CN107353634A - 一种可大规模制备的高性能尼龙多孔材料的制备方法 - Google Patents

一种可大规模制备的高性能尼龙多孔材料的制备方法 Download PDF

Info

Publication number
CN107353634A
CN107353634A CN201710568602.0A CN201710568602A CN107353634A CN 107353634 A CN107353634 A CN 107353634A CN 201710568602 A CN201710568602 A CN 201710568602A CN 107353634 A CN107353634 A CN 107353634A
Authority
CN
China
Prior art keywords
nylon
porous material
preparation
mould
formic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710568602.0A
Other languages
English (en)
Other versions
CN107353634B (zh
Inventor
王亮
艾芳芳
刘雍
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Polytechnic University
Original Assignee
Tianjin Polytechnic University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Polytechnic University filed Critical Tianjin Polytechnic University
Priority to CN201710568602.0A priority Critical patent/CN107353634B/zh
Publication of CN107353634A publication Critical patent/CN107353634A/zh
Application granted granted Critical
Publication of CN107353634B publication Critical patent/CN107353634B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • B01J20/262Synthetic macromolecular compounds obtained otherwise than by reactions only involving carbon to carbon unsaturated bonds, e.g. obtained by polycondensation
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/285Treatment of water, waste water, or sewage by sorption using synthetic organic sorbents
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/02Polyamides derived from omega-amino carboxylic acids or from lactams thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • C08J2377/06Polyamides derived from polyamines and polycarboxylic acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2201/00Properties
    • C08L2201/08Stabilised against heat, light or radiation or oxydation
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/14Applications used for foams
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Engineering & Computer Science (AREA)
  • Water Supply & Treatment (AREA)
  • Environmental & Geological Engineering (AREA)
  • Hydrology & Water Resources (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Analytical Chemistry (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

本实验提供了一种可大规模制备尼龙多孔材料的制备方法,其特点在于所选原料为尼龙,制备工艺简单高效,生产过程水可得到重复利用,符合环保理念。通过使用无水甲酸溶解尼龙,加入碳酸氢钠溶液进行发泡得到具有三维孔洞结构并且性能优异的多孔材料。制备的尼龙多孔材料具有低密度、高孔隙率、低导热率、高比表面积等特性。相对于气凝胶等多孔材料,该多孔材料制备方法简单可实现低成本大规模生产。可用于保温、隔热、处理海洋石油污染、催化剂载体、吸音减震缓冲材料等各个领域,具有广泛的应用前景。

Description

一种可大规模制备的高性能尼龙多孔材料的制备方法
技术领域
本发明主要涉及多孔材料制备领域,是一种环保高效低成本可大规模制备,并可用于吸音减震、隔热保温、化学催化、物理吸附等领域的尼龙多孔材料的制备方法。
背景技术
多孔材料由于其低表观密度、孔隙率高、导热率低、比表面积大等特性,被广泛应用于抗震、吸音、物理吸附分离、隔热保温、药物缓释、化学催化、环境保护等领域,并受到工业和科研工作者的持续关注。
商业领域常用的多孔材料的种类有很多。其中基于聚氨酯、聚丙烯、聚苯乙烯等高聚物发泡材料被广泛用于制作各种多孔制品,应用在包装、建筑、汽车轻量化等领域。这类发泡材料通常具有三维孔洞的骨架结构,多孔材料还包括具有二维纤维孔隙结构的非织造材料。非织造材料由于其疏松多孔和较多纤维界面的特点,可应用在过滤、家居装饰、医疗卫生等领域。地毯即为生活中最常见的非织造材料之一,由于其特殊的多孔纤维网结构,除装饰外还具有抗震、吸音、隔热等功能。
随着研究的深入,多孔材料的制备已经取得了很大进步,种类和性能都在不断丰富和改善。目前前沿科研重点集中在气凝胶、功能多孔陶瓷等领域。由于气凝胶特有的纳米多孔、三维网络结构使气凝胶在力学、声学、热学等诸方面均显示其独特性质。包括高孔隙率、低密度、吸音、低热导率、低介电常数等独特的性能。可以广泛应用于航空航天、汽车、建筑等领域。多孔陶瓷则具有耐热、机械性能高、硬度高、可以加工成形、成本低等优点,在能源、环保、化工等方面具有广泛的应用前景。
上述所述多孔材料在实际生产和应用中仍或多或少存在缺陷,例如聚苯丙烯发泡材料耐热性差,多孔陶瓷则质脆且不抗震;气凝胶等前沿多孔材料生产工艺复杂,生产成本较高,不易形成产业化。所以科研人员不断探究新的多孔材料的制备方法,以简化生产工艺、降低成本,提高产品性能为目标。
本专利将采用一种新的方案制备尼龙多孔材料,可以实现尼龙多孔材料的大规模制备。在制备过程中废水可重复利用且无有毒物质生成,具有经济环保的特点。
发明内容
针对现有产品的不足,本发明拟解决的技术问题是制备一种制作方法简单、高效、可循环、环保、性能优异的尼龙多孔材料。
为了实现本发明的目的,发明人通过大量的实验研究与不断探索,最终获得如下技术方案:
多孔材料的制备方法有以下步骤:
(1)按一定质量比例分别称量尼龙、无水甲酸后混合,常温下用磁力或机械搅拌器搅拌3-4小时至完全溶解。
(2)将一定质量的碳酸氢钠或碳酸钠与水混合,配成质量浓度为2%-8%的溶液。
(4)取尼龙/甲酸溶液放入模具中,注入NaHCO3或NaCO3水溶液,产生大量CO2形成多孔材料,反应完全后取出多孔材料。
(5)用水洗净后放入烘箱,在40-70℃度条件下干燥6-8h。
所述的尼龙是尼龙6、尼龙66或其它种类的尼龙。
所述的甲酸为无水甲酸。
所述的碳酸氢钠和碳酸钠为固体粉末。
所述水为自来水。
本发明的优点在于:
本发明的制备的尼龙多孔材料具备更好的三维孔洞结构,包含许多大孔和微小的孔洞,骨架结构明显。由于其特殊的三维孔洞结构,因而其不仅具有极大的比表面积,而且材料内部含有丰富的毛细孔道。尼龙多孔材料具有保温、隔热、比表面积大、抗震性、吸音、耐高温等特性,可以被用作催化剂载体、及减震缓冲器、能量吸收器、吸附剂等材料,应用领域涉及电化学、防护服、石油化工、冶金、环保建筑等领域。
(1)尼龙熔点较高,耐热性较好,所以更适宜于制造耐热应变制品,可以在较高温条件下使用。
(2)由于其密度比水小,可以漂浮于废水表面,可用来处理废水中的污染物。
(3)材料在吸附过程中内部结构没有遭到破坏,可以重复利用。
(4)且制作方法简单易行、成本低廉。
(5)制作过程剩余的水可回收再利用,且无有毒物质生成。
(6)尼龙多孔材料具有良好的机械性能,可以承受较大的压力。
(7)尼龙多孔材料的孔径较小,可对声波引起的空气压力进行分散,从而达到吸音的目的。
(8)孔洞结构中含有大量静止空气,使得材料具有热传导系数低的特性。
附图说明
图1是尼龙多孔材料设备图。图中:1-储液罐;2-吸液管;3-控制阀门;4-模具;5-液体流量表;6-排水管;7-吸液管;8-9-排水管;10-废液罐;11-储液罐。图2是尼龙多孔材料样品图。图3是尼龙多孔材料扫描电镜图。
具体实施方式
实施例1
一种尼龙多孔材料,其特征在于它是由下述重量份(g)的原料制成的:尼龙6(PA6)16、无水甲酸84、碳酸氢钠3、蒸馏水97
一种如权利要求2所述的尼龙多孔材料的制备方法,其特征在于包括以下步骤:
(1)按一定质量比例分别称量尼龙6、无水甲酸后混合,常温下用磁力搅拌器搅拌3小时至完全溶解。
(3)将一定质量的碳酸氢钠与水混合,配成质量浓度为3%的溶液。
(4)取6ml尼龙/甲酸溶液放入容量为14ml的模具中,注入NaHCO3水溶液,产生大量CO2形成多孔材料,反应完全后取出多孔材料。
(5)用水洗净后放入烘箱,在60℃度条件下干燥6h。
对上述制得的尼龙多孔材料进行性能测试。导热系数0.032w/m.k,密度0.064g/cm-3,热分解起始点293.99℃,吸音系数55%,机械泵油吸收倍率为10.03g/g-1,形变为60%时应力为1.38MPa。
实施例2
一种尼龙多孔材料,其特征在于它是由下述重量份(g)的原料制成的:尼龙6(PA6)16、无水甲酸84、碳酸氢钠4、蒸馏水96
一种如权利要求2所述的尼龙多孔材料的制备方法,其特征在于包括以下步骤:
(1)按一定质量比例分别称量尼龙6、无水甲酸后混合,常温下用磁力搅拌器搅拌3.5小时至完全溶解。
(2)将一定质量的碳酸氢钠与水混合,配成质量浓度为4%的溶液。
(3)取7ml尼龙/甲酸溶液放入容量为14ml的模具中,注入NaHCO3水溶液,产生大量CO2形成多孔材料,反应完全后取出多孔材料。
(5)用水洗净后放入烘箱,在50℃度条件下7h。
对上述制得的尼龙多孔材料进行性能测试。导热系数0.035w/m.k,密度0.079g/cm-3,热分解起始点299.99℃,吸音系数50%,机械泵油吸收倍率为11.03g/g-1,形变为60%时应力为1.56MPa。
实施例3
一种尼龙多孔材料,其特征在于它是由下述重量份(g)的原料制成的:尼龙66(PA66)16、无水甲酸84、碳酸氢钠4、蒸馏水96
一种如权利要求1所述的尼龙多孔材料的制备方法,其特征在于包括以下步骤:
(1)按一定质量比例分别称量尼龙66、无水甲酸后混合,常温下用磁力搅拌器搅拌3小时至完全溶解。
(3)将一定质量的碳酸氢钠与水混合,配成碳酸氢钠质量度为4%的溶液。
(4)取6ml尼龙/甲酸溶液放入容量为14ml的模具中,注入NaHCO3水溶液,产生大量CO2形成多孔材料,反应完全后取出多孔材料。
(5)用水洗净后放入烘箱,在65℃度条件下干燥6h。
对上述制得的尼龙多孔材料进行性能测试。导热系数0.030w/m.k,密度0.075g/cm-3,热分解起始点314.99℃,吸音系数60%,机械泵油吸收倍率为10.45g/g-1,形变为60%时应力为1.40MPa。
实施例4
一种尼龙多孔材料,其特征在于它是由下述重量份(g)的原料制成的:尼龙66(PA66)18、无水甲酸82、碳酸氢钠3、蒸馏水97
一种如权利要求1所述的尼龙多孔材料的制备方法,其特征在于包括以下步骤:
(1)按一定质量比例分别称量尼龙66、无水甲酸后混合,常温下用磁力搅拌器搅拌3小时至完全溶解。
(3)将一定质量的碳酸氢钠与水混合,配成质量浓度为4%的溶液。
(4)取6ml尼龙/甲酸溶液放入容量为14ml的模具中,注入NaHCO3水溶液,产生大量CO2形成多孔材料,反应完全后取出多孔材料。
(5)用水洗净后放入烘箱,在65℃度条件下干燥7h。
对上述制得的尼龙多孔材料进行性能测试。导热系数0.033w/m.k,密度0.078g/cm-3,热分解起始点314.99℃,吸音系数55%,机械泵油吸收倍率为10.76g/g-1,形变为60%时应力为1.53MPa。

Claims (6)

1.一种低密度、超高孔隙率的尼龙多孔材料,其特征在于它是由下述重量份的原料制成的:
尼龙6-40、无水甲酸94-60、碳酸氢钠2-8、水98-92。
2.尼龙多孔材料的制备方法,包括以下步骤:
(1)权利要求1所述的重量份称取各原料;
(2)在尼龙6中加入无水甲酸溶液,放入磁力搅拌器中,常温搅拌3-4小时,直至完全溶解的尼龙/甲酸溶液。
(3)在水中加入碳酸氢钠或碳酸钠粉末。
(4)将步骤(2)得到的混合液定量放入模具中,通入碳酸氢钠或碳酸钠溶液,使其产生二氧化碳,发泡时间为2-5分钟即可,得到尼龙多孔材料。
(5)打开模具下的排水口,回收模具中的废水。
(6)将步骤(5)得到的多孔材料取出,用水洗净,放入烘箱40-70℃干燥6-8小时。
3.一种尼龙多孔材料制备装置,其特征在于:该装置包括储液罐(1 10 11)、吸液管(27)、控制阀门(3)、液体流量表(5)、模具(4)、排水管(6 8 9)。
4.根据权利要求3所述的一种尼龙多孔材料制备装置,其特征在于:模具下的排水口与储液罐相连,可回收利用废水;吸液管都与液体流量表相连;所有连接处用硅胶密封;模具上方配备自动取样装置;储液罐1里是尼龙/甲酸溶液;储液罐10里是废水,可重复利用;储液罐11是碳酸氢钠水溶液。
5.根据权利要求3所述的一种尼龙多孔材料制备装置,其特征在于:模具采用陶瓷或玻璃材质,防止被溶液腐蚀;吸液管、储液罐和排水管均采用聚丙烯或其它耐酸耐碱的塑料。
6.根据权利要求2所述的一种尼龙多孔材料制备方法,其特征在于:产生大量二氧化碳使尼龙发泡得到多孔材料,也可以通过直接加入含有二氧化碳或其它惰性气体的水得到多孔材料。
CN201710568602.0A 2017-07-10 2017-07-10 一种可大规模制备的高性能尼龙多孔材料的制备方法 Active CN107353634B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710568602.0A CN107353634B (zh) 2017-07-10 2017-07-10 一种可大规模制备的高性能尼龙多孔材料的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710568602.0A CN107353634B (zh) 2017-07-10 2017-07-10 一种可大规模制备的高性能尼龙多孔材料的制备方法

Publications (2)

Publication Number Publication Date
CN107353634A true CN107353634A (zh) 2017-11-17
CN107353634B CN107353634B (zh) 2020-11-27

Family

ID=60292896

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710568602.0A Active CN107353634B (zh) 2017-07-10 2017-07-10 一种可大规模制备的高性能尼龙多孔材料的制备方法

Country Status (1)

Country Link
CN (1) CN107353634B (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384230A (zh) * 2018-03-16 2018-08-10 天津工业大学 一种阻燃隔热尼龙多孔复合材料的制备方法
CN109354871A (zh) * 2018-11-14 2019-02-19 天津工业大学 一种隔热阻燃耐高温的聚对苯二甲酰对苯二胺(ppta)多孔材料的制备方法
CN109880354A (zh) * 2019-03-12 2019-06-14 合肥原然新材料有限公司 一种多孔尼龙载体材料及其制备方法
CN113522254A (zh) * 2021-07-26 2021-10-22 郑州大学 具有孔状结构的尼龙65材料的制备方法及应用

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944700A (en) * 1973-06-22 1976-03-16 L. Mombers B.V. Method of manufacturing polyamide coated textile material and to the textile material made according to the method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3944700A (en) * 1973-06-22 1976-03-16 L. Mombers B.V. Method of manufacturing polyamide coated textile material and to the textile material made according to the method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108384230A (zh) * 2018-03-16 2018-08-10 天津工业大学 一种阻燃隔热尼龙多孔复合材料的制备方法
CN109354871A (zh) * 2018-11-14 2019-02-19 天津工业大学 一种隔热阻燃耐高温的聚对苯二甲酰对苯二胺(ppta)多孔材料的制备方法
CN109880354A (zh) * 2019-03-12 2019-06-14 合肥原然新材料有限公司 一种多孔尼龙载体材料及其制备方法
CN113522254A (zh) * 2021-07-26 2021-10-22 郑州大学 具有孔状结构的尼龙65材料的制备方法及应用

Also Published As

Publication number Publication date
CN107353634B (zh) 2020-11-27

Similar Documents

Publication Publication Date Title
CN107353634A (zh) 一种可大规模制备的高性能尼龙多孔材料的制备方法
Thompson et al. Hierarchically structured composites and porous materials from soft templates: fabrication and applications
Wang et al. Experimental research of composite solid sorbents for fresh water production driven by solar energy
Wang et al. Facile synthesis of flexible mesoporous aerogel with superhydrophobicity for efficient removal of layered and emulsified oil from water
Jerman et al. Hygric, thermal and durability properties of autoclaved aerated concrete
Chatterjee et al. Omniphilic polymeric sponges by ice templating
Bi et al. Lotus-seedpod-bioinspired 3D superhydrophobic diatomite porous ceramics comodified by graphene and carbon nanobelts
Wu et al. Superhydrophobic lignin-based multifunctional polyurethane foam with SiO2 nanoparticles for efficient oil adsorption and separation
Degefu et al. The effect of activator ratio on the thermal and hygric properties of aerated geopolymers
Rashidi et al. Preparation of nanoporous activated carbon and its application as nano adsorbent for CO 2 storage
Guo et al. Supercritical CO2 assisted construction of carbon black/polypropylene composite foams with bioinspired open-cell micro-nano hierarchical structure and outstanding performance for oil/water separation
Jaberi et al. Fluid based cigarette carbonaceous hydrochar supported ZIF-8 MOF for CO2 capture process: The engineering parameters determination for the packed bed column design
Rashid et al. Light weight low thermal conductive fly ash foams through microwave irradiation for insulative, agricultural and self-healing purposes
Vivo-Vilches et al. Resorcinol–formaldehyde carbon xerogel as selective adsorbent of carbon dioxide present on biogas
CN1218997C (zh) 高吸水聚乙烯醇发泡体及其制备方法
Le et al. Designing the macroporous structure of three-way catalyst particles: the influence of template concentration on framework thickness and mass transfer
Li et al. Recycling polycarbonate wastes to prepare hydrophobic and super mechanically robust aerogels with excellent oil–water and emulsion separation performance
Yang et al. Salt hydrate adsorption material-based thermochemical energy storage for space heating application: A review
Zhang et al. A comprehensive review of the influence of particle size and pore distribution on the kinetics of CO2 hydrate formation in porous media
Hossain et al. Recent progress of geopolymers for carbon dioxide capture, storage and conversion
CN109225326A (zh) 基于聚吡咯和泡沫炭负载金纳米线的复合催化剂的制备方法
Popova et al. Apparatus and technological design of the production process of activated highly porous carbon material
Wu et al. Honeycomb-like rGO aerogels via oriented freeze-drying as efficient organic solvents removing absorbents
Tasca et al. Organics adsorption on novel amorphous silica and silica xerogels: microcolumn rapid breakthrough test coupled with sequential injection analysis
WO2017050134A1 (zh) 一种多孔材料的应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant