CN107342962A - 基于卷积神经网络的深度学习智能星座图分析方法 - Google Patents

基于卷积神经网络的深度学习智能星座图分析方法 Download PDF

Info

Publication number
CN107342962A
CN107342962A CN201710533175.2A CN201710533175A CN107342962A CN 107342962 A CN107342962 A CN 107342962A CN 201710533175 A CN201710533175 A CN 201710533175A CN 107342962 A CN107342962 A CN 107342962A
Authority
CN
China
Prior art keywords
planisphere
analysis
layer
neural networks
convolutional neural
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710533175.2A
Other languages
English (en)
Other versions
CN107342962B (zh
Inventor
王丹石
张民
李建强
李进
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Original Assignee
Beijing University of Posts and Telecommunications
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications filed Critical Beijing University of Posts and Telecommunications
Priority to CN201710533175.2A priority Critical patent/CN107342962B/zh
Publication of CN107342962A publication Critical patent/CN107342962A/zh
Application granted granted Critical
Publication of CN107342962B publication Critical patent/CN107342962B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/32Carrier systems characterised by combinations of two or more of the types covered by groups H04L27/02, H04L27/10, H04L27/18 or H04L27/26
    • H04L27/34Amplitude- and phase-modulated carrier systems, e.g. quadrature-amplitude modulated carrier systems
    • H04L27/3405Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power
    • H04L27/3416Modifications of the signal space to increase the efficiency of transmission, e.g. reduction of the bit error rate, bandwidth, or average power in which the information is carried by both the individual signal points and the subset to which the individual points belong, e.g. using coset coding, lattice coding, or related schemes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks
    • G06N3/08Learning methods
    • G06N3/084Backpropagation, e.g. using gradient descent
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L41/00Arrangements for maintenance, administration or management of data switching networks, e.g. of packet switching networks
    • H04L41/14Network analysis or design
    • H04L41/142Network analysis or design using statistical or mathematical methods

Abstract

本发明公开了一种基于卷积神经网络的深度学习智能星座图分析方法,涉及光通信技术领域,其中通过搭建并训练卷积神经网络模块对星座图进行性能分析,包括以下步骤:获取星座图训练数据集;对星座图进行预处理;训练CNN模块进行特征提取;将所需分析的星座图经预处理后输入训练完成的CNN模块进行模式识别和性能分析;输出分析结果。本发明将基于卷积神经网络的深度学习技术应用到星座图分析中,解决了传统星座图性能分析中无法直接处理原始数据、需进行人工干预的问题,利用CNN实现了星座图原始图像信息分析的智能化和自动化,可以作为示波器的星座图软件处理模块及仿真软件的星座图分析模块,进而嵌入到测试仪器中进行智能信号分析和性能监测。

Description

基于卷积神经网络的深度学习智能星座图分析方法
技术领域
本发明涉及光通信技术领域,尤其涉及一种基于卷积神经网络的深度学习智能星座图分析方法。
背景技术
机器学习(ML)技术提供了强大的工具来解决诸如自然语言处理,数据挖掘,语音识别和图像识别等许多领域的问题。同时,机器学习技术在光通信领域也得到了广泛的应用,很大程度上促进了智能系统的发展。目前研究主要集中在使用不同的机器学习算法进行光学性能监测(OPM)和非线性损伤补偿方面,所使用的机器学习算法包括期望最大值(EM),随机森林,反向传播人工神经网络(BP-ANN),K近邻(KNN)和支持向量机(SVM)等。然而,所有上述机器学习算法在特征提取的能力上都有其算法本身的限制。更具体地说,机器学习模型不能直接处理自然数据的原始形式,因此不得不在运用算法前需要相当多的领域专长和工程技能来设计特征提取器,将原始数据转换成合适的内部表示或特征向量,进而子系统才能检测出输入数据的模式。因此,希望可以开发出更先进的机器学习算法,不仅可以直接对原始数据进行处理,还可以自动检测所需的特征。
最近,深度学习成为一个火热的研究课题,其目的是使得机器学习更接近人工智能(AI)的目标。深度学习可以被理解为具有多个非线性层的深度神经网络,其通过自学习过程从数据中学习特征,而不是由人类工程师来进行人工设计。深度学习中最著名的突破之一是GoogleDeepMind的电脑程序“AlphaGo”,他们首次在棋盘游戏中以自学习的能力击败了专业的选手。另外,作为目前的研究热点,深度学习在无人驾驶飞行器,医疗诊断,情绪分析等各种应用领域取得了重大进展。然而据我们所知,在光通信系统领域却几乎没有基于深度学习的研究工作。
同时,在光通信领域中,测量光信号质量是光通信中最重要的任务之一。一般来说,在强度调制直接检测(IM-DD)系统中,眼图作为常用的分析对象,其定性地反映了所有损伤对信号质量的影响,特别是对于开关键控(OOK)和脉冲幅度调制(PAM)。然而近年来,随着相干光通信系统和先进的调制格式如M进制相移键控(PSK)和正交幅度调制(QAM)不断的发展,由于眼图缺少相位信息,使用它来进行性能分析不再能得到很好的效果。而星座图可以同时显示幅度和相位信息,并且能够全面度量PSK和QAM信号的多种性能。通过对星座图的观察,可以从中识别调制格式、估计光信噪比(OSNR)、计算误差矢量幅度(EVM),并且可以对各种损伤进行分析。然而,传统的星座图分析方法在很大程度上取决于很高的专业知识,仅适用于经验丰富的工程师。同时,手动操作只能做定性估计,难以获得准确的结果。此外,传统的统计方法需要获取每个星座点的信息,这意味着需要收集所有的同相分量和正交分量的数据,过程耗时,不适用于实时测试系统。因此,预期的星座图分析方法仍然希望能够采用更先进的技术来进行智能分析,无需人工干预,做到精确测量,无需数据统计即时处理,真正实现性能分析的智能化和自动化。
发明内容
本发明的目的在于将深度学习技术应用到光通信领域,提供一种智能、可靠的基于卷积神经网络的深度学习智能星座图分析方法,解决传统星座图性能分析中无法直接处理原始数据、需进行人工干预的弊端,实现了对星座图原始图像进行性能分析的智能化和自动化。
为达到上述目的,本发明公开了一种基于卷积神经网络的深度学习智能星座图分析方法,将基于卷积神经网络的深度学习技术应用到星座图分析中,利用卷积神经网络对星座图进行多种性能分析,所述方法包括以下步骤:步骤一、获取所需分析的星座图训练数据集;步骤二、星座图图像预处理;步骤三、训练卷积神经网络(CNN)模块对星座图进行特征提取;步骤四、将所需分析星座图输入训练完成的CNN模块进行模式识别和性能分析;步骤五、输出分析结果。
优选地,所述星座图中所需分析的多种性能为调制格式、光信噪比(OSNR)、色散(CD)、线性损伤和非线性损伤。
优选地,所述星座图训练集获取步骤一中,采集星座图的各种性能不同指标情况下的训练数据集,其中,训练数据集中的每组数据由输入为星座图图像和输出为特定性能的特定指标信息对构成。
优选地,所述星座图预处理步骤二中,将所述步骤一中获取的训练数据集中的彩色星座图图像转换为灰度图像,并将得到的星座图灰度图像进行下采样处理。
优选地,所述训练CNN模块进行特征提取步骤三中,将所述步骤二中预处理后的星座图输入构建好的CNN模块中,基于所述训练数据进行训练过程后,所述CNN模块自动从星座图图像中提取特征,并构建特征与不同性能之间的关系。
优选地,所述CNN模块模式识别和性能分析步骤四中,经预处理的所需分析的星座图输入所述训练完成的CNN模块中,CNN模块对输入的星座图进行模式识别,并通过其以往的学习经验对当前输入的星座图进行性能分析。
优选地,所述输出分析结果步骤五中,由所述CNN模块输出的信息包含所需分析的各种性能,可从输出信息中得到不同性能的分析结果。
优选地,所述CNN模块的结构主要包括:一个输入层、n个卷积层(C1、C2、…、Cn)、n个池化层(P1、P2、…、Pn)、m个全连接层(F1、F2、…、Fm)、一个输出层,其中,所述输入层的输入为经过预处理的星座图图像,输入层与卷积层C1相连接;所述卷积层C1含有k1个大小为a1×a1的卷积核,所述输入层图像经过卷积层C1得到k1个特征图,进而将得到的特征图传送至池化层P1;所述池化层P1以b1×b1的采样大小对所述卷积层C1生成的特征图进行池化,得到相应的k1个采样后的特征图,再将得到的特征图传送至下一个卷积层C2;所述n个卷积层和池化层对的顺次连接,进而不断提取图像深层次的抽样特征,最后一个池化层Pn与全连接层F1相连接,其中,卷积层Ci含有ki个大小为ai×ai的卷积核,池化层Pj的采样大小为bj×bj,Ci表示第i个卷积层,Pj表示第j个池化层;所述全连接层F1为所述最后一个池化层Pn所得的所有kn个特征图的像素点映射而成的一维层,每个像素代表所述全连接层F1的一个神经元节点,F1层的所有神经元节点与下一个全连接层F2的神经元节点进行全连接;经m个全连接层顺次连接,最后一个全连接层Fm与所述输出层进行全连接;所述输出层输出所需分析的星座图不同性能的节点信息。
优选地,所述输出层输出的节点信息为L位的二进制比特序列,其中,所述N个不同的性能分别以L1、L2、…、LN位二进制比特信息来表示,Li位用于表示第i个性能的Li种不同的指标信息,其中L=L1+L2+…+LN。
优选地,基于CNN的星座图处理算法将作为示波器的星座图软件处理模块或仿真软件的星座图分析模块,进而嵌入到测试仪器中进行智能信号分析和性能监测。
本发明的有益效果在于:本发明解决了传统星座图分析的弊端,将基于卷积神经网络的深度学习技术应用到星座图分析中,利用卷积神经网络对星座图进行多种性能分析,应用本发明可以对星座图原始图像数据进行直接处理,无需由人工干预来进行特征提取,实现星座图性能分析的智能化和自动化,进而可以作为示波器的星座图软件处理模块或仿真软件的星座图分析模块,嵌入到测试仪器中进行智能信号分析和性能监测。
附图说明
图1示出了本发明基于卷积神经网络的深度学习智能星座图分析方法的流程图;
图2示出了本发明一个实施例的基于卷积神经网络的深度学习智能星座图分析结构示意图;
图3示出了本发明一个实施例收集的不同调制格式和不同OSNR的部分星座图图像;
图4示出了本发明一个实施例的不同调制格式下所估计的OSNR的精确度示意图;
图5示出了本发明一个实施例的不同调制格式下CNN与其他机器学习算法对于星座图性能分析精确度的对比示意图;
图6示出了本发明一个实施例的训练数据集较小的情况下不同迭代次数对调制格式识别的精确度示意图。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的保护范围。
如图1所示,本发明提出的基于卷积神经网络的深度学习智能星座图分析方法,将基于卷积神经网络的深度学习技术应用到星座图分析中,利用卷积神经网络对星座图进行多种性能分析,包括以下步骤:步骤一、获取所需分析的星座图训练数据集;步骤二、星座图图像预处理;步骤三、训练卷积神经网络(CNN)模块对星座图进行特征提取;步骤四、将所需分析星座图输入训练完成的CNN模块进行模式识别和性能分析;步骤五、输出分析结果。
本实施例中,所述要进行分析的星座图性能为调制格式和OSNR。
所述获取星座图训练数据集步骤一中,基于VPI Transmission Maker 9.0建立了基本的仿真系统,由伪随机二进制序列生成六种不同调制格式的光信号,分别为:QPSK,8PSK,8QAM,16QAM,32QAM,64QAM。该六种调制格式均是基于相干检测方式,传递的信息反映在信号的幅度和相位上,适合于后续的星座图分析。仿真系统中使用掺铒光纤放大器(EDFA)将放大的自发发射(ASE)噪声添加到光信号中,并且在1dB的步长下,利用可变光衰减器(VOA)将OSNR调整为10至25dB。为了尽可能模拟真实的光信号,系统中加入了色散(CD)仿真器,使得模拟生成的星座图更能反映真实的情况。在接收机处,通过与两个平衡光电探测器(BPD)连接的90°光混合接收机对信号进行相干检测。通过两个模数转换器(ADC)进行同步采样之后,分别获得六个信号包含同相分量(I)和正交分量(Q)信息的两个数字信号。为了获得更为逼真的视觉效果,本实施例采用示波器中专门的星座图生成模块,将接收到的I、Q分量转换为相应的星座图。
基于所述仿真系统,本实施例规定每种调制格式生成16个不同OSNR值的星座图图像,对每种调制格式的每个OSNR值收集100张像素大小为720×720的“jpg”格式的星座图图像,这里,以每种调制格式的每个OSNR值及其相应的星座图图像作为一组训练数据,因此整个训练数据集合总共包括9600(1600×6)组训练数据。
所述星座图图像预处理步骤二中,为了减少计算量和增强泛化能力,将步骤一中收集到的星座图图像经灰度变换后使得原来的彩色图像转换为灰度图像,并经过下采样使得原始星座图的像素大小降至28×28,最后将处理后的训练数据集输入到建立好的CNN模块中。如图3所示,不同的星座图可以呈现出不同的调制格式,并且如果对所观察到的星座图在视觉上进行仔细分析,其同样可以看出星座图与OSNR值的一阶近似关系。
所述训练CNN模块进行特征提取步骤三中,其中输入CNN模块的星座图训练数据集,其每个星座图图像均与一个由22个比特组成的标签向量一一对应,标签向量的前6位代表不同的调制格式(QPSK:000001、8PSK:000010、8QAM:000100、16QAM:001000、32QAM:010000、64QAM:100000),后16位代表不同的OSNR值(10dB:0000000000000001、11dB:0000000000000010,…,25dB:1000000000000000)。在所述的训练过程中,CNN模块逐渐提取输入星座图图像的有效特征。同时,为了最小化理想标签向量和实际输出标签向量之间的误差,CNN模块通过反向传播使用梯度下降的方法来逐步调整其内核的参数。
图2表示本发明一个具体实施例的基于卷积神经网络的智能星座图分析结构示意图,所述CNN模块的结构主要包括以下几个部分:一个输入层、两个卷积层(C1、C2)、两个池化层(P1、P2)、一个全连接层(F1)、一个输出层。经过预处理的28×28星座图图像作为输入层输入CNN模块,与卷积层C1相连接;输入的星座图图像经过含有6个大小为5×5的卷积核的卷积层C1,得到6个大小为24×24特征图,进而将得到的特征图传送至池化层P1;池化层P1以2×2的采样大小对6个特征图进行最大池化,得到相应的6个大小为12×12的采样后的特征图,进而将得到的特征图传送至卷积层C2;卷积层C2含有12个大小为5×5的卷积核,池化层P1所得的6个特征图经卷积层C2得到12个大小为8×8的特征图,进而将得到的特征图传送至池化层P2;池化层P2同样以2×2的采样大小对卷积层C2生成的12个大小为4×4特征图进行最大池化,得到相应的12个采样后的特征图,接着将得到的特征图传送至全连接层F1;池化层P2所得的所有特征图的像素点映射为一维的全连接层F1,每个像素代表全连接层F1的一个神经元节点,全连接层F1的每个神经元节点与输出层进行全连接;最后输出层输出所需分析的星座图性能的节点信息。
其中,卷积层是CNN模块的核心构件。该层中的参数由一组卷积核组成,它们具有较小的局部感受野,但却可以延伸到星座图图像的整个深度。在向前传播的过程中,每个卷积核与星座图图像的宽度和高度上的像素点进行卷积,输出一个二维的平面,其被称为从该卷积核生成的特征图。与数学中的经典卷积不同,CNN中的操作是离散卷积,可以被看作是矩阵相乘。卷积核可以被看作为特征检测器,通过卷积核,CNN模块可以从输入的图像中学习到其独有的特征,同时为了构建一个更加有效的模型,一般需要多个卷积核来检测多个特征,以便在卷积层中产生多个特征图。在经过卷积层的特征提取后,池化层会将语义上类似的特征合并成相应的一个,典型的池化方式是计算一个特征图中局部单元块的最大值,进行特征图的子采样。本实施例中每个子采样单元从卷积特征图中2×2的单位区域获取输入,并将这些输入的最大值作为池化后的数值,进而构成池化后的特征图。
所述CNN模块模式识别性能分析步骤四中,经预处理的所需分析的6种不同调制格式、每种调制格式具有范围为的OSNR值(以1dB为步长)的星座图图像输入到上述训练完成的CNN模块中,CNN模块对输入的不同情况下的星座图进行模式识别,并通过训练阶段的学习经验对输入的星座图进行调制格式和OSNR的性能分析,将分析结果以22位的比特向量的形式输出。
所述输出分析结果步骤五中,从CNN模块输出的22位比特向量中,其前6位可得到所分析星座图的调制格式信息,后16位可得到相应的OSNR值。
为表现本发明所提方法分析的准确性,图4显示了不同调制格式不同迭代次数下CNN模块对OSNR的估计精度。显然,四种调制格式的精确度均随着CNN模块迭代次数的增加而增加。不同迭代次数所训练的CNN模块具有不同的性能识别能力。在本实施例中,当迭代次数超过200时,六种调制格式下CNN模块对其相应的OSNR估计的精度均达到99%,即所分析的性能接近无错误结果。
同时,为证明本发明的优势,将CNN与其他四种著名的机器学习算法,即决策树,DW-KNN,BP-ANN和SVM进行了比较。每个算法对于不同调制格式下OSNR的估计精度于直方图的形式示于图5,由图5可见CNN对于其他四种算法具有明显的优势。其中,决策树算法处理速度快且对内存的要求很小,这些优势同时也导致其估计精度较低;DW-KNN算法通常在低维度上具有良好的估计精度,但在高维度上可能会产生很大的偏差;SVM算法在估计精度和内存使用上均具有很大的优势,其仅需要很少的支持向量,但其本质上只是一个二进制分类器,所以面对多个OSNR的值便需要多个SVM分类器来进行处理;虽然BP神经网络也是从神经网络发展而来,但其缺乏特征提取的能力,需要大量训练数据才能达到较好的效果,并且容易陷入局部最小值以及产生过拟合现象。与以上算法相比,CNN对输入数据方差的敏感较低,所构建的网络更为强大,在很大程度上可以避免过拟合现象,并且能够自动提取输入数据的特征,尤其是在图像处理上具有非常好的效果,同时,由于局部感受野、权重分配、子采样等优势,CNN能够以适当的计算成本实现最佳的准确性。
如图6所示,将每种调制格式的训练数据集大小减小为800、400、320、200、160,分别测量不同迭代次数下本发明对于调制格式识别的精确度。当仅进行一次迭代时,小训练数据集所训练出的CNN模块对于调制格式识别的精确度较差;然而随着迭代次数的增加,调制格式识别的精确度逐渐增加,最终均达到100%的准确度。因此,即使对于训练数据集较小的情况,本发明也可以通过增加几次迭代很容易地实现无错误的结果,这证明了CNN模块对调制格式识别的突出效果。
综上,本发明所提出的方法将基于卷积神经网络的深度学习技术应用到星座图分析中,可以有效地作为示波器的星座图软件处理模块或仿真软件的星座图分析模块,进而嵌入到测试仪器中进行智能信号分析和性能监测,实现星座图分析的自动化和智能化。
以上实施例仅用于说明本发明,而并对本发明的保护范围加以限制,对于相关领域的技术人员,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

1.一种基于卷积神经网络的深度学习智能星座图分析方法,其特征在于,将基于卷积神经网络的深度学习技术应用到星座图分析中,利用卷积神经网络对星座图进行多种性能分析,所述方法包括以下步骤:
步骤一、获取所需分析的星座图训练数据集;
步骤二、星座图图像预处理;
步骤三、训练卷积神经网络(CNN)模块对星座图进行特征提取;
步骤四、将所需分析星座图输入训练完成的CNN模块进行模式识别和性能分析;
步骤五、输出分析结果。
2.根据权利要求1所述的基于卷积神经网络的深度学习智能星座图分析方法,其特征在于,所述星座图中所需分析的多种性能为调制格式、光信噪比(OSNR)、色散(CD)、线性损伤和非线性损伤。
3.根据权利要求1所述的基于卷积神经网络的深度学习智能星座图分析方法,其特征在于,所述星座图训练集获取步骤一中,采集星座图的各种性能不同指标情况下的训练数据集,其中,训练数据集中的每组数据由输入为星座图图像和输出为特定性能的特定指标信息对构成。
4.根据权利要求1所述的基于卷积神经网络的深度学习智能星座图分析方法,其特征在于,所述星座图预处理步骤二中,将所述步骤一中获取的训练数据集中的彩色星座图图像转换为灰度图像,并将得到的星座图灰度图像进行下采样处理。
5.根据权利要求1所述的基于卷积神经网络的深度学习智能星座图分析方法,其特征在于,所述训练CNN模块进行特征提取步骤三中,将所述步骤二中预处理后的星座图输入构建好的CNN模块中,基于所述训练数据进行训练过程后,所述CNN模块自动从星座图图像中提取特征,并构建特征与不同性能之间的关系。
6.根据权利要求1所述的基于卷积神经网络的深度学习智能星座图分析方法,其特征在于,所述CNN模块模式识别和性能分析步骤四中,经预处理的所需分析的星座图输入所述训练完成的CNN模块中,CNN模块对输入的星座图进行模式识别,并通过其以往的学习经验对当前输入的星座图进行性能分析。
7.根据权利要求1所述的基于卷积神经网络的深度学习智能星座图分析方法,其特征在于,所述输出分析结果步骤五中,由所述CNN模块输出的信息包含所需分析的各种性能,可从输出信息中得到不同性能的分析结果。
8.根据权利要求1所述的基于卷积神经网络的深度学习智能星座图分析方法,其特征在于,所述CNN模块的结构主要包括:一个输入层、n个卷积层(C1、C2、…、Cn)、n个池化层(P1、P2、…、Pn)、m个全连接层(F1、F2、…、Fm)、一个输出层;
其中,所述输入层的输入为经过预处理的星座图图像,输入层与卷积层C1相连接;
所述卷积层C1含有k1个大小为a1×a1的卷积核,所述输入层图像经过卷积层C1得到k1个特征图,进而将得到的特征图传送至池化层P1;
所述池化层P1以b1×b1的采样大小对所述卷积层C1生成的特征图进行池化,得到相应的k1个采样后的特征图,再将得到的特征图传送至下一个卷积层C2;
所述n个卷积层和池化层对的顺次连接,进而不断提取图像深层次的抽样特征,最后一个池化层Pn与全连接层F1相连接,其中,卷积层Ci含有ki个大小为ai×ai的卷积核,池化层Pj的采样大小为bj×bj,Ci表示第i个卷积层,Pj表示第j个池化层;
所述全连接层F1为所述最后一个池化层Pn所得的所有kn个特征图的像素点映射而成的一维层,每个像素代表所述全连接层F1的一个神经元节点,F1层的所有神经元节点与下一个全连接层F2的神经元节点进行全连接;
经m个全连接层顺次连接,最后一个全连接层Fm与所述输出层进行全连接;
所述输出层输出所需分析的星座图不同性能的节点信息。
9.根据权利要求8所述的基于卷积神经网络的深度学习智能星座图分析方法,其特征在于,所述输出层输出的节点信息为L位的二进制比特序列,其中,所述N个不同的性能分别以L1、L2、…、LN位二进制比特信息来表示,Li位用于表示第i个性能的Li种不同的指标信息,其中L=L1+L2+…+LN
10.根据权利要求1所述的基于卷积神经网络的深度学习智能星座图分析方法,其特征在于,基于CNN的星座图处理算法将作为示波器的星座图软件处理模块或仿真软件的星座图分析模块,进而嵌入到测试仪器中进行智能信号分析和性能监测。
CN201710533175.2A 2017-07-03 2017-07-03 基于卷积神经网络的深度学习智能星座图分析方法 Active CN107342962B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710533175.2A CN107342962B (zh) 2017-07-03 2017-07-03 基于卷积神经网络的深度学习智能星座图分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710533175.2A CN107342962B (zh) 2017-07-03 2017-07-03 基于卷积神经网络的深度学习智能星座图分析方法

Publications (2)

Publication Number Publication Date
CN107342962A true CN107342962A (zh) 2017-11-10
CN107342962B CN107342962B (zh) 2019-12-13

Family

ID=60219438

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710533175.2A Active CN107342962B (zh) 2017-07-03 2017-07-03 基于卷积神经网络的深度学习智能星座图分析方法

Country Status (1)

Country Link
CN (1) CN107342962B (zh)

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108234370A (zh) * 2017-12-22 2018-06-29 西安电子科技大学 基于卷积神经网络的通信信号调制方式识别方法
CN108427987A (zh) * 2018-03-08 2018-08-21 四川大学 一种基于卷积神经网络的调制方式识别方法
CN108616470A (zh) * 2018-03-26 2018-10-02 天津大学 基于卷积神经网络的调制信号识别方法
CN108957125A (zh) * 2018-03-20 2018-12-07 北京邮电大学 基于机器学习的智能频谱图分析方法
CN109246048A (zh) * 2018-10-30 2019-01-18 广州海格通信集团股份有限公司 一种基于深度学习的物理层安全通信方法和系统
CN109274625A (zh) * 2018-11-12 2019-01-25 北京邮电大学 一种信息调制方式确定方法、装置、电子设备及存储介质
CN109274626A (zh) * 2018-11-21 2019-01-25 电子科技大学 一种基于星座图正交扫描特征的调制识别方法
CN109309640A (zh) * 2018-09-08 2019-02-05 苏州大学 基于机器学习的盲信号格式识别方法
CN109495183A (zh) * 2018-10-29 2019-03-19 武汉邮电科学研究院有限公司 一种相干光通信系统中星座点中心的跟踪方法及系统
CN109639350A (zh) * 2018-12-27 2019-04-16 武汉邮电科学研究院有限公司 一种光iq调制器参数监测方法及装置
CN110166119A (zh) * 2019-05-29 2019-08-23 北京理工大学 一种基于深层神经网络的相干光通信发射机监测方法
CN110210536A (zh) * 2019-05-22 2019-09-06 北京邮电大学 一种光互连系统的物理损伤诊断方法及装置
CN110309854A (zh) * 2019-05-21 2019-10-08 北京邮电大学 一种信号调制方式识别方法及装置
CN110324080A (zh) * 2019-06-28 2019-10-11 北京邮电大学 一种光性能监测的方法、装置、电子设备及介质
CN110855591A (zh) * 2019-12-09 2020-02-28 山东大学 一种基于卷积神经网络结构的qam和psk信号类内调制分类方法
CN111696258A (zh) * 2019-03-15 2020-09-22 万维数码智能有限公司 智能货架系统及其控制方法
CN111865848A (zh) * 2020-06-16 2020-10-30 武汉邮电科学研究院有限公司 一种信号调制格式识别方法及系统
CN111884716A (zh) * 2020-06-30 2020-11-03 中国南方电网有限责任公司 一种基于神经网络的光纤通信系统性能评估方法
CN111935043A (zh) * 2020-08-05 2020-11-13 四川大学 基于相位统计图的调相信号调制方式的识别方法
CN112511474A (zh) * 2020-11-26 2021-03-16 哈尔滨工程大学 一种基于卷积神经网络和迁移学习的智能设备振动通信方法
CN112633265A (zh) * 2021-03-11 2021-04-09 耕宇牧星(北京)空间科技有限公司 针对基于深度学习目标旋转框检测的池化方法和系统
CN112966785A (zh) * 2021-04-14 2021-06-15 赵辉 一种智能化星座状态识别方法和系统
CN113114332A (zh) * 2021-03-05 2021-07-13 北京邮电大学 地球同步轨道卫星通信系统的性能监测方法及装置
CN113452439A (zh) * 2021-06-28 2021-09-28 聊城大学 一种弹性光网络中的关键参数联合监测方法
CN114553650A (zh) * 2022-04-27 2022-05-27 南京信息工程大学 基于多层级神经网络的抗模式耦合信号复杂格式解析方法
WO2022120757A1 (zh) * 2020-12-10 2022-06-16 华为技术有限公司 一种星座符号检测方法及装置
CN114785649A (zh) * 2022-04-21 2022-07-22 北京鹏鹄物宇科技发展有限公司 一种基于多端神经网络的卫星通信信号识别方法
CN115173936A (zh) * 2022-06-30 2022-10-11 烽火通信科技股份有限公司 一种光模块识别标记方法及装置
CN115276789A (zh) * 2022-05-16 2022-11-01 聊城大学 光性能监测方法、装置、设备及存储介质

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104200224A (zh) * 2014-08-28 2014-12-10 西北工业大学 基于深度卷积神经网络的无价值图像去除方法
CN104463194A (zh) * 2014-11-04 2015-03-25 深圳市华尊科技有限公司 一种人车分类方法及装置
CN104850825A (zh) * 2015-04-18 2015-08-19 中国计量学院 一种基于卷积神经网络的人脸图像颜值计算方法
CN105868689A (zh) * 2016-02-16 2016-08-17 杭州景联文科技有限公司 一种基于级联卷积神经网络的人脸遮挡检测方法
CN106326874A (zh) * 2016-08-30 2017-01-11 天津中科智能识别产业技术研究院有限公司 一种人眼图像中的虹膜识别方法及其装置
CN106372651A (zh) * 2016-08-22 2017-02-01 平安科技(深圳)有限公司 图片品质的检测方法及装置
GB2545661A (en) * 2015-12-21 2017-06-28 Nokia Technologies Oy A method for analysing media content

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104200224A (zh) * 2014-08-28 2014-12-10 西北工业大学 基于深度卷积神经网络的无价值图像去除方法
CN104463194A (zh) * 2014-11-04 2015-03-25 深圳市华尊科技有限公司 一种人车分类方法及装置
CN104850825A (zh) * 2015-04-18 2015-08-19 中国计量学院 一种基于卷积神经网络的人脸图像颜值计算方法
GB2545661A (en) * 2015-12-21 2017-06-28 Nokia Technologies Oy A method for analysing media content
CN105868689A (zh) * 2016-02-16 2016-08-17 杭州景联文科技有限公司 一种基于级联卷积神经网络的人脸遮挡检测方法
CN106372651A (zh) * 2016-08-22 2017-02-01 平安科技(深圳)有限公司 图片品质的检测方法及装置
CN106326874A (zh) * 2016-08-30 2017-01-11 天津中科智能识别产业技术研究院有限公司 一种人眼图像中的虹膜识别方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
赖俊森: "基于眼图重构和人工神经网络的光性能监测", 《光电子·激光》 *

Cited By (43)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108234370B (zh) * 2017-12-22 2020-12-15 西安电子科技大学 基于卷积神经网络的通信信号调制方式识别方法
CN108234370A (zh) * 2017-12-22 2018-06-29 西安电子科技大学 基于卷积神经网络的通信信号调制方式识别方法
CN108427987A (zh) * 2018-03-08 2018-08-21 四川大学 一种基于卷积神经网络的调制方式识别方法
CN108957125A (zh) * 2018-03-20 2018-12-07 北京邮电大学 基于机器学习的智能频谱图分析方法
CN108616470A (zh) * 2018-03-26 2018-10-02 天津大学 基于卷积神经网络的调制信号识别方法
CN109309640B (zh) * 2018-09-08 2021-11-05 苏州大学 基于机器学习的盲信号格式识别方法
CN109309640A (zh) * 2018-09-08 2019-02-05 苏州大学 基于机器学习的盲信号格式识别方法
CN109495183A (zh) * 2018-10-29 2019-03-19 武汉邮电科学研究院有限公司 一种相干光通信系统中星座点中心的跟踪方法及系统
CN109246048A (zh) * 2018-10-30 2019-01-18 广州海格通信集团股份有限公司 一种基于深度学习的物理层安全通信方法和系统
CN109246048B (zh) * 2018-10-30 2021-02-02 广州海格通信集团股份有限公司 一种基于深度学习的物理层安全通信方法和系统
CN109274625A (zh) * 2018-11-12 2019-01-25 北京邮电大学 一种信息调制方式确定方法、装置、电子设备及存储介质
CN109274625B (zh) * 2018-11-12 2020-06-19 北京邮电大学 一种信息调制方式确定方法、装置、电子设备及存储介质
CN109274626A (zh) * 2018-11-21 2019-01-25 电子科技大学 一种基于星座图正交扫描特征的调制识别方法
CN109274626B (zh) * 2018-11-21 2020-11-13 电子科技大学 一种基于星座图正交扫描特征的调制识别方法
CN109639350A (zh) * 2018-12-27 2019-04-16 武汉邮电科学研究院有限公司 一种光iq调制器参数监测方法及装置
CN111696258A (zh) * 2019-03-15 2020-09-22 万维数码智能有限公司 智能货架系统及其控制方法
CN110309854A (zh) * 2019-05-21 2019-10-08 北京邮电大学 一种信号调制方式识别方法及装置
CN110210536A (zh) * 2019-05-22 2019-09-06 北京邮电大学 一种光互连系统的物理损伤诊断方法及装置
CN110166119A (zh) * 2019-05-29 2019-08-23 北京理工大学 一种基于深层神经网络的相干光通信发射机监测方法
CN110166119B (zh) * 2019-05-29 2020-06-16 北京理工大学 一种基于深层神经网络的相干光通信发射机监测方法
CN110324080A (zh) * 2019-06-28 2019-10-11 北京邮电大学 一种光性能监测的方法、装置、电子设备及介质
CN110855591B (zh) * 2019-12-09 2021-10-29 山东大学 一种基于卷积神经网络结构的qam和psk信号类内调制分类方法
CN110855591A (zh) * 2019-12-09 2020-02-28 山东大学 一种基于卷积神经网络结构的qam和psk信号类内调制分类方法
CN111865848A (zh) * 2020-06-16 2020-10-30 武汉邮电科学研究院有限公司 一种信号调制格式识别方法及系统
CN111865848B (zh) * 2020-06-16 2023-03-24 武汉邮电科学研究院有限公司 一种信号调制格式识别方法及系统
CN111884716A (zh) * 2020-06-30 2020-11-03 中国南方电网有限责任公司 一种基于神经网络的光纤通信系统性能评估方法
CN111884716B (zh) * 2020-06-30 2021-10-15 中国南方电网有限责任公司 一种基于神经网络的光纤通信系统性能评估方法
CN111935043A (zh) * 2020-08-05 2020-11-13 四川大学 基于相位统计图的调相信号调制方式的识别方法
CN112511474A (zh) * 2020-11-26 2021-03-16 哈尔滨工程大学 一种基于卷积神经网络和迁移学习的智能设备振动通信方法
WO2022120757A1 (zh) * 2020-12-10 2022-06-16 华为技术有限公司 一种星座符号检测方法及装置
CN113114332B (zh) * 2021-03-05 2022-07-19 北京邮电大学 地球同步轨道卫星通信系统的性能监测方法及装置
CN113114332A (zh) * 2021-03-05 2021-07-13 北京邮电大学 地球同步轨道卫星通信系统的性能监测方法及装置
CN112633265A (zh) * 2021-03-11 2021-04-09 耕宇牧星(北京)空间科技有限公司 针对基于深度学习目标旋转框检测的池化方法和系统
CN112966785B (zh) * 2021-04-14 2021-11-02 赵辉 一种智能化星座状态识别方法和系统
CN112966785A (zh) * 2021-04-14 2021-06-15 赵辉 一种智能化星座状态识别方法和系统
CN113452439B (zh) * 2021-06-28 2022-07-01 聊城大学 一种弹性光网络中的关键参数联合监测方法
CN113452439A (zh) * 2021-06-28 2021-09-28 聊城大学 一种弹性光网络中的关键参数联合监测方法
CN114785649A (zh) * 2022-04-21 2022-07-22 北京鹏鹄物宇科技发展有限公司 一种基于多端神经网络的卫星通信信号识别方法
CN114785649B (zh) * 2022-04-21 2023-11-14 北京鹏鹄物宇科技发展有限公司 一种基于多端神经网络的卫星通信信号识别方法
CN114553650A (zh) * 2022-04-27 2022-05-27 南京信息工程大学 基于多层级神经网络的抗模式耦合信号复杂格式解析方法
CN114553650B (zh) * 2022-04-27 2022-07-29 南京信息工程大学 基于多层级神经网络的抗模式耦合信号复杂格式解析方法
CN115276789A (zh) * 2022-05-16 2022-11-01 聊城大学 光性能监测方法、装置、设备及存储介质
CN115173936A (zh) * 2022-06-30 2022-10-11 烽火通信科技股份有限公司 一种光模块识别标记方法及装置

Also Published As

Publication number Publication date
CN107342962B (zh) 2019-12-13

Similar Documents

Publication Publication Date Title
CN107342962A (zh) 基于卷积神经网络的深度学习智能星座图分析方法
CN107342810B (zh) 基于卷积神经网络的深度学习智能眼图分析方法
Wang et al. Intelligent constellation diagram analyzer using convolutional neural network-based deep learning
Wang et al. Modulation format recognition and OSNR estimation using CNN-based deep learning
CN109580215B (zh) 一种基于深度生成对抗网络的风电传动系统故障诊断方法
CN108446631B (zh) 基于卷积神经网络的深度学习的智能频谱图分析方法
CN111832417B (zh) 基于cnn-lstm模型和迁移学习的信号调制样式识别方法
CN105046277B (zh) 特征显著性在图像质量评价中的鲁棒机理研究方法
Fan et al. Joint optical performance monitoring and modulation format/bit-rate identification by CNN-based multi-task learning
CN109815919A (zh) 一种人群计数方法、网络、系统和电子设备
CN110569752A (zh) 基于卷积神经网络的雷达信号类别确定方法
CN108921814A (zh) 一种基于深度学习的柑橘黄龙病在线快速检测系统及方法
CN106874950A (zh) 一种暂态电能质量录波数据的识别分类方法
Lv et al. Joint OSNR monitoring and modulation format identification on signal amplitude histograms using convolutional neural network
CN110532901A (zh) 基于多目标检测的深度学习智能光谱分析方法及系统
Wang et al. Comprehensive eye diagram analysis: a transfer learning approach
CN106897998A (zh) 太阳能直射辐射强度信息预测方法和系统
Zhang et al. Alarm classification prediction based on cross-layer artificial intelligence interaction in self-optimized optical networks (SOON)
CN111541484A (zh) 基于延时采样的光纤通信系统光信噪比监测方法
Ma et al. Modulation classification method based on deep learning under non-Gaussian noise
CN108022257A (zh) 适用于硬件的高速卷积神经网络目标跟踪方法和装置
CN113989217A (zh) 一种基于深度学习的人眼屈光度检测方法
Gao et al. Joint baud-rate and modulation format identification based on asynchronous delay-tap plots analyzer by using convolutional neural network
Wang et al. CNN based OSNR estimation method for long haul optical fiber communication systems
Zhou et al. Recognition and evaluation of constellation diagram using deep learning based on underwater wireless optical communication

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant