CN107314888B - 多功能铌酸锂集成器件的偏振性能测量方法 - Google Patents

多功能铌酸锂集成器件的偏振性能测量方法 Download PDF

Info

Publication number
CN107314888B
CN107314888B CN201710511150.2A CN201710511150A CN107314888B CN 107314888 B CN107314888 B CN 107314888B CN 201710511150 A CN201710511150 A CN 201710511150A CN 107314888 B CN107314888 B CN 107314888B
Authority
CN
China
Prior art keywords
waveguide
interference
extinction ratio
measurement
optical fibre
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710511150.2A
Other languages
English (en)
Other versions
CN107314888A (zh
Inventor
杨军
侯成城
喻张俊
张浩亮
苑勇贵
彭峰
李寒阳
苑立波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Harbin Engineering University
Original Assignee
Harbin Engineering University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Harbin Engineering University filed Critical Harbin Engineering University
Publication of CN107314888A publication Critical patent/CN107314888A/zh
Application granted granted Critical
Publication of CN107314888B publication Critical patent/CN107314888B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Integrated Circuits (AREA)

Abstract

本发明提供的是一种多功能铌酸锂集成器件的偏振性能测量方法。同时对波导芯片消光比、光纤的耦合串音、波导输入输出端光纤的分布式消光比进行测量;利用不同偏振角度的起偏器和检偏器对波导进行多次测量,得到波导输入/输出端光纤内部的串扰数据,计算串扰数据的能量分布曲线,得到光纤的分布式消光比;测量得到带有芯片消光比、耦合串音信息的干涉图样,利用干涉图样中左右对称的干涉峰测量消光比和串音,判断左右两端测量结果的差值是否满足要求,如果差值较大需要重新测量,直至结果符合要求为止。该方法充分利用白光干涉精度高,动态范围大的特点,对探测到的偏振串扰数据进行测量,使测量结果准确、可靠。

Description

多功能铌酸锂集成器件的偏振性能测量方法
技术领域
本发明涉及的是一种光学器件测量方法,具体地说是一种铌酸锂集成器件(Y波导)的偏振性能测量方法。
背景技术
Y波导是光纤传感应用(如光纤陀螺)的重要组成部分,决定着光纤传感系统的测量精度、稳定性、体积和成本。其中消光比是Y波导的重要指标。目前消光比的测试方法主要有旋转检偏器法,光时域反射法,偏振光干涉法等。旋转法主要是通过测量通过偏振器件最大光能与最小光能之比来测量消光比的大小,该方法需要频繁调节光路,同时受限于测量方法,测量精度仅限于60dB。光时域干涉法通过测量背向散色光偏振正交轴上的功率计算消光比,该方法实验装置复杂,不易实施。
光学相干域偏振测量技术(OCDP)是一种高精度分布式偏振耦合测量技术,该技术通过扫描式光学干涉仪进行光程补偿,实现不同偏振模式间的干涉,可对偏振串扰的空间位置、偏振耦合信号强度进行高精度的测量与分析。OCDP技术作为一种非常有前途的分布式光学偏振性能的检测方法,被广泛用于保偏光纤制造、器件消光比测试等领域。而如何利用这些分布耦合点进行消光比计算,则需要构建一种消光比的测量方法。
2011年,美国通用光电公司(General Photonics Corporation)的姚晓天等人公开了一种用于保偏光纤中分布式偏振串扰测量的全光纤测量系统(US20110277552),利用增加光程延迟器的方法,抑制了偏振测量过程中存在的杂散白光干涉信号的数量和幅度,该方法测量偏振串扰的灵敏度达到-95dB。但是动态范围只能达到75dB。
2012年天津大学张红霞、任亚光等人公开了一种偏振器件消光比测试数据的解调方法(CN 201210170668.1)。该方法采用OCDP技术获得干涉信号,通过读取干涉信号中的干涉峰的峰值测量消光比。该方法可以实现对保偏光纤消光比的快速解调,但是在测量长度在千米以上的保偏光纤或双折射色散比较的大的耦合点的消光比时,由于色散和噪声的影响,测量结果与实际结果存在一定偏差。
2016年本发明申请人(CN201610157528.9)提出了一种光纤偏振器件的高消光比测量方法,在测量Y波导时,对串扰标记和测量峰进行同步测量,杜绝测量环境改变和器件连接等引入的误差,该方法虽然测量了Y波导芯片消光比以及耦合串音,但是没有对输入输出端光纤的分布式消光比进行测量,同时测量结果受到色散影响,结果并不准确。
发明内容
本发明的目的在于提供一种测试耦合串音和芯片消光比的准确性高的多功能铌酸锂集成器件的偏振性能测量方法。
本发明的目的是这样实现的:
步骤一、测量Y波导输入光纤205、Y波导输出光纤209、45°起偏器尾纤223、45°检偏器227尾纤226、0°检偏器225尾纤224的长度,得到数据Lin,Lout,Lw-in,Lw1-out Lw2-out;将45°起偏器尾纤223与Y波导输入光纤205进行0°~0°对准焊接、焊点为第一焊点204;将0°检偏器尾纤224与Y波导输出光纤209进行0°~0°对准焊接、焊点为第二焊点210;
步骤二、将45°起偏器222和0°检偏器225接入到分布式光纤偏振串扰测量装置中;打开宽谱光源201,驱动光程扫描器214,使用光学相干域偏振测量装置测量Y波导输入端光纤的分布式偏振串扰数据V1(x);
步骤三、将第一和第二焊点204、210进行分离,同时将45°起偏器222与0°检偏器225进行对换,重新焊接,焊接角度均为0°~0°;打开干涉仪,进行光程扫描,测量得到Y波导输出光纤的分布式偏振串扰数据V2(x);
步骤四、将0°检偏器225换成45°检偏器227,并将45°检偏器227尾纤226与Y波导输出光纤209、45°起偏器222尾纤223与Y波导输入光纤205进行0°~0°对准焊接,测量得到波导器件的干涉图样V3(x);
步骤五、利用测量得到的V1(x)、V2(x),V3(x),测量Y波导输入光纤205、Y波导输出光纤209的分布式消光比,同时计算得到两个光纤耦合点206、208的串音以及Y波导芯片207的消光比。
本发明还可以包括:
1、测量Y波导的输入输出光纤的分布式消光比的方法为:
(1)、根据测量得到的光纤长度Lin,Lw-in,找出偏振串扰数据V1(x)中两个耦合点206、208对应的两个干涉峰602、601;测量主峰603半高全宽的宽度W603和峰值处的位置P603,利用公式Y603-1=P603-2×W603和Y603-2=P603+2×W603分别计算出主峰完整宽度的左右端点位置;
(2)、重复步骤(1),分别得到两个干涉峰601、602的完整干涉峰左右端点处的位置Y601-1、Y601-2、Y602-1和Y602-2,对位置Y601-2到Y602-1的干涉结果用公式(1)表示:
得到Y波导输入光纤205对应的串扰数据的分布式能量曲线;再利用公式计算(1)得到主峰处的能量E603,利用公式(2)表示:
得到Y波导输入光纤205的分布式消光比;
(3)、重复步骤(1)-(2),利用串扰数据V2(x)得到Y波导输出光纤209的分布式消光比。
2、得到两个光纤耦合点206、208的串音以及Y波导芯片207的消光比的方法为:
(1)、计算得到干涉峰701、702、704、706、708、710、711完整宽度的左右端点位置Z70i-1和Z70i-2,利用公式(1)计算每个干涉峰的能量,利用公式(2)计算耦合点的串音;
(2)、对比干涉峰701与711、702与710、704与708算得到的消光比的差值是否小于1dB,如果小于1,耦合点的串音表示为左右测量结果的平均值,如果大于1dB,重新计算干涉峰的完整宽度的左右端点位置,再计算消光比。
将45°起偏器222与0°检偏器225进行对换中,起偏器与检偏器的功能一致,并无差异,即45°起偏器可以实现45°检偏器的功能。
本发明基于白光干涉原理,利用得到的Y波导输入输出端光纤的偏振串扰数据,测量Y波导输入输出端光纤的分布式消光比。同时对干涉图样中左右对称的干涉峰进行测量,对测量结果做出判断,提高测量准确性。该方法具有测量精度高、快速准确等优点,可广泛应用于集成光学器件的分析上。
本发明的方法的原理如下:宽谱光源201发出的信号经过2/98的耦合器202,2%的功率进入到探测器219,用于检测光源功率,其余的光经过隔离器后203,被起偏器223变为偏振光,经过起偏器尾纤,通过焊点204,Y波导输入光纤205后,检测光进入到待测波导器件中207;光在传输过程中遇到若干光学不连续点,包括:光纤焊点,光纤内部的缺陷等,会使传输在一个特征轴的光耦合到另一轴,上述耦合光连同剩余的传输光输出到白光测量装置中,通过驱动光程扫描器216,进行光程补偿,耦合光将会和传输光发生干涉,干涉峰的强度和光程位置与光学器件的光学性能一一对应。
干涉原理如图3所示,当光程差等于Δnl时,扫描光束中耦合光304与参考光束中的传输光301光程发生匹配,则产生白光干涉信号,其峰值幅度为它与缺陷点的耦合幅度因子和光源强度成正比,当光程差等于-Δnl时,扫描光束中传输光307与参考光束中的耦合光302光程发生匹配,则产生白光干涉信号,其峰值幅度为它与光程差为Δnl时相同。如图可知,与光程差为Δnl时相比,此白光干涉信号与之在光程上对称,幅度上相同。图4和图5是在不同焊接角度时的Y波导连接情况,从图中看出,除焊接角度发生变化之外,其他结构没有发生变化。由于ρ<<1,所以1-ρ≈1。
当耦合光与剩余的传输光进行光程补偿后,发生相干干涉,干涉结果表示为
式中Ic(x),表示不同位置处的干涉光强,I0表示入射光的光强,x表示光程扫描器运行的距离,l距离耦合点到光输入点的距离,Δβ分别表示光在保偏光纤的快慢轴传播时的传播常数之差,L表示光纤长度,ρ表示传输光在耦合点l处从主轴耦合到正交轴时的耦合系数。利用帕塞瓦尔定理计算干涉峰的能量,其表达式为:
而主峰的能量的表达式为:
干涉峰的能量与主峰能量之比就是分布式消光比曲线,其表达式为:
虽然干涉峰的位置以主峰为左右对称,但是由于存在色散的影响,干涉峰左右的幅值,宽度并不一样,用本发明计算消光比的方法可以消除色散影响,所以左右计算的结果应该一样,通过对比左右计算得到的消光比,对测量结果做出判断,提高测量准确性。图6是Y波导输入光纤偏振串扰数据V1(x),图7是干涉图样V3(x)。
与现有技术相比,本发明的优点在于:
(1)该方法通过分析Y波导器件的各组成部分的干涉结果,可以测量得到波导输入输出端光纤的分布式消光比。
(2)该方法利用干涉图样中左右对称的干涉峰测量耦合点的串音以及波导芯片消光比,对测量结果做出判断,提高测量准确性。
(3)该方法可以在测量耦合点消光比的同时测量得到Y波导输入输出光纤的分布式消光比,并且测量方法简单、快速,提高了测量效率。
附图说明
图1是Y波导光学参数测量方法流程图;
图2是基于光学相干域偏振测量装置测量Y波导的实验装置图;
图3是偏振串扰形成的干涉信号幅度与光程对应关系示意图;
图4是Y波导0°检偏器尾纤与输出光纤进行0°~0°焊接示意图;
图5是Y波导45°检偏器器尾纤与输出光纤0°~0°连接示意图;
图6是45°起偏器尾纤与输入光纤、0°检偏器尾纤与输出光纤进行0°~0°焊接时Y波导输入光纤偏振串扰数据;
图7是45°起偏器尾纤与输入光纤、45°检偏器尾纤与输出光纤进行0°~0°焊接时Y波导器件的干涉图样。
具体实施方式
为清楚地说明本发明Y波导输入输出光纤的分布式消光比以及耦合点和Y波导集成芯片消光比的测量方法,结合实施例和附图对本发明作进一步说明,但不应以此限制本发明的保护范围。
(1)步骤101,45°起偏器尾纤的长度为18.8m,0°检偏器延长光纤长度为16.7m,45°检偏器尾纤的长度为21.1m,Y波导输入光纤长度为0.22m,输出光纤长度为0.18m;
(2)步骤102,将45°起偏器尾纤223与Y波导输入光纤205进行0°~0°焊接,Y波导输出光纤209和0°检偏器输入尾纤224进行0°~0°焊接。
(3)步骤103,打开光源,获得Y波导输入光纤偏振串扰数据V1(x),如图6所示。
(4)步骤104,将45°起偏器尾纤223与Y波导输出光纤209进行0°~0°焊接,Y波导输入光纤205和0°检偏器尾纤224进行0°~0°焊接。并进行光程扫描,得到Y波导输出光纤偏振串扰数据V2(x)。由于V2(x)的处理过程与V1(x)相似,因此只分析V1(x)的处理过程。
(5)步骤105,将45°起偏器尾纤223与Y波导输入光纤205进行0°~0°焊接,Y波导输出光纤209和45°检偏器尾纤226进行0°~0°焊接。并进行光程扫描,得到干涉图样V3(x)。
(8)步骤106和107,依次计算干涉峰601、602和主峰603、左右端点位置Y60i-j=P60i-2×W60i(i=1,2,3,j=1,2),测量得到干涉峰601的左右端点分别为-8877,-8709,602的左右端点为-8099,-7899,603的为-194,194,单位是μm。利用公式(2)计算位置-8709,-8099,-194,194这两个个区间的能量,分别得到能量E1、E2,利用公式(2)计算光纤205分布式消光比。再对干涉图样V2(x)中的干涉峰进行处理,得到光纤209的分布式消光比。
(7)步骤108,需要确定串扰点206、208对应的干涉峰的位置以及端点位置,由公式S=Δn×l(Δn=5×10-4),大致估算耦合点对应得光程位置,从图中可知,705的光程位置为7949um,利用光纤223的长度算出来的光程差为8350um,由于是估算测量,存在一些偏差可以接受,同时耦合点204对应的干涉峰是距离主峰最近的干涉峰,可以确定干涉峰705对应耦合点204。同时耦合点206对应的干涉峰是峰705外测距离最近的干涉峰704,所以干涉峰704对应耦合点206。并测量不同干涉峰左右端点位置Z,同理依次得到不同耦合点对应的干涉峰,由于集成芯片的消光比的光程差最大,所以是离主峰最远的干涉峰,所以是701。
(8)步骤109、110,对干涉图样V3(x)中左右对称的干涉峰进行计算,得到耦合点206,208和集成芯片207消光比,左侧结果依次为,49.67dB,40.58dB,芯片消光比为60.11dB,右侧测量结果为49.78dB,40.67dB,芯片消光比为59.23dB,从结果中看出,从左右测量结果相差很小,证明测量结果准确,最终结果以左右两边测量结果的平均值表示,测量完成。

Claims (1)

1.一种多功能铌酸锂集成器件的偏振性能测量方法,其特征是:
步骤一、测量Y波导输入光纤(205)、Y波导输出光纤(209)、45°起偏器尾纤(223)、45°检偏器(227)尾纤(226)、0°检偏器(225)尾纤(224)的长度,得到数据Lin,Lout,Lw-in,Lw1-outLw2-out;将45°起偏器尾纤(223)与Y波导输入光纤(205)进行0°~0°对准焊接、焊点为第一焊点(204);将0°检偏器尾纤(224)与Y波导输出光纤(209)进行0°~0°对准焊接、焊点为第二焊点(210);
步骤二、将45°起偏器(222)和0°检偏器(225)接入到分布式光纤偏振串扰测量装置中;打开宽谱光源(201),驱动光程扫描器(214),使用光学相干域偏振测量装置测量Y波导输入端光纤的分布式偏振串扰数据V1(x);
步骤三、将第一和第二焊点(204、210)进行分离,同时将45°起偏器(222)与0°检偏器(225)进行对换,重新焊接,焊接角度均为0°~0°;打开干涉仪,进行光程扫描,测量得到Y波导输出光纤的分布式偏振串扰数据V2(x);
步骤四、将0°检偏器(225)换成45°检偏器(227),并将45°检偏器(227)尾纤(226)与Y波导输出光纤(209)、45°起偏器尾纤(223)与Y波导输入光纤(205)进行0°~0°对准焊接,测量得到波导器件的干涉图样V3(x);
步骤五、利用测量得到的V1(x)、V2(x),V3(x),测量Y波导输入光纤(205)、Y波导输出光纤(209)的分布式消光比,同时计算得到两个光纤耦合点(206、208)的串音以及Y波导芯片(207)的消光比,
测量Y波导的输入输出光纤的分布式消光比的方法为:
(1)、根据测量得到的光纤长度Lin,Lw-in,找出偏振串扰数据V1(x)中两个光纤耦合点(206、208)对应的两个干涉峰(602、601);测量主峰(603)半高全宽的宽度W603和峰值处的位置P603,利用公式Y603-1=P603-2×W603和Y603-2=P603+2×W603分别计算出主峰完整宽度的左右端点位置;
(2)、重复步骤(1),利用公式Y601-1=P601-2×W601和Y601-2=P601+2×W601、Y602-1=P602-2×W602和Y602-2=P602+2×W602分别得到两个干涉峰(601、602)的完整干涉峰左右端点处的位置Y601-1、Y601-2、Y602-1和Y602-2,对位置Y601-2到Y602-1的干涉结果用公式(1)表示:
得到Y波导输入光纤(205)对应的串扰数据的分布式能量曲线;再利用公式计算(1)得到主峰处的能量E603,利用公式(2)表示:
得到Y波导输入光纤(205)的分布式消光比;
(3)、重复步骤(1)-(2),利用串扰数据V2(x)得到Y波导输出光纤(209)的分布式消光比;
得到两个光纤耦合点(206、208)的串音以及Y波导芯片(207)的消光比的方法为:
(1)、计算得到第一、第二、第四、第六、第八、第十、第十一干涉峰(701、702、704、706、708、710、711)完整宽度的左右端点位置Z70i-1和Z70i-2,利用公式(1)计算每个干涉峰的能量,利用公式(2)计算耦合点的串音;
(2)、对比第一干涉峰(701)与第十一干涉峰(711)、第二干涉峰(702)与第十干涉峰(710)、第四干涉峰(704)与第八干涉峰(708)计算得到的消光比的差值是否小于1dB,如果小于1dB,耦合点的串音表示为左右测量结果的平均值,如果大于1dB,重新计算干涉峰的完整宽度的左右端点位置,再计算消光比。
CN201710511150.2A 2017-04-25 2017-06-29 多功能铌酸锂集成器件的偏振性能测量方法 Active CN107314888B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710286039 2017-04-25
CN2017102860398 2017-04-25

Publications (2)

Publication Number Publication Date
CN107314888A CN107314888A (zh) 2017-11-03
CN107314888B true CN107314888B (zh) 2019-08-06

Family

ID=60180837

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710511150.2A Active CN107314888B (zh) 2017-04-25 2017-06-29 多功能铌酸锂集成器件的偏振性能测量方法

Country Status (1)

Country Link
CN (1) CN107314888B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108106817B (zh) * 2017-12-11 2019-12-24 哈尔滨工程大学 一种提高y波导器件偏振性能测量准确性的方法
CN110108401B (zh) * 2018-02-01 2021-06-08 上海信及光子集成技术有限公司 一种通过偏振旋转测量获得波导内应力信息的方法及装置
CN109946042B (zh) * 2019-03-06 2020-07-14 湖北三江航天红峰控制有限公司 一种y型波导耦合精度的测量方法及装置
CN111964873B (zh) * 2020-07-28 2022-08-12 广东工业大学 一种用于保偏光纤的高精度分布式消光比测量方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3021338B2 (ja) * 1995-12-26 2000-03-15 株式会社生体光情報研究所 消光比測定方法および消光比測定装置
US8599385B2 (en) * 2010-05-14 2013-12-03 General Photonics Corporation Measuring distributed polarization crosstalk in polarization maintaining fiber and optical birefringent material
CN102183360B (zh) * 2011-03-04 2015-09-30 天津大学 光学偏振器件偏振消光比的检测方法和检测装置
JP5605399B2 (ja) * 2012-07-18 2014-10-15 岩崎電気株式会社 偏光測定方法、及び偏光測定システム
CN103743551B (zh) * 2013-12-30 2017-02-22 哈尔滨工程大学 一种多功能铌酸锂集成器件的光学性能测量方法
CN105841928B (zh) * 2016-03-18 2018-08-17 哈尔滨工程大学 一种光纤偏振器件的高消光比测量方法
CN106989904B (zh) * 2017-04-25 2020-01-17 哈尔滨工程大学 一种保偏光纤消光比的测量方法

Also Published As

Publication number Publication date
CN107314888A (zh) 2017-11-03

Similar Documents

Publication Publication Date Title
CN107314888B (zh) 多功能铌酸锂集成器件的偏振性能测量方法
CN107894245B (zh) 一种应变与温度同时测量的保偏光纤干涉仪
CN105841928B (zh) 一种光纤偏振器件的高消光比测量方法
CN104279959B (zh) 一种采用矢量网络分析仪精确测量光纤长度的新方法
CN103743553B (zh) 一种集成波导调制器的双通道光学性能测试装置及其偏振串音识别与处理方法
CN103900797B (zh) 带有光程扫描位置和速度校正的光学相干域偏振测量装置
CN106768877B (zh) 一种用于光学相干域偏振计的大动态范围标定方法
CN103900798B (zh) 一种带有光程扫描在线校正的光学相干域偏振测量装置
CN107702730A (zh) 光纤陀螺的测试方法、装置、存储介质以及计算机设备
CN106989904B (zh) 一种保偏光纤消光比的测量方法
CN102928199A (zh) 一种提高光学器件偏振串扰测量性能的装置及方法
CN106441353B (zh) 一种光纤陀螺环偏振耦合的对称性评估装置
CN102288388A (zh) 提高保偏光纤偏振耦合测量精度和对称性的装置与方法
CN108287056B (zh) 光纤敏感环偏振模耦合特性测评系统及测评方法
CN103743551A (zh) 一种多功能铌酸锂集成器件的光学性能测量方法
CN103900680A (zh) 一种利用光源抑制偏振串音测量噪声的装置及检测方法
CN110389111A (zh) 一种基于双模偏芯光纤干涉型折射率传感器
WO2020192269A1 (zh) 一种保偏光纤主轴差分延时的测量装置
CN106441083B (zh) 激光回馈干涉仪
CN104280216A (zh) 一种y波导器件的双通道光学性能同时测试装置及其y波导偏振串音识别与处理方法
CN107782696A (zh) 利用拉锥光纤测量分布式液体折射率的传感系统及方法
CN111964873B (zh) 一种用于保偏光纤的高精度分布式消光比测量方法
CN105823624B (zh) 一种用于光学相干偏振测量的标定装置及其动态范围标定方法
CN105675258B (zh) 一种基于干涉级数的高双折射光纤拍长测量方法及测量装置
CN103363905A (zh) 一种基于光谱分析的保偏光纤长度测量系统及其方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant