation word Node corresponding to word, on accessed path corresponding to each word between node serial number and node the probability of directed edge form to Amount, its calculation formula are as follows:
ProbabilityDistribution Vectort=(1-a) × adjacency matrix × ProbabilityDistribution Vectort-1+ a × ProbabilityDistribution Vector0 (6)
In calculation formula (6), t represents the number searched, and a represents the probability of directed edge on the t times accessed path, adjacency matrix Represent the word adjacency matrix in English Semantic dictionary, ProbabilityDistribution Vector0Represent the probability distribution of lookup original position node Vector, ProbabilityDistribution Vectort-1Represent the ProbabilityDistribution Vector of the t-1 times lookup node, ProbabilityDistribution VectortRepresent to look into for the t times Look for the ProbabilityDistribution Vector of node.
(2) English translation Semantic Similarity Measurement formula is translated
Translation English translation semantic similarity refers to translate semantic similar between English translation content and standard English translation content Degree, its calculation formula are as follows:
In calculation formula (7), translation English translation probability distribution one-dimensional vector refers in English Semantic dictionary, from translation English Node serial number corresponding to language translation word searches node serial number corresponding to standard English word, and each word is corresponding on accessed path Node between directed edge probability form one-dimensional vector;Standard English translation probability distribution one-dimensional vector refers in English language In adopted dictionary, node serial number corresponding to standard English word is searched from node serial number corresponding to translation English translation word, is searched The one-dimensional vector that the probability of the directed edge of path end position node connection is formed;| | translation English translation probability distribution it is one-dimensional to Amount | | refer to the mould for translating English translation probability distribution one-dimensional vector;| | standard English translation probability distribution one-dimensional vector | | refer to The mould of standard English translation probability distribution one-dimensional vector.
6. analysis method according to claim 1, it is characterized in that:Described translation English translation semantic similarity analysis mould Block processing step is as follows:
P401 starts;
P402 reads translation English translation word part of speech disambiguation result;
P403 ergodic translation English translation word part of speech disambiguation results;
P404 according to translation English translation word part of speech disambiguation result search and record word in English Semantic dictionary corresponding to Node serial number;
P405 judges whether the translation English translation word part of speech disambiguation result not traveled through also, if it is turns P403, otherwise Turn P406;
P406 reads standard English translation word part of speech disambiguation result;
P407 travels through standard English translation word part of speech disambiguation result;
P408 according to standard English translation word part of speech disambiguation result search and record word in English Semantic dictionary corresponding to Node serial number;
P409 judges whether the standard English translation word part of speech disambiguation result not traveled through also, if it is turns P407, otherwise Turn P410;
It is corresponding that P410 searches standard English word in English Semantic dictionary, from node serial number corresponding to translation English translation word Node serial number;
P411 records on accessed path the probability of directed edge between node serial number and node corresponding to each word;
The probability of P412 directed edges between node serial number and node according to corresponding to each word on accessed path, generation translation English Language translation word probability is distributed bivector;
P413 calculates single in standard English translation according to the calculation formula (6) of translation English translation semantic similarity analysis module Word probability is distributed bivector;
P414 judges to translate in English translation whether also have the word do not searched, if it is turns P410, otherwise turns P415;
P415 merges translation English translation word probability distribution bivector and obtains translating English translation probability distribution bivector;
P416 extracts word probability value, generation translation English translation probability point from translation English translation probability distribution bivector Cloth one-dimensional vector;
P417 merges standard English translation word probability distribution bivector and obtains standard English translation probability distribution bivector;
P418 extracts word probability value, generation standard English translation probability point from standard English translation probability distribution bivector Cloth one-dimensional vector;
P419 is calculated according to the calculation formula (7) of translation English translation semantic similarity analysis module and is exported translation English translation Semantic similarity;
P420 terminates.
7. analysis method according to claim 1, it is characterized in that:Described translation English translation quality analysis results generation The calculation formula of module is defined as follows:
(1) English translation mass fraction calculation formula is translated
Translation English translation mass fraction refers to the content journey similar to the contents semantic of standard English translation for translating English translation Degree, its calculation formula are as follows:
English translation mass fraction=0.5 × English translation+0.5 × English translation of informativeness semantic similarity (8)
In calculation formula (8), translation English translation informativeness score is calculated by calculation formula (5), translates English translation Semantic similarity is calculated by calculation formula (7).
8. analysis method according to claim 1, it is characterized in that:Described translation English translation quality analysis results generation Resume module step is as follows:
P501 starts;
P502 reads translation English translation informativeness;
P503 reads translation English translation semantic similarity;
P504 is calculated according to the calculation formula (8) of translation English translation quality analysis results generation module and is exported translation English and translates Literary mass fraction;
P505 is according to translation English translation mass fraction output translation English translation comment;
P506 terminates.
CN201710535667.5A 2017-07-04 2017-07-04 A Quality Analysis Method of English Translation from Chinese to English Active CN107357783B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710535667.5A CN107357783B (en) 2017-07-04 2017-07-04 A Quality Analysis Method of English Translation from Chinese to English

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710535667.5A CN107357783B (en) 2017-07-04 2017-07-04 A Quality Analysis Method of English Translation from Chinese to English

Publications (2)

Publication Number Publication Date
CN107357783A true CN107357783A (en) 2017-11-17
CN107357783B CN107357783B (en) 2020-06-12

Family

ID=60292049

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710535667.5A Active CN107357783B (en) 2017-07-04 2017-07-04 A Quality Analysis Method of English Translation from Chinese to English

Country Status (1)

Country Link
CN (1) CN107357783B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109062912A (en) * 2018-08-08 2018-12-21 科大讯飞股份有限公司 A kind of translation quality evaluation method and device
CN109299737A (en) * 2018-09-19 2019-02-01 语联网(武汉)信息技术有限公司 Choosing method, device and the electronic equipment of interpreter's gene
CN109522563A (en) * 2018-10-15 2019-03-26 语联网(武汉)信息技术有限公司 Judge automatically the method and device that statement translation finishes
CN111027331A (en) * 2019-12-05 2020-04-17 百度在线网络技术(北京)有限公司 Method and apparatus for evaluating translation quality
CN111753556A (en) * 2020-06-24 2020-10-09 掌阅科技股份有限公司 Bilingual comparison reading method, terminal and computer storage medium
CN111783478A (en) * 2020-08-18 2020-10-16 Oppo广东移动通信有限公司 Machine translation quality estimation method, device, equipment and storage medium
CN112085985A (en) * 2020-08-20 2020-12-15 安徽七天教育科技有限公司 Automatic student answer scoring method for English examination translation questions
CN112487806A (en) * 2020-11-30 2021-03-12 桂林电子科技大学 English text concept understanding method
CN113553830A (en) * 2021-08-11 2021-10-26 桂林电子科技大学 Graph-based English text sentence language piece coherent analysis method
CN116070643A (en) * 2023-04-03 2023-05-05 武昌理工学院 A fixed style translation method and system from ancient Chinese to English
WO2024032691A1 (en) * 2022-08-12 2024-02-15 京东科技信息技术有限公司 Machine translation quality assessment method and apparatus, device, and storage medium

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873056A (en) * 1993-10-12 1999-02-16 The Syracuse University Natural language processing system for semantic vector representation which accounts for lexical ambiguity
CN103631773A (en) * 2013-12-16 2014-03-12 哈尔滨工业大学 Statistical machine translation method based on field similarity measurement method
CN106844352A (en) * 2016-12-23 2017-06-13 中国科学院自动化研究所 Word prediction method and system based on neural machine translation system

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5873056A (en) * 1993-10-12 1999-02-16 The Syracuse University Natural language processing system for semantic vector representation which accounts for lexical ambiguity
CN103631773A (en) * 2013-12-16 2014-03-12 哈尔滨工业大学 Statistical machine translation method based on field similarity measurement method
CN106844352A (en) * 2016-12-23 2017-06-13 中国科学院自动化研究所 Word prediction method and system based on neural machine translation system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
袁煜: "翻译质量自动评估特征集", 《外语数学与研究(外国语文双月刊)》 *

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109062912B (en) * 2018-08-08 2023-07-28 科大讯飞股份有限公司 Translation quality evaluation method and device
CN109062912A (en) * 2018-08-08 2018-12-21 科大讯飞股份有限公司 A kind of translation quality evaluation method and device
CN109299737B (en) * 2018-09-19 2021-10-26 语联网(武汉)信息技术有限公司 Translator gene selection method and device and electronic equipment
CN109299737A (en) * 2018-09-19 2019-02-01 语联网(武汉)信息技术有限公司 Choosing method, device and the electronic equipment of interpreter's gene
CN109522563A (en) * 2018-10-15 2019-03-26 语联网(武汉)信息技术有限公司 Judge automatically the method and device that statement translation finishes
CN109522563B (en) * 2018-10-15 2023-05-23 语联网(武汉)信息技术有限公司 Method and device for automatically judging statement translation completion
CN111027331B (en) * 2019-12-05 2022-04-05 百度在线网络技术(北京)有限公司 Method and apparatus for evaluating translation quality
KR20210070891A (en) * 2019-12-05 2021-06-15 바이두 온라인 네트웍 테크놀러지 (베이징) 캄파니 리미티드 Method and apparatus for evaluating translation quality
KR102401942B1 (en) 2019-12-05 2022-05-24 바이두 온라인 네트웍 테크놀러지 (베이징) 캄파니 리미티드 Method and apparatus for evaluating translation quality
US11481562B2 (en) 2019-12-05 2022-10-25 Baidu Online Network Technology (Beijing) Co., Ltd. Method and apparatus for evaluating translation quality
CN111027331A (en) * 2019-12-05 2020-04-17 百度在线网络技术(北京)有限公司 Method and apparatus for evaluating translation quality
CN111753556A (en) * 2020-06-24 2020-10-09 掌阅科技股份有限公司 Bilingual comparison reading method, terminal and computer storage medium
CN111783478A (en) * 2020-08-18 2020-10-16 Oppo广东移动通信有限公司 Machine translation quality estimation method, device, equipment and storage medium
CN111783478B (en) * 2020-08-18 2022-04-05 Oppo广东移动通信有限公司 Machine translation quality estimation method, device, equipment and storage medium
CN112085985A (en) * 2020-08-20 2020-12-15 安徽七天教育科技有限公司 Automatic student answer scoring method for English examination translation questions
CN112487806A (en) * 2020-11-30 2021-03-12 桂林电子科技大学 English text concept understanding method
CN112487806B (en) * 2020-11-30 2023-05-23 桂林电子科技大学 English text concept understanding method
CN113553830A (en) * 2021-08-11 2021-10-26 桂林电子科技大学 Graph-based English text sentence language piece coherent analysis method
CN113553830B (en) * 2021-08-11 2023-01-03 桂林电子科技大学 Graph-based English text sentence language piece coherent analysis method
WO2024032691A1 (en) * 2022-08-12 2024-02-15 京东科技信息技术有限公司 Machine translation quality assessment method and apparatus, device, and storage medium
CN116070643A (en) * 2023-04-03 2023-05-05 武昌理工学院 A fixed style translation method and system from ancient Chinese to English
CN116070643B (en) * 2023-04-03 2023-08-15 武昌理工学院 A fixed style translation method and system from ancient Chinese to English

Also Published As

Publication number Publication date
CN107357783B (en) 2020-06-12

Similar Documents

Publication Publication Date Title
CN107357783A (en) A kind of English translation mass analysis method of translator of Chinese into English
CN111027324B (en) Open relation extraction method based on syntactic pattern and machine learning
CN100527125C (en) On-line translation model selection method of statistic machine translation
CN111737980B (en) A method for correcting the wrong use of words in English text
US20070174040A1 (en) Word alignment apparatus, example sentence bilingual dictionary, word alignment method, and program product for word alignment
CN109359293A (en) Mongolian Named Entity Recognition Method and Recognition System Based on Neural Network
WO2022057116A1 (en) Transformer deep learning model-based method for translating multilingual place name root into chinese
US20120150529A1 (en) Method and apparatus for generating translation knowledge server
CN108475262A (en) Electronic equipment and method for text-processing
CN103116578A (en) Translation method integrating syntactic tree and statistical machine translation technology and translation device
CN110457715A (en) Chinese-Vietnamese neural machine translation out-of-collection word processing method integrated into lexicon
CN110826322A (en) Method for discovering new words, predicting parts of speech and marking
CN110287291A (en) An Unsupervised Method for Sentence Off-topic Analysis of English Short Texts
CN115114926A (en) Chinese agricultural named entity identification method
García-Martínez et al. Lium machine translation systems for wmt17 news translation task
CN106776550B (en) A Method for Analyzing the Coherent Quality of English Compositions
JP6262122B2 (en) Translation learning device, proper expression learning device, method, and program
CN112989848A (en) Training method for neural machine translation model of field adaptive medical literature
Jiang et al. Relaxed cross-lingual projection of constituent syntax
Seresangtakul et al. Thai-Isarn dialect parallel corpus construction for machine translation
JP2014215920A (en) Case analysis model parameter learning apparatus, case analyzer, method and program
Ellouze et al. Word Alignment Applied on English-Arabic Parallel Corpus.
Zhang et al. High-order graph-based neural dependency parsing
CN114186560A (en) A Chinese word sense disambiguation method based on graph convolutional neural network fusion support vector machine
CN109446537A (en) A kind of translation evaluation method and device for machine translation

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
EE01 Entry into force of recordation of patent licensing contract

Application publication date: 20171117

Assignee: Guilin Dazhi Technology Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2022450000184

Denomination of invention: A Quality Analysis Method of English Translation from Chinese to English

Granted publication date: 20200612

License type: Common License

Record date: 20221125

Application publication date: 20171117

Assignee: Guilin Ruisen Education Service Co.,Ltd.

Assignor: GUILIN University OF ELECTRONIC TECHNOLOGY

Contract record no.: X2022450000186

Denomination of invention: A Quality Analysis Method of English Translation from Chinese to English

Granted publication date: 20200612

License type: Common License

Record date: 20221125

EE01 Entry into force of recordation of patent licensing contract