CN107330250A - Mg in a kind of aluminium alloy2The characterizing method of Si phase atom stackings - Google Patents
Mg in a kind of aluminium alloy2The characterizing method of Si phase atom stackings Download PDFInfo
- Publication number
- CN107330250A CN107330250A CN201710434015.2A CN201710434015A CN107330250A CN 107330250 A CN107330250 A CN 107330250A CN 201710434015 A CN201710434015 A CN 201710434015A CN 107330250 A CN107330250 A CN 107330250A
- Authority
- CN
- China
- Prior art keywords
- atom
- substrate
- crystal face
- newly born
- atoms
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 18
- 229910052782 aluminium Inorganic materials 0.000 title claims abstract description 5
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 title claims abstract description 4
- 239000004411 aluminium Substances 0.000 title claims abstract 3
- 239000000758 substrate Substances 0.000 claims abstract description 113
- 239000013078 crystal Substances 0.000 claims abstract description 79
- 238000001179 sorption measurement Methods 0.000 claims abstract description 52
- 238000004364 calculation method Methods 0.000 claims abstract description 8
- 239000000956 alloy Substances 0.000 claims abstract description 4
- 125000004429 atom Chemical group 0.000 claims description 153
- 229910000838 Al alloy Inorganic materials 0.000 claims description 10
- 125000002346 iodo group Chemical group I* 0.000 claims description 9
- 230000005501 phase interface Effects 0.000 claims description 2
- 238000010521 absorption reaction Methods 0.000 claims 6
- 230000015572 biosynthetic process Effects 0.000 claims 1
- 230000003993 interaction Effects 0.000 abstract description 5
- 230000006911 nucleation Effects 0.000 description 19
- 238000010899 nucleation Methods 0.000 description 19
- 229910019018 Mg 2 Si Inorganic materials 0.000 description 14
- 230000007246 mechanism Effects 0.000 description 6
- 101100269157 Caenorhabditis elegans ads-1 gene Proteins 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 238000012512 characterization method Methods 0.000 description 2
- 238000002474 experimental method Methods 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 229910018134 Al-Mg Inorganic materials 0.000 description 1
- 229910018467 Al—Mg Inorganic materials 0.000 description 1
- 238000003775 Density Functional Theory Methods 0.000 description 1
- 229910000676 Si alloy Inorganic materials 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000005266 casting Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 125000004437 phosphorous atom Chemical group 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000004451 qualitative analysis Methods 0.000 description 1
- 238000004445 quantitative analysis Methods 0.000 description 1
- 230000002787 reinforcement Effects 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C20/00—Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
- G16C20/20—Identification of molecular entities, parts thereof or of chemical compositions
-
- G—PHYSICS
- G16—INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
- G16C—COMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
- G16C10/00—Computational theoretical chemistry, i.e. ICT specially adapted for theoretical aspects of quantum chemistry, molecular mechanics, molecular dynamics or the like
Landscapes
- Theoretical Computer Science (AREA)
- Engineering & Computer Science (AREA)
- Computing Systems (AREA)
- Bioinformatics & Computational Biology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Analysing Materials By The Use Of Radiation (AREA)
- Laminated Bodies (AREA)
Abstract
Description
技术领域:Technical field:
本发明涉及一种新生相在形核衬底上原子堆垛的表征技术领域,尤其是涉及一种铝合金中Mg2Si相在形核衬底上原子堆垛的表征方法。The invention relates to the technical field of characterization of atomic stacking of new phases on nucleation substrates, in particular to a characterization method of atomic stacking of Mg 2 Si phases in aluminum alloys on nucleation substrates.
背景技术:Background technique:
铝合金在很多工程领域得到广泛应用,纯铝本身有强度低、硬度低、熔点低的缺点,目前改善铝合金性能的最主要方法就是合金强化。合理控制铝合金中Mg、Si元素含量,使Mg2Si在凝固过程中以初生相的形式析出,可以有效起到颗粒增强的作用,显著提高铝合金的力学性能。但通过熔铸法得到的Al-Mg2Si合金中,初生Mg2Si一般比较粗大,易割裂基体,不利于合金性能的提高。有研究者根据Bramfitt二维晶格错配模型进行错配度计算,提出AlP、Al4Sr和Mg3Sb2可充当Mg2Si的良好形核衬底,增加Mg2Si的形核质点,有效细化Mg2Si晶粒,从而提高铝合金的性能。Aluminum alloys are widely used in many engineering fields. Pure aluminum itself has the disadvantages of low strength, low hardness, and low melting point. At present, the most important method to improve the performance of aluminum alloys is alloy strengthening. Reasonable control of the content of Mg and Si elements in aluminum alloys, so that Mg 2 Si precipitates in the form of primary phases during solidification, can effectively play the role of particle reinforcement and significantly improve the mechanical properties of aluminum alloys. However, in the Al-Mg 2 Si alloy obtained by melting and casting, the primary Mg 2 Si is generally relatively coarse and easy to split the matrix, which is not conducive to the improvement of the alloy performance. Some researchers calculated the mismatch degree based on the Bramfitt two-dimensional lattice mismatch model, and proposed that AlP, Al 4 Sr and Mg 3 Sb 2 can serve as good nucleation substrates for Mg 2 Si, increasing the nucleation particles of Mg 2 Si, Effectively refine Mg 2 Si grains, thereby improving the performance of aluminum alloys.
在细化晶粒的研究中,扫描电镜(SEM)和透射电镜(TEM)等仪器常被用来研究晶粒大小和物相结构等以揭示细化机制,但不能通过实验手段对细化变质机理进行更本质上的研究。目前逐渐有学者通过第一性原理揭示异质形核机理,此类方法中大多是根据晶格错配度的计算,构建出错配度较小的形核衬底与新生相间的界面模型,从而计算出界面的电子结构、成键特性和结合强度,在原子和电子角度上解释形核衬底对新生相的作用机制。然而,目前还没有研究揭示出新生相与衬底形成界面前的生长初期,新生相在衬底上的堆垛及生长方式。In the study of grain refinement, instruments such as scanning electron microscope (SEM) and transmission electron microscope (TEM) are often used to study grain size and phase structure to reveal the mechanism of grain refinement, but the refinement and deterioration cannot be determined by experimental means. The mechanism is more fundamentally studied. At present, some scholars are gradually revealing the heterogeneous nucleation mechanism through the first principles. Most of these methods are based on the calculation of the lattice mismatch degree to construct the interface model between the nucleation substrate and the nascent phase with a small mismatch degree. The electronic structure, bonding characteristics and binding strength of the interface are calculated, and the mechanism of the nucleation substrate on the nascent phase is explained from the perspective of atoms and electrons. However, no research has revealed the stacking and growth methods of the new phase on the substrate in the initial growth stage before the new phase forms an interface with the substrate.
发明内容:Invention content:
本发明的目的在于针对上述现有技术的不足,提供一种铝合金中形核衬底与新生相Mg2Si中Mg、Si原子相互作用的表征方法。本发明前期借助基于第一性原理的密度泛函理论,根据晶格错配度计算,构建出错配度较小的衬底与新生相的界面模型,进而选出与新生相结合较好的衬底晶面,来研究异质形核初期,该衬底晶面上的新生相的原子堆垛及生长方式,建立衬底与新生相原子之间的吸附模型,可以有效解决传统实验手段所不能探究到的原子尺寸级别的问题,从根源上探究晶粒细化机制。The object of the present invention is to provide a method for characterizing the interaction between the nucleation substrate in the aluminum alloy and the Mg and Si atoms in the nascent phase Mg 2 Si in view of the shortcomings of the above prior art. In the early stage of the present invention, with the help of the density functional theory based on first principles, according to the calculation of the lattice mismatch degree, the interface model of the substrate with a small mismatch degree and the nascent phase is constructed, and then the substrate with a better combination with the nascent phase is selected. At the initial stage of heterogeneous nucleation, to study the atomic stacking and growth mode of the new phase on the substrate crystal plane, and to establish the adsorption model between the substrate and the new phase atoms, it can effectively solve the problem that traditional experimental methods cannot The problems at the atomic size level are explored, and the grain refinement mechanism is explored from the root.
一种铝合金中Mg2Si相原子堆垛的表征方法,其特征在于包括以下步骤:A method for characterizing Mg 2 Si phase atomic stacking in aluminum alloy, characterized in that it comprises the following steps:
步骤一、建立形核衬底的三维超晶胞原子模型,其大小为N×N×N,其中原子模型晶格常数=单胞晶格常数×超晶胞维数,单胞晶格常数是形核衬底单胞能量最低时的晶格常数,超晶胞维数是满足计算精度要求的维数最小值;Step 1. Establish the three-dimensional supercell atomic model of the nucleation substrate, whose size is N×N×N, wherein the atomic model lattice constant=unit cell lattice constant×supercell dimension, and the unit cell lattice constant is The lattice constant when the unit cell energy of the nucleation substrate is the lowest, and the supercell dimension is the minimum dimension that meets the calculation accuracy requirements;
步骤二、根据晶格错配度理论,计算出错配度较小时衬底与新生相形成界面的晶面,建立晶面模型;衬底晶面与新生相晶面均存在两种堆垛方式:1)每个原子层中只包含同一种原子,即有不同的终止面;2)每个原子层中同时出现不同种原子;Step 2. According to the theory of lattice mismatch degree, calculate the crystal plane of the interface between the substrate and the nascent phase when the misfit degree is small, and establish a crystal plane model; there are two stacking modes for the substrate crystal plane and the nascent phase crystal plane: 1) Each atomic layer contains only the same kind of atoms, that is, there are different termination surfaces; 2) Different kinds of atoms appear in each atomic layer at the same time;
当衬底和新生相均存在两种不同的原子时,衬底中两种原子分别记为A、B,新生相中两种原子分别记为Ⅰ、Ⅱ,衬底与新生相发生界面结合时存在下列4种情况:When there are two different kinds of atoms in both the substrate and the nascent phase, the two atoms in the substrate are denoted as A and B, and the two atoms in the nascent phase are denoted as I and II respectively. There are 4 situations:
1)衬底晶面每个原子层中只包含同一种原子A或B,新生相晶面每个原子层中也只包含同一种原子Ⅰ或Ⅱ;1) Each atomic layer of the substrate crystal plane contains only the same type of atoms A or B, and each atomic layer of the nascent phase crystal plane also contains only the same type of atoms I or II;
2)衬底晶面每个原子层中只包含同一种原子A或B,新生相每个原子层中同时出现两种原子Ⅰ和Ⅱ;2) Each atomic layer of the substrate crystal plane contains only the same kind of atoms A or B, and two kinds of atoms I and II appear in each atomic layer of the nascent phase;
3)衬底晶面每个原子层中同时出现两种原子A和B,新生相晶面每个原子层中只包含同一种原子Ⅰ或Ⅱ;3) Two kinds of atoms A and B appear simultaneously in each atomic layer of the substrate crystal plane, and each atomic layer of the nascent phase crystal plane only contains the same kind of atoms I or II;
4)衬底晶面每个原子层中同时出现两种原子A和B,新生相每个原子层中同时出现两种原子Ⅰ和Ⅱ;4) Two kinds of atoms A and B appear simultaneously in each atomic layer of the substrate crystal plane, and two kinds of atoms I and II appear simultaneously in each atomic layer of the nascent phase;
步骤三、根据步骤二中所列出的衬底与新生相界面结合的4种情况,建立衬底晶面吸附新生相原子的吸附模型,各种结合情况下的吸附模型如下:Step 3. According to the four situations of the combination of the substrate and the nascent phase interface listed in step 2, an adsorption model for adsorbing nascent phase atoms on the substrate crystal plane is established. The adsorption models for various combinations are as follows:
1)衬底晶面每个原子层中只包含同一种原子A或B,新生相晶面每个原子层中也只包含同一种原子Ⅰ或Ⅱ:1) Each atomic layer of the substrate crystal plane contains only the same type of atoms A or B, and each atomic layer of the new phase crystal plane also contains only the same type of atoms I or II:
a.衬底晶面以A原子终止,在一个A原子上吸附新生相中的一个Ⅰ原子;a. The crystal plane of the substrate is terminated by an A atom, and an I atom in the nascent phase is adsorbed on an A atom;
b.衬底晶面以A原子终止,在一个A原子上吸附新生相中的一个Ⅱ原子;b. The crystal plane of the substrate is terminated by an A atom, and an atom II in the nascent phase is adsorbed on an A atom;
c.衬底晶面以B原子终止,在一个B原子上吸附新生相中的一个Ⅰ原子;c. The crystal plane of the substrate is terminated by a B atom, and an I atom in the nascent phase is adsorbed on a B atom;
d.衬底晶面以B原子终止,在一个B原子上吸附新生相中的一个Ⅱ原子;d. The crystal plane of the substrate is terminated by a B atom, and an II atom in the nascent phase is adsorbed on a B atom;
2)衬底晶面每个原子层中只包含同一种原子A或B,新生相每个原子层中同时出现两种原子Ⅰ和Ⅱ:2) Each atomic layer of the substrate crystal plane only contains the same kind of atoms A or B, and two kinds of atoms I and II appear in each atomic layer of the nascent phase:
e.衬底晶面以A原子终止,分别在两个A原子的上方同时吸附新生相中的Ⅰ、Ⅱ原子各一个;e. The crystal plane of the substrate is terminated by A atoms, and one atom of I and II in the nascent phase is simultaneously adsorbed on top of the two A atoms;
f.衬底晶面以B原子终止,分别在两个B原子的上方同时吸附新生相中的Ⅰ、Ⅱ原子各一个;f. The crystal plane of the substrate is terminated by B atoms, and one atom of I and II in the nascent phase is simultaneously adsorbed on top of the two B atoms;
3)衬底晶面每个原子层中同时出现两种原子A和B,新生相晶面每个原子层中只包含同一种原子Ⅰ或Ⅱ:3) Two kinds of atoms A and B appear simultaneously in each atomic layer of the substrate crystal plane, and each atomic layer of the nascent phase crystal plane only contains the same kind of atoms I or II:
g.衬底晶面的A原子上吸附新生相中的一个Ⅰ原子;g. Adsorb an I atom in the nascent phase on the A atom of the substrate crystal plane;
h.衬底晶面的A原子上吸附新生相中的一个Ⅱ原子;h. An atom II in the nascent phase is adsorbed on the A atom of the substrate crystal plane;
i.衬底晶面的B原子上吸附新生相中的一个Ⅰ原子;i. Adsorb an I atom in the nascent phase on the B atom of the substrate crystal plane;
j.衬底晶面的B原子上吸附新生相中的一个Ⅱ原子;j. One atom II in the nascent phase is adsorbed on the B atom of the substrate crystal plane;
4)衬底晶面每个原子层中同时出现两种原子A和B,新生相每个原子层中同时出现两种原子Ⅰ和Ⅱ:4) Two kinds of atoms A and B appear simultaneously in each atomic layer of the substrate crystal plane, and two kinds of atoms I and II appear simultaneously in each atomic layer of the nascent phase:
k.衬底晶面A和B原子上分别对应吸附新生相中的Ⅰ、Ⅱ原子各一个;k. The A and B atoms on the crystal surface of the substrate correspond to one atom of I and II in the adsorbed nascent phase, respectively;
l.衬底晶面A和B原子上分别对应吸附新生相中的Ⅱ、Ⅰ原子各一个;l. The A and B atoms on the crystal surface of the substrate correspond to one atom of II and I in the adsorbed nascent phase, respectively;
m.衬底晶面两个A原子上分别对应吸附新生相中的Ⅰ、Ⅱ原子各一个;m. The two A atoms on the crystal plane of the substrate correspond to the I and II atoms in the adsorbed nascent phase, respectively;
n.衬底晶面两个B原子上分别对应吸附新生相中的Ⅰ、Ⅱ原子各一个;n. The two B atoms on the crystal plane of the substrate correspond to the I and II atoms in the adsorbed nascent phase, respectively;
步骤四、根据公式(1)计算步骤三中各个吸附模型的吸附能:Step 4. Calculate the adsorption energy of each adsorption model in step 3 according to formula (1):
Εads=Ε0+Ε1-ΕT (1)Ε ads = Ε 0 + Ε 1 - Ε T (1)
公式(1)中,Εads代表吸附能,Ε0表示衬底没有吸附原子时的体系的总能量,Ε1表示吸附的原子的总能量,ΕT表示吸附原子后体系的总能量;In the formula (1), Εads represents the adsorption energy, Ε0 represents the total energy of the system when the substrate does not have adatoms, Ε1 represents the total energy of the adsorbed atoms, and Ε T represents the total energy of the system after the adatoms;
步骤五、吸附能越大,原子越容易被吸附在衬底晶面上,通过比较以上各吸附模型吸附能的大小,可以确定新生相原子在衬底上的堆垛方式,现将该堆垛方式表征如下:Step 5. The greater the adsorption energy, the easier it is for atoms to be adsorbed on the substrate crystal surface. By comparing the adsorption energy of the above adsorption models, the stacking mode of the new phase atoms on the substrate can be determined. Now the stacking The way is represented as follows:
(1)同种衬底晶面吸附不同原子时,吸附能大的原子优先吸附,即该原子或该原子层在衬底上优先堆垛;(1) When different atoms are adsorbed on the crystal plane of the same substrate, the atom with the larger adsorption energy is preferentially adsorbed, that is, the atom or the atomic layer is preferentially stacked on the substrate;
(2)不同衬底晶面吸附同种原子,吸附能越大,表明该原子越容易优先在该衬底晶面或终止面上堆垛;(2) The same kind of atoms are adsorbed on different substrate crystal planes, and the greater the adsorption energy, the easier it is for the atoms to preferentially stack on the substrate crystal plane or termination plane;
(3)同种衬底晶面吸附同种原子,只是衬底和新生相间原子对应位置不同时,原子优先按吸附能大的方式堆垛;(3) The crystal plane of the same substrate adsorbs the same atom, but when the corresponding positions of the atoms between the substrate and the nascent phase are different, the atoms are preferentially stacked in the way with the largest adsorption energy;
(4)不同衬底晶面吸附不同原子时,吸附能较大的模型所对应的衬底和新生相间的界面越容易形成。(4) When different atoms are adsorbed on different substrate crystal planes, the interface between the substrate and the nascent phase corresponding to the model with higher adsorption energy is easier to form.
步骤三中所述的所有可能存在的吸附模型是根据步骤二中计算的错配度较小的界面建立的。All possible adsorption models described in Step 3 are established based on the interfaces with smaller mismatch degrees calculated in Step 2.
与以往的技术相比,本发明的突出优点是:Compared with the prior art, the outstanding advantages of the present invention are:
1.根据第一性原理构建形核衬底与新相之间的吸附模型,得到的形核衬底与新生相原子之间相互作用的吸附能,可以进一步解释根据错配度计算所构建的界面模型的原子堆垛方式,能够较真实地反映出新生相在生长初期与形核衬底的结合方式和材料内部微观结构的变化,从原子尺度上探讨细化变质机理,进而揭示组织决定性能的本质原因;1. The adsorption model between the nucleation substrate and the new phase is constructed according to the first principles, and the adsorption energy of the interaction between the nucleation substrate and the new phase atoms obtained can further explain the calculation based on the mismatch degree. The atomic stacking method of the interface model can truly reflect the combination of the new phase with the nucleation substrate and the change of the internal microstructure of the material at the early stage of growth, and explore the mechanism of refinement and modification from the atomic scale, thereby revealing the structure-determined properties the essential cause of
2.弥补了传统实验手段只能做定性分析的不足,有效的理论计算能进行定量分析,从而更能完善细化变质理论,具有说服力;2. Make up for the shortcomings of traditional experimental methods that can only do qualitative analysis, and effective theoretical calculations can be used for quantitative analysis, so as to improve the refinement of metamorphic theory and be convincing;
3.该方法没有具体计算衬底原子与新生相原子之间复杂的相互作用,而是将它们之间的作用以吸附能的形式表示出来,方法简单可靠。3. This method does not specifically calculate the complex interaction between substrate atoms and nascent phase atoms, but expresses the interaction between them in the form of adsorption energy, which is simple and reliable.
4.适用范围广,不仅可以对Mg2Si在形核衬底上堆垛的行为进行表征,也可以对其他新生相原子在衬底上的堆垛进行分析。4. Wide application range, not only can characterize the stacking behavior of Mg 2 Si on the nucleation substrate, but also analyze the stacking of other nascent phase atoms on the substrate.
附图说明Description of drawings
图1(a)为AlP(100)Al终止面吸附Mg、Si原子的俯视图;Fig. 1(a) is a top view of the adsorption of Mg and Si atoms on the termination surface of AlP(100)Al;
图1(b)为AlP(100)Al终止面吸附Mg、Si原子的主视图;Figure 1(b) is the front view of the adsorption of Mg and Si atoms on the termination surface of AlP(100)Al;
图2(a)为AlP(100)P终止面吸附Mg、Si原子的俯视图;Figure 2(a) is a top view of the AlP(100)P termination surface adsorbing Mg and Si atoms;
图2(b)为AlP(100)P终止面吸附Mg、Si原子的主视图。Figure 2(b) is the front view of the adsorption of Mg and Si atoms on the termination surface of AlP(100)P.
具体实施方式:detailed description:
以下通过AlP作为Mg2Si的形核衬底为例,建立AlP吸附Mg、Si原子吸附模型,讲述本发明的详细过程,应说明的是:以下实例仅以说明本发明而非限制本发明所描述的技术方案。一切不脱离本发明的精神和范围的技术方案及其改进,其均应涵盖在本发明的权利要求范围当中。Below by using AlP as the nucleation substrate of Mg 2 Si as example, set up AlP adsorption Mg, Si atom adsorption model, tell about the detailed process of the present invention, it should be explained that: the following examples are only to illustrate the present invention and not limit the present invention Describe the technical solution. All technical solutions and their improvements that do not deviate from the spirit and scope of the present invention shall be included in the scope of the claims of the present invention.
本发明所描述的一种铝合金中Mg2Si相在形核衬底上原子堆垛的表征方法,我们以之前计算得到的错配度较小的界面AlP(100)||Mg2Si(211)为例具体阐述该方法,包括以下步骤:The present invention describes a method for characterizing atomic stacking of the Mg 2 Si phase on the nucleation substrate in an aluminum alloy. We use the previously calculated interface AlP(100)||Mg 2 Si( 211) as an example to specifically describe the method, including the following steps:
步骤一、建立形核衬底AlP的三维超晶胞原子模型,其大小为2×2×2,其中原子模型晶格常数=单胞晶格常数×超晶胞维数,而单胞晶格常数是形核衬底单胞能量最低时的晶格常数,超晶胞维数满足计算精度的要求;Step 1. Establish a three-dimensional supercell atomic model of the nucleation substrate AlP, whose size is 2×2×2, wherein the atomic model lattice constant=unit cell lattice constant×supercell dimension, and the unit cell lattice The constant is the lattice constant when the unit cell energy of the nucleation substrate is the lowest, and the dimension of the supercell meets the requirements of calculation accuracy;
步骤二、建立步骤一中衬底AlP超晶胞的(100)晶面,该晶面每个原子层中只包含一种原子,Al原子或P原子,因此存在Al终止和P终止两种终止面,Mg2Si(211)晶面每一个原子层中同时出现Mg、Si两种原子,则该界面结合方式属于上述4中情况的情况2),可以构建两种吸附模型e、f,即构建AlP(100)面Al终止面吸附Mg、Si原子和P终止面吸附Mg、Si原子的吸附模型;Step 2. Establish the (100) crystal plane of the substrate AlP supercell in step 1. Each atomic layer of this crystal plane contains only one kind of atom, Al atom or P atom, so there are two terminations of Al termination and P termination On the Mg 2 Si (211) crystal plane, two kinds of atoms Mg and Si appear in each atomic layer at the same time, then the interface binding mode belongs to the situation 2) in the above 4, and two kinds of adsorption models e and f can be constructed, namely Construct the adsorption model of the AlP(100) surface for the adsorption of Mg and Si atoms on the Al termination surface and the adsorption of Mg and Si atoms on the P termination surface;
步骤三、AlP(100)面Al终止面吸附Mg、Si原子的吸附能为Εads1,P终止面吸附Mg、Si原子的吸附能为Εads2,根据下述公式(1)计算出所建两种吸附模型的吸附能:Step 3: The adsorption energy of Mg and Si atoms adsorbed on the Al termination surface of the AlP (100) surface is Ε ads1 , and the adsorption energy of Mg and Si atoms adsorbed on the P termination surface is Ε ads2 . The adsorption energy of the adsorption model:
Εads=Ε0+Ε1-ΕT (1)Ε ads = Ε 0 + Ε 1 - Ε T (1)
公式(1)中,Εads代表吸附能,Ε0表示衬底没有吸附原子时的体系的总能量,Ε1表示吸附的原子的总能量,ΕT表示吸附原子后体系的总能量。算得到的各能量值和吸附能如表1所示:In the formula (1), Εads represents the adsorption energy, Ε0 represents the total energy of the system when the substrate does not have adatoms, Ε1 represents the total energy of the adsorbed atoms, and ΕT represents the total energy of the system after the adatoms. The calculated energy values and adsorption energies are shown in Table 1:
表1 AlP(100)面不同终止面的吸附能Table 1 Adsorption energies of AlP(100) surface with different termination surfaces
步骤四、将步骤三中得到的吸附能进行比较,即一般吸附能越大,原子越容易被吸附,Mg、Si原子越容易堆垛,因此可以通过比较吸附能的大小,得出新生相Mg2Si(211)面生长过程中优先在AlP(100)上生长的原子堆垛方式。由表1可知,Εads1<Εads2,即Mg、Si原子在P终止面上吸附时的吸附能大于在Al终止面上吸附时的吸附能,表明在Mg2Si(211)面与AlP(100)面结合时,以Mg、Si原子在AlP(100)面P终止面堆垛。Step 4: Compare the adsorption energies obtained in step 3, that is, the larger the adsorption energy is, the easier the atoms are to be adsorbed, and the easier it is for Mg and Si atoms to stack. Therefore, the new phase Mg can be obtained by comparing the adsorption energies. 2 Atom stacking method preferentially grown on AlP(100) during Si(211) plane growth. It can be seen from Table 1 that Ε ads1 < Ε ads2 , that is, the adsorption energy of Mg and Si atoms when adsorbed on the P-terminated surface is greater than that when adsorbed on the Al-terminated surface, indicating that the Mg 2 Si (211) surface and AlP ( When the 100) plane is combined, Mg and Si atoms are used to terminate the plane stacking on the AlP(100) plane P.
Claims (2)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710434015.2A CN107330250B (en) | 2017-06-09 | 2017-06-09 | Characterization method of Mg2Si phase atom stacking in aluminum alloy |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710434015.2A CN107330250B (en) | 2017-06-09 | 2017-06-09 | Characterization method of Mg2Si phase atom stacking in aluminum alloy |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107330250A true CN107330250A (en) | 2017-11-07 |
CN107330250B CN107330250B (en) | 2020-05-19 |
Family
ID=60195141
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710434015.2A Active CN107330250B (en) | 2017-06-09 | 2017-06-09 | Characterization method of Mg2Si phase atom stacking in aluminum alloy |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107330250B (en) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109101780A (en) * | 2018-07-24 | 2018-12-28 | 北京航空航天大学 | A method of evaluation rare earth atom and vacancy interact in nickel-base alloy bi-phase interface |
CN110824137A (en) * | 2019-10-10 | 2020-02-21 | 中国建筑材料科学研究总院有限公司 | Method and device for predicting crystallographic order of silver film in low-emissivity glass on substrate |
CN110838346A (en) * | 2019-10-10 | 2020-02-25 | 中国建筑材料科学研究总院有限公司 | Method and device for screening substrate material in low-emissivity glass |
CN112001063A (en) * | 2020-07-24 | 2020-11-27 | 广东省材料与加工研究所 | Interface mismatching degree calculation method and device |
CN112000637A (en) * | 2020-07-24 | 2020-11-27 | 广东省材料与加工研究所 | Interface relation database construction method and device |
CN112000639A (en) * | 2020-07-24 | 2020-11-27 | 广东省材料与加工研究所 | Interface relation database construction method and device |
CN112001062A (en) * | 2020-07-24 | 2020-11-27 | 广东省材料与加工研究所 | Interface mismatching degree calculation method and device |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05160389A (en) * | 1991-12-11 | 1993-06-25 | Fujitsu Ltd | Semiconductor device |
CN103943467A (en) * | 2014-05-16 | 2014-07-23 | 厦门大学 | Method for separating nitride self-supporting substrate by utilizing stress gradient |
-
2017
- 2017-06-09 CN CN201710434015.2A patent/CN107330250B/en active Active
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH05160389A (en) * | 1991-12-11 | 1993-06-25 | Fujitsu Ltd | Semiconductor device |
CN103943467A (en) * | 2014-05-16 | 2014-07-23 | 厦门大学 | Method for separating nitride self-supporting substrate by utilizing stress gradient |
Non-Patent Citations (9)
Title |
---|
CHONG LI等: ""Microstructure and corrosion behavior of Al-10%Mg2Si cast alloy after heat treatment"", 《MATERIALS CHARACTERIZATION》 * |
DONALD J.SIEGEL等: ""Adhesion, stability, and bonding at metal/metal-carbide interfaces:Al/WC"", 《SURFACE SCIENCE》 * |
HONGSHANG DAI等: ""First-principle study of the AlP/Si interfacial adhesion"", 《PHYSICA B》 * |
HUI-YUAN WANG等: ""Effects of doping atoms (Sb,Te,Sn,P and Bi) on the equilibrium shape of Mg2Si from first-principles calculations"", 《THE ROYAL SOCIETY OF CHEMISTRY》 * |
W.T. KIM等: ""An adsorption model of the heterogeneous nucleation of solidification"", 《ACTA METALLURGICA ET MATERIALIA》 * |
YANHONG DING等: ""First-principles study of the Al(001)-Al3Nb(001) interfacial properties"", 《SURFACE SCIENCE》 * |
刘相法等: "《铝合金组织细化用中间合金》", 30 November 2012, 中南大学出版社 * |
戴洪尚: ""超高硅铝合金中硅相的细化与界面性质研究"", 《中国博士学位论文全文数据库 工程科技I辑》 * |
李松: ""铝硅合金中共晶硅Sr变质机理的理论和实验研究"", 《中国优秀硕士学位论文全文数据库 工程科技Ⅰ辑》 * |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109101780A (en) * | 2018-07-24 | 2018-12-28 | 北京航空航天大学 | A method of evaluation rare earth atom and vacancy interact in nickel-base alloy bi-phase interface |
CN109101780B (en) * | 2018-07-24 | 2019-04-05 | 北京航空航天大学 | A method of evaluation rare earth atom and vacancy interact in bi-phase interface |
CN110824137A (en) * | 2019-10-10 | 2020-02-21 | 中国建筑材料科学研究总院有限公司 | Method and device for predicting crystallographic order of silver film in low-emissivity glass on substrate |
CN110838346A (en) * | 2019-10-10 | 2020-02-25 | 中国建筑材料科学研究总院有限公司 | Method and device for screening substrate material in low-emissivity glass |
CN110824137B (en) * | 2019-10-10 | 2022-03-11 | 中国建筑材料科学研究总院有限公司 | Method and device for predicting crystallization order of silver film in low-emissivity glass on substrate |
CN110838346B (en) * | 2019-10-10 | 2022-04-26 | 中国建筑材料科学研究总院有限公司 | Screening method and device for substrate material in low-emissivity glass |
CN112001063A (en) * | 2020-07-24 | 2020-11-27 | 广东省材料与加工研究所 | Interface mismatching degree calculation method and device |
CN112000637A (en) * | 2020-07-24 | 2020-11-27 | 广东省材料与加工研究所 | Interface relation database construction method and device |
CN112000639A (en) * | 2020-07-24 | 2020-11-27 | 广东省材料与加工研究所 | Interface relation database construction method and device |
CN112001062A (en) * | 2020-07-24 | 2020-11-27 | 广东省材料与加工研究所 | Interface mismatching degree calculation method and device |
Also Published As
Publication number | Publication date |
---|---|
CN107330250B (en) | 2020-05-19 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107330250A (en) | Mg in a kind of aluminium alloy2The characterizing method of Si phase atom stackings | |
CN109918712B (en) | Calculation method for solving composite stress intensity factor based on p-type finite element method and contour integral method | |
Francis et al. | First-principles insights into the structure of the incipient magnesium oxide and its instability to decomposition: Oxygen chemisorption to Mg (0001) and thermodynamic stability | |
CN110321604B (en) | Numerical simulation method for growth of single dendrite during solidification of ternary alloy | |
CN112941396B (en) | High-entropy alloy nanoframe and preparation method thereof | |
Li et al. | Deposition of horizontally stacked Zn crystals on single layer 1t‐VSe2 for dendrite‐free Zn metal anodes | |
Yang et al. | Self-accommodated defect structures modifying the growth of Laves phase | |
CN110850301A (en) | A MoS2/graphene/MoS2 sandwich structure and capacity prediction method for Na-ion batteries | |
Arunachalam et al. | The orientation of zirconium hydride on grain boundaries in zircaloy-2 | |
Combettes et al. | How interface properties control the equilibrium shape of core–shell Fe–Au and Fe–Ag nanoparticles | |
CN117457880A (en) | Negative electrode material and battery | |
Jin et al. | The effects of solutes like ruthenium on precipitation of σ phase and σ/γ interface stability in Ni-based superalloys | |
He et al. | Effects of adatom species on the structure, stability, and work function of adatom-α-borophene nanocomposites | |
Huang et al. | Electronic structure and atomic migration of the fourth, fifth, and sixth period atoms in aluminum alloys: First principles calculation | |
CN102251282A (en) | Method for preparing nano-micro sheet/plate shaped pyrite crystals under hydrothermal condition | |
CN107330215A (en) | A kind of method for calculating solid-solution material twin formation ability | |
CN104681801B (en) | A kind of Graphene/Cu/Ni combination electrodes and preparation method thereof | |
CN116312826B (en) | Calculation method for weak interaction between NTO crystal faces | |
CN116334450B (en) | A single crystal nickel-based high temperature alloy and its element composition design method | |
Yeom et al. | Transforming a surface state of a topological insulator by a Bi capping layer | |
CN102703870B (en) | A kind of Ru nonmagnetic thin film and preparation method thereof | |
Jin et al. | The effects of solutes on precipitated phase/matrix interface stability and their distribution tendencies between the two phases in Co-based superalloys | |
Janisch et al. | Growth and mechanical properties of a MoC precipitate at a Mo grain boundary: An ab initio density functional theory study | |
Hennes et al. | Structural, vibrational, and magnetic properties of self-assembled CoPt nanoalloys embedded in SrTiO 3 | |
Wang et al. | Structure and stability of AlnMgm (n= 4–8, m= 1–3) clusters: Genetic algorithm and density functional theory approach |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |