CN107315342A - 一种改进卡尔曼滤波坐标分离机械手控制算法 - Google Patents

一种改进卡尔曼滤波坐标分离机械手控制算法 Download PDF

Info

Publication number
CN107315342A
CN107315342A CN201710558646.5A CN201710558646A CN107315342A CN 107315342 A CN107315342 A CN 107315342A CN 201710558646 A CN201710558646 A CN 201710558646A CN 107315342 A CN107315342 A CN 107315342A
Authority
CN
China
Prior art keywords
mrow
coordinate
arm
algorithm
msub
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710558646.5A
Other languages
English (en)
Inventor
刘新福
范岩
张丙酉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hebei University of Technology
Original Assignee
Hebei University of Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hebei University of Technology filed Critical Hebei University of Technology
Priority to CN201710558646.5A priority Critical patent/CN107315342A/zh
Publication of CN107315342A publication Critical patent/CN107315342A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/024Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system in which a parameter or coefficient is automatically adjusted to optimise the performance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0205Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system
    • G05B13/0255Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric not using a model or a simulator of the controlled system the criterion being a time-optimal performance criterion
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B13/00Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
    • G05B13/02Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
    • G05B13/0265Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion

Landscapes

  • Engineering & Computer Science (AREA)
  • Artificial Intelligence (AREA)
  • Evolutionary Computation (AREA)
  • Health & Medical Sciences (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Medical Informatics (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Robotics (AREA)
  • Feedback Control In General (AREA)

Abstract

本发明涉及一种改进卡尔曼滤波坐标分离机械手控制算法。手臂末端在执行抓取目标物体的过程,会由于传动误差、电机输出转矩误差、位姿误差造成累积误差。为了进一步提高机械手臂末端抓取精度,采用卡尔曼滤波与迭代方法相结合的改进算法采集并预测机械手臂末端的轨迹坐标。只采集上一时刻手臂末端的轨迹坐标,通过状态预测方程和状态估计方程精确的估计出下一时刻手臂末端的轨迹坐标,很好地满足了手臂实时控制的要求。在机械手臂抓取目标物体的过程中,提出了坐标分离的方法。其核心思想是将连续抓取的动作离散化,完整的动作分为等时间周期的单次动作,将物体之间相对坐标的思想引入控制算法当中。

Description

一种改进卡尔曼滤波坐标分离机械手控制算法
技术领域
本发明属于自动化控制领域,特别是一种基于卡尔曼滤波的机械手控制算法,具体为一种改进卡尔曼滤波坐标分离机械手控制算法。可应用于军事,勘探,家庭护理,药品检测等领域。
背景技术
智能机器人技术涉及计算机应用技术、自动控制、人工智能、传感器、运动控制等众多学科。但是,怎样使机器人更加自主化和智能化已得到更广泛的应用领域是现代机器人研究面临的重大难题。应用智能机器人可以帮助老年人和残疾人来完成他们日常生活中难以做到的一些操作,解决他们生活上的困难。而在工业生产和军事领域中,机器人可以完成抓取搬运任务,可以避免在恶劣和危险环境中人工作业的危险性。
机械手的灵敏控制是智能机器人实现自动化非常关键的环节,在工业和军事等领域中,为实现精确控制手臂抓取动作,本发明提出一种改进卡尔曼滤波坐标分离机械手控制算法。所述算法具有很好的实时性、反馈性、安全性,并且提高了抓取目标物体的控制精度
发明内容
本发明的目的是提供一种改进卡尔曼滤波坐标分离机械手控制算法,结合卡尔曼滤波算法,迭代算法以及坐标分离的方法提高机械手抓取目标物体的精度,增强控制过程中的可控性,减小累积误差以及人为误差。
卡尔曼滤波算法的核心思想是利用k-1时刻采集到的机械手位置信息,来估计k时刻机械手的位置信息。卡尔曼滤波的算法的优势在于,舍掉冗余的观测历史数据,只采集前一时刻的数据,累积误差会大幅度减少。系统中误差估计和均方差也在时刻改变,具有非常好的时变性。应用到机械手的控制中,系统的运算速度和控制精度会同时得到质的改变。
机械手的k时刻位置信息由角度传感器和加速度传感器采集,角度传感器噪声偏差为wk,加速度传感器噪声偏差为vk,机械手末端轨迹sk的状态方程和测量方程yk表示为:
s(k)=As(k-1)+BU(k)+w(k) (1)
y(k)=Hs(k)+v(k) (2)
其中,A与B为系统参数;H为测量系统参数;U(k)是k时刻对系统的控制量,若系统没有控制量,则B=0。
状态预测方程:
s(k/k-1)=As(k-1/k-1)+BU(k) (3)
式中s(k/k-1)表示由k-1时刻预测k时刻的机械手轨迹,s(k-1/k-1)表示k-1 时刻最优估计值。
预测均方差方程:
P(k/k-1)=AP(k-1/k-1)AT+Q (4)
式中P(k-1/k-1)表示B(k-1/k-1)对应的协方差,Q表示过程噪声协方差状态估计方程:
s(k/k)=s(k/k-1)+Ks(k)[yk-Hs(k/k-1)] (5)
式中为卡尔曼增益参数,卡尔曼滤波的最优增益方程为
Ks(k)=P(k/k-1)HT/(HP(k/k-1)HT+R) (6)
估计均方差方程:
P(k/k)=(1-Ks(k)H)P(k/k-1) (7)
经过方程式(3)-(7)的计算得出最优的状态估计值s(k/k),然后将s(k/k) 的最优状态估计值再次作为上一时刻的采集值,即s(k-1/k-1)。利用上述方程式重新代入,计算流程中过程协方差Q和误差估计R都会根据新采集的数据值发生变化,满足系统的时变性。
卡尔曼滤波可以应用于线性系统和非线性系统,控制精度非常高,应用广泛,但是线性卡尔曼滤波器也不是万能的,它有一个短板就是发散。为了弥补这个缺点,这里采用迭代的控制算法使运算收敛,进一步提高控制精度。
机械手运动本身是一个连续性的动作,这里为了分析问题方便将其运动离散化,同时将运动时间分为等长的单位时间作为一个周期,在任意一个周期内机械手运算出现了范围内发散,结束本周期运算,立即重新进入下一个周期的动作。迭代运算律
sk+1(t)=sk(t)-L(sk(t))ek(t),k=0,1,…,t∈[0,T] (8)
其中ek(t)=yk(t/t)-yk(t/t-1)为第k个周期的误差,L(sk(t))为线性学习算子。
由公式(8)和(9)可得
经过证明,当时k→∞,ek>0,并且ek′<0,则证明在迭代运算律中,ek是收敛的。同理将协方差和误差估计按同样的原理代入可使得卡尔曼滤波的发散问题得到很好地抑制。卡尔曼滤波和迭代运算的结合运算使得,机械手的控制运算精度和可靠性精度得到有力的保证。
坐标分离方法目的是考虑到在小车移动过程中,若机械手臂同时移动会出现在同一坐标空间的错位运算,对手臂的控制造成很大的干扰。采用特殊的坐标空间分离的方法。坐标分离算法的核心思想是将连续抓取的动作离散化,完整的动作分为等时间周期的单次动作。上一个时间周期末的手臂末端坐标通过卡尔曼迭代滤波算法得出的新值,作为下一个时间周期开始的手臂末端坐标,依次类推不断得出新值,反复利用卡尔曼迭代计算。每一个时间周期手臂末端坐标都是当前最新的状态。
附图说明
图1 机械手臂与小车整体坐标系
图2 机械手臂单独坐标系
图3 机械手臂抓取目标物体坐标系
图4 机械手臂控制的反馈控制流程图
具体实施方式
本发明结合附图如下:
图1示出了机械手臂与小车整体坐标系,这里假设既定的场所均属于理想状态。即被抓取的物体在空间上静止不动的,机械手臂是搭载在小车上,因此小车与机械手臂是一个整体将他们与被抓取的物体放在一个坐标系里面。
目标物体的位置方程:
P=(x1,y1,z1) (11)
手臂整体的位置方程:
S=(x′1,y′1,z′1) (12)
如果满足以下方程式
则说明小车可以停下来,手臂执行抓取动作。这里的L表示手臂在三维空间的能延长的最长距离。
图2示出了机械手臂单独坐标系。目的是考虑到在小车移动过程中,若机 械手臂同时移动会出现在同一坐标空间的错位运算,对手臂的控制造成很大的 干扰。采用特殊的坐标空间分离的方法。将手臂的动作看做单独一个坐标空间, 由图2所示,并且定义了手臂动作的空间边界,实际采用的机械臂是4自由度, 三个臂长分别为L1=10cm,L2=12cm,L3=9cm,z轴方向的可达最大长度为25cm, Y轴单向方向可达最大长度为22cm,由于手臂可绕Z轴旋转,因此Y轴双向方 向可达最大长度44cm,X轴方向最大长度为20cm。由以上手臂尺寸及旋转自由 度构成的空间是一个类似图3的封闭空间,如果被抓取物体在此空间内,则代表可抓取。如果被抓取物体超出此空间,小车继续移动追寻目标物体,小车移 动过程中,机械手臂始终处于原点位置。
为了消除累积误差,机械手臂的坐标原点不是固定不变的。由方程(1)可知
s(k)=As(k-1)+BU(k)+w(k) (14)
令s(k)=A(xko,yko,zko) (15)
当机械臂完成一个周期的动作时,上一次的坐标原点清零,由机械臂最后一次的位置作为坐标原点,依次计算下去。
因此,在此算法中机械手臂自动抓取物体的过程,可以简化成机械手臂坐标原点逐渐趋近与目标物体坐标原点的过程。
图3示出了机械手臂抓取目标物体坐标系。若手臂末端处于O2的坐标位置,并且要抓取位于O1的目标物体。可令O2的坐标为(x0,y0,z0),O1的坐标为 (xn,yn,zn),手臂抓取目标物体的过程即趋近的过程。将这一过程代入卡尔曼滤波方程,令方程(3)中的则更新后的状态预测方程为
预测均方差方程为
式(16)、(17)预测出了每一个时间周期末的手臂末端坐标。接下来计算下一个时间周期开始的手臂末端坐标,代入方程(5)、(7)分别得到
状态估计方程
状态均方差方程为
计算过程中i的值由n递减到0,即表示计算结束,手臂完成了抓取动作。
图4示出了机械手臂控制的反馈控制流程图
传感器采集机械手臂的角度和角加速度位置信息传输给单片机的存储芯片。存储芯片采集位置信息给单片机CPU,CPU结合卡尔曼滤波器处理位置信息,将数据依次代入公式(3)~(7)进行反复计算,得到的下一刻数据进行迭代计算,保证运算收敛。利用反馈因子R和Q调节控制误差,得到的新的反馈因子传输给单片机的存储芯片,再次重复上述过程,保证整个控制过程处于可控误差范围内。

Claims (4)

1.一种改进卡尔曼滤波坐标分离机械手控制算法,其特征在于:根据机械手臂的的物理模型建立相关的空间数学模型,在空间数学模型的基础上利用坐标分离的算法实现手臂自动抓取目标物体,结合卡尔曼滤波算法和迭代算法提高控制精度。所述卡尔曼滤波算法采集k-1时刻的机械手位置信息,来估计k时刻机械手的位置信息,卡尔曼滤波算法可以应用于线性系统和非线性系统,所述迭代的控制算法具有收敛性,可以进一步提高运算精度。
2.根据权利要求1所述的一种改进卡尔曼滤波坐标分离机械手控制算法,其特征在于所述的卡尔曼滤波算法,它的核心思想是利用k-1时刻采集到的机械手位置信息,来估计k时刻机械手的位置信息。卡尔曼滤波的算法的优势在于,舍掉冗余的观测历史数据,只采集前一时刻的数据,累积误差会大幅度减少。系统中误差估计和均方差也在时刻改变,具有非常好的时变性。应用到机械手的控制中,系统的运算速度和控制精度会同时得到质的改变。
3.根据权利要求1所述的一种改进卡尔曼滤波坐标分离机械手控制算法,其特征在于所述的迭代算法将连续性的动作离散化,同时将运动时间分为等长的单位时间作为一个周期,在任意一个周期内机械手运算出现了范围内发散,结束本周期运算,立即重新进入下一个周期的动作。第k个周期的误差方程:
<mrow> <msub> <mi>e</mi> <mi>k</mi> </msub> <mo>=</mo> <mfrac> <mrow> <msub> <mi>s</mi> <mi>k</mi> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>s</mi> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>t</mi> <mo>)</mo> </mrow> </mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <mfrac> <mrow> <mo>&amp;part;</mo> <mi>F</mi> </mrow> <mrow> <mo>&amp;part;</mo> <msub> <mi>s</mi> <mi>k</mi> </msub> </mrow> </mfrac> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> </mfrac> </mrow>
当k→∞时,ek>0,并且ek′<0,则证明在迭代运算律中,ek是收敛的,同理将协方差和误差估计按同样的原理代入可使得卡尔曼滤波的发散问题得到很好地抑制。
4.根据权利要求1所述的一种改进卡尔曼滤波坐标分离机械手控制算法,其特征在于所述的坐标空间分离的方法将手臂与小车作为一个整体在空间的坐标与手臂相对小车的坐标分离开来,将手臂的动作看做单独一个坐标空间,把物体之间相对坐标的思想引入控制算法当中。执行过程中检测到误差超出阈值可将当前坐标作为起始坐标重新进行计算,防止产生较大的偶然误差。当机械臂完成一个周期的动作时,上一次的坐标原点清零,由机械臂最后一次的位置作为坐标原点,依次计算下去。因此,在此算法中机械手臂自动抓取物体的过程,可以简化成机械手臂坐标原点逐渐趋近与目标物体坐标原点的过程。
CN201710558646.5A 2017-07-03 2017-07-03 一种改进卡尔曼滤波坐标分离机械手控制算法 Pending CN107315342A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710558646.5A CN107315342A (zh) 2017-07-03 2017-07-03 一种改进卡尔曼滤波坐标分离机械手控制算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710558646.5A CN107315342A (zh) 2017-07-03 2017-07-03 一种改进卡尔曼滤波坐标分离机械手控制算法

Publications (1)

Publication Number Publication Date
CN107315342A true CN107315342A (zh) 2017-11-03

Family

ID=60177791

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710558646.5A Pending CN107315342A (zh) 2017-07-03 2017-07-03 一种改进卡尔曼滤波坐标分离机械手控制算法

Country Status (1)

Country Link
CN (1) CN107315342A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113524183A (zh) * 2021-07-14 2021-10-22 广东智源机器人科技有限公司 相对位置获得方法、机械臂控制方法以及机械臂系统

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040073414A1 (en) * 2002-06-04 2004-04-15 Brown University Research Foundation Method and system for inferring hand motion from multi-cell recordings in the motor cortex using a kalman filter or a bayesian model
CN101090379A (zh) * 2007-07-20 2007-12-19 重庆重邮信科(集团)股份有限公司 采用Kalman滤波器进行联合检测的方法及装置
CN102608351A (zh) * 2012-02-14 2012-07-25 三一重工股份有限公司 机械臂三维姿态的检测方法和系统、及控制其运行的系统
CN102779238A (zh) * 2012-08-09 2012-11-14 北京航空航天大学 一种基于自适应卡尔曼滤波的无刷直流电机系统辨识方法
CN102207988B (zh) * 2011-06-07 2014-10-29 北京邮电大学 一种多自由度机械臂高效动力学建模方法
CN104539265A (zh) * 2014-11-25 2015-04-22 广东石油化工学院 一种自适应ukf滤波算法
CN104931932A (zh) * 2015-05-28 2015-09-23 重庆大学 一种改进的去偏坐标转换卡尔曼滤波方法
CN106041926A (zh) * 2016-06-12 2016-10-26 哈尔滨工程大学 一种基于卡尔曼滤波器的工业机械臂力/位置混合控制方法

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040073414A1 (en) * 2002-06-04 2004-04-15 Brown University Research Foundation Method and system for inferring hand motion from multi-cell recordings in the motor cortex using a kalman filter or a bayesian model
CN101090379A (zh) * 2007-07-20 2007-12-19 重庆重邮信科(集团)股份有限公司 采用Kalman滤波器进行联合检测的方法及装置
CN102207988B (zh) * 2011-06-07 2014-10-29 北京邮电大学 一种多自由度机械臂高效动力学建模方法
CN102608351A (zh) * 2012-02-14 2012-07-25 三一重工股份有限公司 机械臂三维姿态的检测方法和系统、及控制其运行的系统
CN102779238A (zh) * 2012-08-09 2012-11-14 北京航空航天大学 一种基于自适应卡尔曼滤波的无刷直流电机系统辨识方法
CN104539265A (zh) * 2014-11-25 2015-04-22 广东石油化工学院 一种自适应ukf滤波算法
CN104931932A (zh) * 2015-05-28 2015-09-23 重庆大学 一种改进的去偏坐标转换卡尔曼滤波方法
CN106041926A (zh) * 2016-06-12 2016-10-26 哈尔滨工程大学 一种基于卡尔曼滤波器的工业机械臂力/位置混合控制方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HONGJIU YANG: "A Novel Delta Operator Kalman Filter Design and Convergence Analysis", 《IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS-I: REGULAR PAPERS》 *
侯剑锋: "卡尔曼滤波器发散自检", 《河北大学学报(自然科学版)》 *
梁民赞等: "一种抑制卡尔曼滤波发散的实时数据处理方法", 《声学技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113524183A (zh) * 2021-07-14 2021-10-22 广东智源机器人科技有限公司 相对位置获得方法、机械臂控制方法以及机械臂系统

Similar Documents

Publication Publication Date Title
Wang et al. A hybrid visual servo controller for robust grasping by wheeled mobile robots
WO2017041730A1 (zh) 一种移动机器人避障导航的方法和系统
Erhart et al. An impedance-based control architecture for multi-robot cooperative dual-arm mobile manipulation
Wang et al. Adaptive inverse dynamics control of robots with uncertain kinematics and dynamics
Thakar et al. Accounting for part pose estimation uncertainties during trajectory generation for part pick-up using mobile manipulators
Zeng et al. Manipulator control method based on deep reinforcement learning
CN107315342A (zh) 一种改进卡尔曼滤波坐标分离机械手控制算法
Stilman et al. Learning object models for whole body manipulation
Maithani et al. Predicting human intent for cooperative physical human-robot interaction tasks
Zhang et al. A markerless human-manipulators interface using multi-sensors
Neha et al. Motion planning for a four-fingered robotic hand
Hu et al. Learning motor skills of reactive reaching and grasping of objects
Han Trajectory tracking control method for flexible robot of construction machinery based on computer vision
Gastinger et al. Pose estimation and tracking control of a pneumatic soft robotic hand
Li et al. Object dexterous manipulation in hand based on finite state machine
Heyu et al. Impedance control method with reinforcement learning for dual-arm robot installing slabstone
Khalil et al. Robotic interaction with deformable objects under vision and tactile guidance-a review
Wang et al. Integrating sensor fusion for teleoperation control of anthropomorphic dual-arm robots
Shanshan IMPLEMENTATION OF INTELLIGENT ROBOT CONTROL ALGORITHM BASED ON VISUAL SERVO CONTROL.
Wang et al. Human motion prediction based on hybrid motion model
Wittenstein Force feedback for reliable robotic door opening
Tan et al. Adaptive Neural Networks for Image-Based Visual Servoing with Uncertain Parameters
Liu et al. SIMULATION OF TASK-ORIENTED MULTISENSOR INTELLIGENT CONTROL OF MICROASSEMBLY ROBOT.
Su et al. Path planning for robotic hand/eye system to intercept moving object
Zhou et al. The path trajectory planning of swinging legs for humanoid robot

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171103