CN107345707B - 一种空气净化系统 - Google Patents

一种空气净化系统 Download PDF

Info

Publication number
CN107345707B
CN107345707B CN201710196279.9A CN201710196279A CN107345707B CN 107345707 B CN107345707 B CN 107345707B CN 201710196279 A CN201710196279 A CN 201710196279A CN 107345707 B CN107345707 B CN 107345707B
Authority
CN
China
Prior art keywords
detection
air
ultraviolet
tube
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710196279.9A
Other languages
English (en)
Other versions
CN107345707A (zh
Inventor
王行飞
陈建华
刘戈
茅忠群
诸永定
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo Fotile Kitchen Ware Co Ltd
Original Assignee
Ningbo Fotile Kitchen Ware Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo Fotile Kitchen Ware Co Ltd filed Critical Ningbo Fotile Kitchen Ware Co Ltd
Priority to CN201710196279.9A priority Critical patent/CN107345707B/zh
Publication of CN107345707A publication Critical patent/CN107345707A/zh
Application granted granted Critical
Publication of CN107345707B publication Critical patent/CN107345707B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/10Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering
    • F24F8/192Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by separation, e.g. by filtering by electrical means, e.g. by applying electrostatic fields or high voltages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/20Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation
    • F24F8/22Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying by sterilisation using UV light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/31Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry
    • G01N21/33Investigating relative effect of material at wavelengths characteristic of specific elements or molecules, e.g. atomic absorption spectrometry using ultraviolet light
    • G01N2021/335Vacuum UV
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A50/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE in human health protection, e.g. against extreme weather
    • Y02A50/20Air quality improvement or preservation, e.g. vehicle emission control or emission reduction by using catalytic converters

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本发明涉及空气净化系统,包括用于净化空气的空气净化设备(101),用于控制空气净化设备(101)开启或关闭或工作参数的控制板(102),其特征在于:还包括用于检测空气中有机物含量的有机物含量检测系统(103),该有机物含量检测系统(103)包括用于抽取空气的气泵(103A),与气泵(103A)输出端连接的有机物检测传感器(103B),与现有技术相比,本发明的优点在于:通过设置有机物含量检测系统,控制板根据有机物含量检测系统检测的空气中的有机物含量开启或关闭空气净化设备,并对的空气净化设备的工作参数进行控制,该系统控制方式合理有效。

Description

一种空气净化系统
技术领域
本发明涉及一种空气净化系统。
背景技术
现有的空气净化类产品或者是新风系统等,一种是最简单的控制,只有启动关闭,另外一种是通过检测温度或者PM2.5来实现智能控制,而空气中如甲醛、有机苯类(苯、甲苯)、有机氨类、氯仿类等,以及细菌病毒对人体的危害是最大的,此外,空气中的细菌、霉菌、病毒等,对人体也具有重大危害。市面上现有的产品、技术,不能有效根据空气中的有机物含量来智能控制净化设备,所以,开发一种切实有效根据空气有机物含量来智能控制净化设备的空气净化系统具有重大意义。
发明内容
本发明所要解决的技术问题是针对上述现有技术提供一种能检测空气中有机物含量并根据检测结果控制净化设备的空气净化系统。
本发明解决上述技术问题所采用的技术方案为:一种空气净化系统,包括用于净化空气的空气净化设备,用于控制空气净化设备开启或关闭或工作参数的控制板,其特征在于:还包括用于检测空气中有机物含量的有机物含量检测系统,该有机物含量检测系统包括用于抽取空气的气泵,与气泵输出端连接的有机物检测传感器,该有机物检测传感器则包括:
能发出紫外线的光源,及与所述光源配合的能检测空气中有机物含量的检测组件,该检测组件包括
能被所述光源发出的紫外线穿透的检测管,空气通过该检测管;
检测组紫外线接收器,用于检测从所述光源发出、并穿透所述检测管后的紫外线的强度;
电路板,检测组紫外线接收器与电路板连接,所述电路板用于根据检测组紫外线接收器接收的紫外线强度计算通过检测管内空气中的有机物含量;
电路板与控制板连接,控制板根据电路板检测的空气中的有机物含量开启或关闭空气净化设备,并对的空气净化设备的工作参数进行控制。
作为改进,所述有机物检测传感器还包括对照组件,该对照组件包括有:
能被所述光源发出的紫外线穿透的对照管,对照管内部真空或设置纯净水;
对照组紫外线接收器,用于检测从所述光源发出、并穿透所述对照管后的紫外线的强度;
对照组紫外线接收器也与电路板连接,电路板根据检测组紫外线接收器接收的紫外线强度以及对照组紫外线接收器接收的紫外线强度来计算通过检测管内空气中的有机物含量。
再改进,所述有机物检测传感器还包括壳体,所述壳体内设有光源容置腔,所述光源设置在光源容置腔内;所述壳体内还设有与光源容置腔连通的检测管容置腔,检测管设置在检测管容置腔内;所述检测组紫外线接收器设置在壳体内并与检测管相对。
再改进,所述光源外套设有隔离遮光保护套,光源套设隔离遮光保护套后设置在壳体的光源容置腔内或穿设在光源容置孔内;隔离遮光保护套上开有检测光透光孔;所述光源发出的紫外线通过检测光透光孔后再穿透所述检测管到达所述检测组紫外线接收器。
再改进,所述壳体上连接有分别与检测管两端接通的进气接头和出气接头。
再改进,进气接头和出气接头与检测管两端连接的部位设有密封圈。
再改进,所述电路板固定在壳体上,壳体内设有与检测管容置腔连通的检测光通道,所述检测组紫外线接收器固定在电路板上后位于检测光通道内。
再改进,所述对照组件与检测组件对称设置在光源容置腔的两相对侧。
再改进,所述隔离遮光保护套上开有对照光透光孔,所述检测光透光孔和所述对照光透光孔对称设置在隔离遮光保护套两相对侧。
再改进,所述壳体内设有与所述对照光透光孔连通的对照管容置腔,对照管设置在对照管容置腔内;所述对照组紫外线接收器设置在壳体内并与对照管相对,从而使所述光源发出的紫外线通过对照光透光孔后再穿透所述对照管到达所述对照组紫外线接收器。
与现有技术相比,本发明的优点在于:通过设置有机物含量检测系统,控制板根据有机物含量检测系统检测的空气中的有机物含量开启或关闭空气净化设备,并对的空气净化设备的工作参数进行控制,该系统控制方式合理有效。
附图说明
图1为本发明实施例中空气净化系统的原理图一;
图2为本发明实施例中空气净化系统的原理图二;
图3为本发明实施例中有机物检测传感器的立体结构示意图;
图4为本发明实施例中有机物检测传感器的立体剖视图;
图5为本发明实施例中有机物检测传感器的立体分解图;
图6为本发明实施例中有机物检测传感器另一视角的立体分解图。
具体实施方式
以下结合附图实施例对本发明作进一步详细描述。
如图1所示的空气净化系统,包括用于净化空气的空气净化设备101,用于控制空气净化设备101开启或关闭或工作参数的控制板102,及用于检测空气中有机物含量的有机物含量检测系统103,有机物含量检测系统103与控制板102连接;空气首先通过有机物含量检测系统103后,再通过空气净化设备101流出。
另外,空气也可以直接通过空气净化设备101流出,此时有机物含量检测系统103可独立设置在空气净化设备101旁,同样的,有机物含量检测系统103需要与控制板102连接,参见图2所示。
控制板102根据有机物含量检测系统检测的空气中的有机物含量开启或关闭空气净化设备,并对的空气净化设备的工作参数进行控制,该系统控制方式合理有效。在实际操作时,可以将空气质量设定为至少两档,如有机物含量在a以下、a-b之间、b-c之间,同时,空气净化设备根据不同的空气质量启动相应的净化模式,在不同的净化模式下,空气净化设备具有不同的风速、功率和温度等。当有机物含量检测系统检测到空气中的有机物含量在某一档位,则控制板自动控制空气净化设备启动相对应的净化模式,净化模式根据有机物含量实时调整,确保达到最优化的进化效果和最省的资源消耗,当空气中的有机物含量达到设定的优良阀值,则控制板控制空气净化设备停止工作。
有机物含量检测系统103则包括用于抽取空气的气泵103A,及与气泵输出端连接的用于检测空气中有机物含量的有机物检测传感器103B。
本实施例中,有机物检测传感器103B参见图3~6所示,其包括能发出紫外线的光源1,及与所述光源1配合的能检测空气中有机物含量的检测组件,及用于与检测组件配套使用的对照组件。
其中,所述检测组件包括
能被所述光源1发出的紫外线穿透的检测管2,空气能通过该检测管2;
检测组紫外线接收器3,用于检测从所述光源1发出、并穿透所述检测管2后的紫外线的强度;
对照组件包括有:
能被所述光源1发出的紫外线穿透的对照管6,对照管6内部真空或设置纯净水;
对照组紫外线接收器5,用于检测从所述光源1发出、并穿透所述对照管6后的紫外线的强度;
上述检测组紫外线接收器3和对照组紫外线接收器5均与电路板4连接,电路板4根据检测组紫外线接收器3接收的紫外线强度以及对照组紫外线接收器5接收的紫外线强度来计算通过检测管2内空气中有机物含量。
本实施例中,有机物检测传感器包括由第一壳体7a和第二壳体7b组装而成的壳体7,壳体7中部内设有允许光源穿过的光源容置腔,光源1穿设在光源容置腔内;第一壳体7a内还设有与光源容置腔连通的检测管容置腔,检测管2设置在检测管容置腔内;所述检测组紫外线接收器设置在第一壳体7a内并与检测管2相对。第二壳体7b内设有与光源容置孔连通的对照管容置腔,对照管6设置在对照管容置腔内;对照组紫外线接收器5设置在第二壳体7b内并与对照管6相对。
光源1外套设有隔离遮光保护套8,隔离遮光保护套8能有效保护壳体7不被紫外线伤害;光源1套设隔离遮光保护套8后穿设在壳体7的光源容置孔内;隔离遮光保护套8上开有检测光透光孔81;所述光源1发出的紫外线通过检测光透光孔81后再穿透所述检测管2到达所述检测组紫外线接收器3。隔离遮光保护套8上还开有对照光透光孔82;所述光源1发出的紫外线通过对照光透光孔82后再穿透所述对照管6到达所述对照组紫外线接收器5。
第一壳体7a上连接有分别与检测管2两端接通的进气接头71和出气接头72,进气接头71和出气接头72与检测管2两端连接的部位设有密封圈73。
电路板4可以固定在第一壳体7a上,也可以固定在第二壳体7b上,本实施例中,电路板4固定在第一壳体7a上,对照组紫外线接收器5安装在侧板上,侧板固定在第二壳体7b上,对照组紫外线接收器5的输出端通过导线与电路板4连接。
第一壳体7a内设有与检测管容置腔连通的检测光通道74,所述检测组紫外线接收器3固定在电路板4上后位于检测光通道74内;第二壳体7b内设有与对照管容置腔连通的对照光通道75,所述对照组紫外线接收器5固定在侧板上后位于对照光通道75内。
本实例中,所述对照组件与检测组件对称设置在光源容置孔的两相对侧,即:对照组件与检测组件对称设置;所述检测光透光孔81和所述对照光透光孔82对称设置在隔离遮光保护套8两相对侧;这样设置的好处是检测组摄取的紫外线与对照组摄取的紫外线来自于光源1同一圆周位置,因此两者摄取的紫外线的原始光强相差很小。
本实施例中的有机物检测传感器的检测方法,其包括如下步骤:
步骤(1)、将对照管6抽真空,或在对照管6内冲入纯净水,开启所述光源1,电路板4记录此次对照组紫外线接收器5接收到的紫外线强度值,并将该紫外线强度值记为第一紫外线强度参照值;
步骤(2)、准备N份有机物含量已知且含量均不相同的对照空气样本,保持所述光源1开启,然后分别将这N份对照空气样本依次通过所述对照管6,电路板4依次记录N份对照空气样本流过对照管6时对照组紫外线接收器5接收到的紫外线强度值,并将获得的N份紫外线强度值分别记为第二紫外线强度参照值、第三紫外线强度参照值、……第N+1紫外线强度参照值,其中N为大于等于3的自然数;
步骤(3)、根据步骤(2)获得的N份紫外线强度参照值,获得一份对照空气样本中有机物含量与紫外线强度参照值之间的对照表;
步骤(4)、保持所述光源1开启,将对照管6抽真空,或在对照管6内冲入纯净水;气泵抽取待测空气,并通过所述检测管2,电路板4记录此次检测组紫外线接收器3接收到的紫外线强度值,并将该紫外线强度值记为紫外线强度检测值,同时记录对照组紫外线接收器5接收到的紫外线强度值,将该紫外线强度值记为临时紫外线强度参照值,将临时紫外线强度参照值除以第一紫外线强度参照值,获得光源强度衰减比例,将紫外线强度检测值乘以光源强度衰减比例,获得紫外线强度查找值,然后采用该紫外线强度查找值,通过查询步骤(3)获得的对照表,获得此时待测空气中的有机物含量。
实施例二
与实施例一不同的是,抽气泵前方设有用于过滤空气中的固体颗粒的空气过滤装置104,参见图6所示。
由于空气中的固体颗粒(如PM2.5)对于光线具有阻挡作用,不同时间,空气中PM2.5含量不同,挡光作用也不同,所以,实施例一中,PM2.5对于有机物检测传感器检测结果存在一定的干扰。本实施例可以把这种干扰降到最低。由于空气中固体颗粒的体积远远大于细菌、甲醛、有机苯等有机物体积,所以,空气中固体颗粒能被空气过滤装置有效被拦截下来,而需要检测的有机物能顺利通过过滤装置,且空气过滤装置对于有机物检测传感器起到一定的保护作用。

Claims (6)

1.一种空气净化系统,包括用于净化空气的空气净化设备(101),用于控制空气净化设备(101)开启或关闭或工作参数的控制板(102),其特征在于:还包括用于检测空气中有机物含量的有机物含量检测系统(103),该有机物含量检测系统(103)包括用于抽取空气的气泵(103A),与气泵(103A)输出端连接的有机物检测传感器(103B),该有机物检测传感器(103B)则包括:
能发出紫外线的光源(1),及与所述光源(1)配合的能检测空气中有机物含量的检测组件,该检测组件包括
能被所述光源(1)发出的紫外线穿透的检测管(2),空气通过该检测管(2);
检测组紫外线接收器(3),用于检测从所述光源(1)发出、并穿透所述检测管(2)后的紫外线的强度;
电路板(4),检测组紫外线接收器(3)与电路板(4)连接,所述电路板(4)用于根据检测组紫外线接收器(3)接收的紫外线强度计算通过检测管(2)内空气中的有机物含量;
电路板(4)与控制板(102)连接,控制板(102)根据电路板(4)检测的空气中的有机物含量开启或关闭空气净化设备(101),并对的空气净化设备(101)的工作参数进行控制;
所述有机物检测传感器(103B)还包括对照组件,该对照组件包括有:
能被所述光源(1)发出的紫外线穿透的对照管(6),对照管(6)内部真空或设置纯净水;
对照组紫外线接收器(5),用于检测从所述光源(1)发出、并穿透所述对照管(6)后的紫外线的强度;
对照组紫外线接收器(5)也与电路板(4)连接,电路板(4)根据检测组紫外线接收器(3)接收的紫外线强度以及对照组紫外线接收器(5)接收的紫外线强度来计算通过检测管(2)内空气中的有机物含量;
所述有机物检测传感器还包括壳体(7),所述壳体(7)内设有光源容置腔,所述光源(1)设置在光源容置腔内;所述壳体(7)内还设有与光源容置腔连通的检测管容置腔,检测管(2)设置在检测管容置腔内;所述检测组紫外线接收器(3)设置在壳体(7)内并与检测管(2)相对;
所述光源(1)外套设有隔离遮光保护套(8),光源(1)套设隔离遮光保护套(8)后设置在壳体(7)的光源容置腔内;隔离遮光保护套(8)上开有检测光透光孔(81);所述光源(1)发出的紫外线通过检测光透光孔(81)后再穿透所述检测管(2)到达所述检测组紫外线接收器(3);
所述有机物检测传感器的检测方法,其包括如下步骤:
步骤(1)、将对照管(6)抽真空,或在对照管(6)内冲入纯净水,开启所述光源(1),电路板(4)记录此次对照组紫外线接收器(5)接收到的紫外线强度值,并将该紫外线强度值记为第一紫外线强度参照值;
步骤(2)、准备N份有机物含量已知且含量均不相同的对照空气样本,保持所述光源1开启,然后分别将这N份对照空气样本依次通过所述对照管(6),电路板(4)依次记录N份对照空气样本流过对照管(6)时对照组紫外线接收器(5)接收到的紫外线强度值,并将获得的N份紫外线强度值分别记为第二紫外线强度参照值、第三紫外线强度参照值、……第N+1紫外线强度参照值,其中N为大于等于3的自然数;
步骤(3)、根据步骤(2)获得的N份紫外线强度参照值,获得一份对照空气样本中有机物含量与紫外线强度参照值之间的对照表;
步骤(4)、保持所述光源(1)开启,将对照管(6)抽真空,或在对照管(6)内冲入纯净水;气泵抽取待测空气,并通过所述检测管(2),电路板(4)记录此次检测组紫外线接收器(3)接收到的紫外线强度值,并将该紫外线强度值记为紫外线强度检测值,同时记录对照组紫外线接收器(5)接收到的紫外线强度值,将该紫外线强度值记为临时紫外线强度参照值,将临时紫外线强度参照值除以第一紫外线强度参照值,获得光源强度衰减比例,将紫外线强度检测值除以光源强度衰减比例,获得紫外线强度查找值,然后采用该紫外线强度查找值,通过查询步骤(3)获得的对照表,获得此时待测空气中的有机物含量。
2.根据权利要求1所述的空气净化系统,其特征在于:所述壳体(7)上连接有分别与检测管(2)两端接通的进气接头(71)和出气接头(72)。
3.根据权利要求2所述的有机物检测传感器,其特征在于:所述进气接头(71)和出气接头(72)与检测管(2)两端连接的部位设有密封圈(73)。
4.根据权利要求1所述的空气净化系统,其特征在于:所述电路板(4)固定在壳体(7)上,壳体(7)内设有与检测管容置腔连通的检测光通道(74),所述检测组紫外线接收器(3)固定在电路板(4)上后位于检测光通道(74)内。
5.根据权利要求1所述的空气净化系统,其特征在于:所述对照组件与检测组件对称设置在光源容置腔的两相对侧,所述隔离遮光保护套(8)上开有对照光透光孔(82),所述检测光透光孔(81)和所述对照光透光孔(82)对称设置在隔离遮光保护套(8)两相对侧。
6.根据权利要求5所述的空气净化系统,其特征在于:所述壳体(7)内设有与所述对照光透光孔(82)连通的对照管容置腔,对照管(6)设置在对照管容置腔内;所述对照组紫外线接收器(5)设置在壳体(7)内并与对照管(6)相对,从而使所述光源(1)发出的紫外线通过对照光透光孔(82)后再穿透所述对照管(6)到达所述对照组紫外线接收器(5)。
CN201710196279.9A 2017-03-29 2017-03-29 一种空气净化系统 Active CN107345707B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710196279.9A CN107345707B (zh) 2017-03-29 2017-03-29 一种空气净化系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710196279.9A CN107345707B (zh) 2017-03-29 2017-03-29 一种空气净化系统

Publications (2)

Publication Number Publication Date
CN107345707A CN107345707A (zh) 2017-11-14
CN107345707B true CN107345707B (zh) 2023-07-25

Family

ID=60253533

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710196279.9A Active CN107345707B (zh) 2017-03-29 2017-03-29 一种空气净化系统

Country Status (1)

Country Link
CN (1) CN107345707B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387486B (zh) * 2017-08-14 2023-08-22 宁波方太厨具有限公司 一种厨房垃圾处理装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102128799A (zh) * 2010-12-21 2011-07-20 无锡荣兴科技有限公司 一种水质检测传感器
CN102252988A (zh) * 2011-04-19 2011-11-23 珠海市中科信息技术开发有限公司 一种机动车尾气监测系统的在线监测方法
CN102788764A (zh) * 2012-08-21 2012-11-21 南京埃森环境技术有限公司 一种低浓度烟气紫外分析仪及检测方法
CN104075997A (zh) * 2014-07-10 2014-10-01 北京林业大学 一种水体浑浊度连续监测方法及监测装置
JP2015010934A (ja) * 2013-06-28 2015-01-19 ナブテスコ株式会社 光学式センサ及び光学式センサシステム

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923039A (en) * 1997-09-16 1999-07-13 Labsphere, Inc. Ultraviolet transmittance analyzing method and instrument
JP2002328090A (ja) * 2001-04-27 2002-11-15 Toshiba Corp 微量成分濃度測定装置
CN100595564C (zh) * 2004-07-30 2010-03-24 百维吉伦特系统有限公司 病原体和粒子检测器系统和方法
WO2010048512A1 (en) * 2008-10-24 2010-04-29 University Of Notre Dame Du Lac Methods and apparatus to obtain suspended particle information
CN202471578U (zh) * 2011-12-31 2012-10-03 钟成莲 一种室内空气检测装置
US9279746B2 (en) * 2012-02-16 2016-03-08 Endress+ Hauser Conducta Inc. Inline optical sensor with modular flowcell
US9568458B2 (en) * 2014-08-21 2017-02-14 Sharp Kabushiki Kaisha Optical sensor for fluid analysis
CN205235760U (zh) * 2015-11-30 2016-05-18 广东美的制冷设备有限公司 空气净化装置和空气调节器
CN105466822B (zh) * 2016-02-06 2018-03-06 无锡迈通科学仪器有限公司 气溶胶实时监测仪
CN206959150U (zh) * 2017-03-29 2018-02-02 宁波方太厨具有限公司 一种空气净化系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102128799A (zh) * 2010-12-21 2011-07-20 无锡荣兴科技有限公司 一种水质检测传感器
CN102252988A (zh) * 2011-04-19 2011-11-23 珠海市中科信息技术开发有限公司 一种机动车尾气监测系统的在线监测方法
CN102788764A (zh) * 2012-08-21 2012-11-21 南京埃森环境技术有限公司 一种低浓度烟气紫外分析仪及检测方法
JP2015010934A (ja) * 2013-06-28 2015-01-19 ナブテスコ株式会社 光学式センサ及び光学式センサシステム
CN104075997A (zh) * 2014-07-10 2014-10-01 北京林业大学 一种水体浑浊度连续监测方法及监测装置

Also Published As

Publication number Publication date
CN107345707A (zh) 2017-11-14

Similar Documents

Publication Publication Date Title
CN105318381B (zh) 自动调速抽油烟机自检系统和自检方法
ATE531018T1 (de) Rauchmelder mit verschmutzungsüberwachung
CN107345707B (zh) 一种空气净化系统
CA2377547A1 (en) Sterilant monitoring assembly and apparatus
DK1441838T3 (da) Gas/væske-separator omfattende et væskeopfangningsfilter
TW200724251A (en) Full air-exchanging security cabinet
CN105674361A (zh) 带空气质量检测功能的吸油烟机的控制方法
AU2002953575A0 (en) A filter
AU2003292172A1 (en) Filter
CN205138965U (zh) 一种油烟污染物检测仪
CN109387486B (zh) 一种厨房垃圾处理装置
CN109387005B (zh) 一种冰箱
CN107340263B (zh) 一种空气中有机物检测系统
CN107339741B (zh) 一种空气净化系统
CN218974294U (zh) 一种基于物联网的VOCs智能监测装置
CN206959150U (zh) 一种空气净化系统
CN109392801B (zh) 一种鱼缸
CN207066980U (zh) 一种空气中有机物检测系统
CN107340258B (zh) 一种空气中有机物检测系统
CN215066335U (zh) 一种联网型有机废气光离子化监测仪
CN109854510A (zh) 一种用于检测泵的静音箱
CN107337253B (zh) 一种紫外线杀菌装置
CN107340275B (zh) 一种水质在线检测系统
CN107337307B (zh) 一种家用清洗水制备装置
CN207583629U (zh) 一种机械旋片泵的静音箱

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant