CN107308996B - Method for maintaining negative pressure state of micro-fluidic chip for long time - Google Patents
Method for maintaining negative pressure state of micro-fluidic chip for long time Download PDFInfo
- Publication number
- CN107308996B CN107308996B CN201710475437.4A CN201710475437A CN107308996B CN 107308996 B CN107308996 B CN 107308996B CN 201710475437 A CN201710475437 A CN 201710475437A CN 107308996 B CN107308996 B CN 107308996B
- Authority
- CN
- China
- Prior art keywords
- chip
- microfluidic chip
- negative pressure
- microfluidic
- polymer film
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000000034 method Methods 0.000 title claims abstract description 25
- 229920006254 polymer film Polymers 0.000 claims abstract description 20
- 239000002390 adhesive tape Substances 0.000 claims abstract description 9
- 239000004205 dimethyl polysiloxane Substances 0.000 claims description 22
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 claims description 22
- 238000000151 deposition Methods 0.000 claims description 17
- 230000008021 deposition Effects 0.000 claims description 14
- 238000007740 vapor deposition Methods 0.000 claims description 11
- 239000000463 material Substances 0.000 claims description 8
- 238000005137 deposition process Methods 0.000 claims description 4
- -1 polydimethylsiloxane Polymers 0.000 claims description 3
- 229920000052 poly(p-xylylene) Polymers 0.000 claims 1
- 239000012808 vapor phase Substances 0.000 claims 1
- 238000002347 injection Methods 0.000 abstract description 19
- 239000007924 injection Substances 0.000 abstract description 19
- 238000001704 evaporation Methods 0.000 abstract description 7
- 239000003153 chemical reaction reagent Substances 0.000 abstract description 6
- 238000001514 detection method Methods 0.000 abstract description 6
- 230000008020 evaporation Effects 0.000 abstract description 5
- 230000035699 permeability Effects 0.000 abstract description 4
- 230000000694 effects Effects 0.000 abstract description 3
- 230000007774 longterm Effects 0.000 abstract description 3
- 238000003860 storage Methods 0.000 abstract description 2
- VRBFTYUMFJWSJY-UHFFFAOYSA-N 28804-46-8 Chemical compound ClC1CC(C=C2)=CC=C2C(Cl)CC2=CC=C1C=C2 VRBFTYUMFJWSJY-UHFFFAOYSA-N 0.000 description 24
- 239000010408 film Substances 0.000 description 22
- 239000000523 sample Substances 0.000 description 16
- 239000002994 raw material Substances 0.000 description 6
- 239000003795 chemical substances by application Substances 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 238000005516 engineering process Methods 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 3
- 238000007847 digital PCR Methods 0.000 description 3
- 239000000178 monomer Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 238000007667 floating Methods 0.000 description 2
- 239000007850 fluorescent dye Substances 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000003921 oil Substances 0.000 description 2
- 238000000197 pyrolysis Methods 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 239000010409 thin film Substances 0.000 description 2
- 108020004463 18S ribosomal RNA Proteins 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 238000005842 biochemical reaction Methods 0.000 description 1
- 230000000903 blocking effect Effects 0.000 description 1
- DEGAKNSWVGKMLS-UHFFFAOYSA-N calcein Chemical compound O1C(=O)C2=CC=CC=C2C21C1=CC(CN(CC(O)=O)CC(O)=O)=C(O)C=C1OC1=C2C=C(CN(CC(O)=O)CC(=O)O)C(O)=C1 DEGAKNSWVGKMLS-UHFFFAOYSA-N 0.000 description 1
- 238000003759 clinical diagnosis Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000006059 cover glass Substances 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000001080 multi-layer soft lithography Methods 0.000 description 1
- 229960002378 oftasceine Drugs 0.000 description 1
- 229920002120 photoresistant polymer Polymers 0.000 description 1
- 239000013612 plasmid Substances 0.000 description 1
- 239000002861 polymer material Substances 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 238000011897 real-time detection Methods 0.000 description 1
- 239000012488 sample solution Substances 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 239000007921 spray Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000000427 thin-film deposition Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L3/00—Containers or dishes for laboratory use, e.g. laboratory glassware; Droppers
- B01L3/50—Containers for the purpose of retaining a material to be analysed, e.g. test tubes
- B01L3/502—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures
- B01L3/5027—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip
- B01L3/502707—Containers for the purpose of retaining a material to be analysed, e.g. test tubes with fluid transport, e.g. in multi-compartment structures by integrated microfluidic structures, i.e. dimensions of channels and chambers are such that surface tension forces are important, e.g. lab-on-a-chip characterised by the manufacture of the container or its components
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6844—Nucleic acid amplification reactions
- C12Q1/6851—Quantitative amplification
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2200/00—Solutions for specific problems relating to chemical or physical laboratory apparatus
- B01L2200/12—Specific details about manufacturing devices
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01L—CHEMICAL OR PHYSICAL LABORATORY APPARATUS FOR GENERAL USE
- B01L2300/00—Additional constructional details
- B01L2300/14—Means for pressure control
Landscapes
- Chemical & Material Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Health & Medical Sciences (AREA)
- Analytical Chemistry (AREA)
- Zoology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- Molecular Biology (AREA)
- General Engineering & Computer Science (AREA)
- Immunology (AREA)
- Biotechnology (AREA)
- Biophysics (AREA)
- Biochemistry (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Microbiology (AREA)
- Physics & Mathematics (AREA)
- Genetics & Genomics (AREA)
- Dispersion Chemistry (AREA)
- Hematology (AREA)
- Clinical Laboratory Science (AREA)
- Automatic Analysis And Handling Materials Therefor (AREA)
Abstract
本发明提供一种长时间维持微流控芯片负压状态的方法,在微流控芯片上表面贴一层透明胶带,然后在贴了透明胶带的微流控芯片表面沉积一层聚合物薄膜,微流控芯片通过抽真空的方式获得负压驱动力。本发明利用该聚合物薄膜具有的致密、对气体分子具有低渗透率、无色透明、无荧光的性质,实现了对微流控芯片负压驱动能力的长时间储存,使得负压驱动微流控芯片能够得到更广泛的应用,更利于无需外接动力源的微流控芯片使用负压驱动进样,在偏远地区与现场及时检测中应用。在芯片进样期间,沉积的聚合物薄膜仍然能够继续保护芯片的四周处于密封状态,防止气体分子从芯片四周进入到芯片中,进样效果更好,防止试剂的蒸发。The invention provides a method for maintaining the negative pressure state of a microfluidic chip for a long time. A layer of transparent tape is pasted on the surface of the microfluidic chip, and then a layer of polymer film is deposited on the surface of the microfluidic chip pasted with the transparent adhesive tape. The microfluidic chip obtains the negative pressure driving force by means of vacuuming. The present invention utilizes the properties of the polymer film to be dense, low permeability to gas molecules, colorless and transparent, and non-fluorescent to realize long-term storage of the negative pressure driving capability of the microfluidic chip, so that the negative pressure drives the microfluidic The control chip can be widely used, and it is more conducive to the use of negative pressure-driven sample injection for microfluidic chips that do not require an external power source, and can be used in remote areas and on-site timely detection. During chip injection, the deposited polymer film can still continue to protect the surrounding of the chip in a sealed state, preventing gas molecules from entering the chip from around the chip, and the injection effect is better, preventing the evaporation of reagents.
Description
技术领域technical field
本发明属生命科学、临床诊断、化学分析等多个领域检测方法,涉及一种长时间维持微流控芯片负压状态的方法。The invention belongs to a detection method in the fields of life science, clinical diagnosis, chemical analysis and the like, and relates to a method for maintaining the negative pressure state of a microfluidic chip for a long time.
背景技术Background technique
微流控芯片技术目前已经广泛应用在了生物、化学、医学等诸多领域中。与传统实验室的检测与分析方法相比,微流控芯片技术具有所需样本量少、操作简单、通量高、准确度高、不开盖低污染等多种优点,是未来检测技术发展的一大方向。Microfluidic chip technology has been widely used in biology, chemistry, medicine and many other fields. Compared with traditional laboratory detection and analysis methods, microfluidic chip technology has many advantages such as less sample required, simple operation, high throughput, high accuracy, and low pollution without opening the cover. It is the future development of detection technology. a major direction.
微流控芯片在实际应用中,大多需要外接动力源提供动力驱动样品在芯片中的流动,外接动力源通常体积庞大,结构复杂,增加了研制与使用成本,而且不易于携带,给现场及时检测带来了诸多不便。一种无外接动力源的负压驱动进样芯片被提出,并很好的解决了这一问题。这种负压驱动微流控芯片使用聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)制作,利用PDMS材料多孔性可存储气体的特点,预先对芯片抽真空处理,使芯片内部压强低于外界大气压。这样,当样品试剂加在芯片的入口处时,由于芯片内外存在压差,就能够使样品溶液被吸入芯片中,无需外接动力源。但是这种芯片在使用过程中也存在一些缺点:第一,每次抽真空之后芯片都需要立即使用,给偏远地区与现场即时检测带来了不便;第二,芯片在使用过程中,空气中的气体分子也会从芯片四周重新被吸入芯片中,影响了芯片的进样效果。In practical applications of microfluidic chips, most of them require an external power source to provide power to drive the flow of samples in the chip. The external power source is usually bulky and complex in structure, which increases the cost of development and use, and is not easy to carry. brought a lot of inconvenience. A negative pressure-driven sample injection chip without an external power source is proposed, which solves this problem very well. This negative pressure-driven microfluidic chip is made of polydimethylsiloxane (PDMS). Taking advantage of the porosity of PDMS material to store gas, the chip is vacuumed in advance so that the internal pressure of the chip is lower than the external atmospheric pressure. . In this way, when the sample reagent is added to the inlet of the chip, the sample solution can be sucked into the chip due to the pressure difference between the inside and outside of the chip, without the need for an external power source. However, this kind of chip also has some shortcomings in the use process: first, the chip needs to be used immediately after each vacuuming, which brings inconvenience to remote areas and on-site real-time detection; second, the chip is in the air during use. The gas molecules will also be re-injected into the chip from around the chip, which affects the sampling effect of the chip.
发明内容SUMMARY OF THE INVENTION
本发明的目的是提供一种长时间维持微流控芯片负压状态的方法,在微流控芯片表面沉积一层聚合物薄膜,利用该聚合物薄膜具有的致密、对气体分子具有低渗透率、无色透明、无荧光的性质,实现了对微流控芯片负压驱动能力的长时间储存,使得负压驱动微流控芯片能够得到更广泛的应用;在芯片进样期间,沉积的聚合物薄膜仍然能够继续保护芯片的四周处于密封状态,防止气体分子从芯片四周进入到芯片中。The purpose of the present invention is to provide a method for maintaining the negative pressure state of the microfluidic chip for a long time, deposit a layer of polymer film on the surface of the microfluidic chip, and utilize the denseness of the polymer film and the low permeability to gas molecules. , colorless, transparent, and non-fluorescent properties, realize the long-term storage of the negative pressure driving ability of the microfluidic chip, so that the negative pressure driving microfluidic chip can be widely used; during the chip injection, the deposited polymer The organic film can still continue to protect the periphery of the chip in a sealed state, preventing gas molecules from entering the chip from the periphery of the chip.
本发明提供的一种长时间维持微流控芯片负压状态的方法,首先在微流控芯片上表面贴一层透明胶带,然后在贴了透明胶带的微流控芯片表面沉积一层聚合物薄膜,沉积时,微流控芯片需要在周边垫高,保持芯片下表面大部分面积,尤其是中心区域悬空。该聚合物薄膜具有致密的、对气体分子具有低渗透率的、无色透明的、无荧光的性质。The invention provides a method for maintaining the negative pressure state of a microfluidic chip for a long time. First, a layer of transparent tape is pasted on the surface of the microfluidic chip, and then a layer of polymer is deposited on the surface of the microfluidic chip pasted with the transparent tape. When depositing thin films, the microfluidic chip needs to be raised at the periphery to keep most of the lower surface area of the chip, especially the central area floating. The polymer film is dense, has low permeability to gas molecules, is colorless and transparent, and has no fluorescence properties.
所述微流控芯片的材质为聚二甲基硅氧烷(Polydimethylsiloxane,PDMS)。The material of the microfluidic chip is polydimethylsiloxane (PDMS).
微流控芯片通过抽真空的方式获得负压驱动力。The microfluidic chip obtains the negative pressure driving force by means of vacuuming.
微流控芯片表面沉积的聚合物薄膜的材料为聚一氯对二甲苯(Parylene C)。The material of the polymer film deposited on the surface of the microfluidic chip is Parylene C.
微流控芯片的厚度可调,优选3–7mm。The thickness of the microfluidic chip is adjustable, preferably 3–7 mm.
微流控芯片表面沉积的Parylene C薄膜厚度可调,优选10–15μm。The thickness of the Parylene C film deposited on the surface of the microfluidic chip is adjustable, preferably 10–15 μm.
聚合物薄膜使用真空气相沉积的方法沉积在微流控芯片表面。Polymer thin films are deposited on the surface of the microfluidic chip using vacuum vapor deposition.
微流控芯片的抽真空与聚合物薄膜的沉积同时完成。The evacuation of the microfluidic chip is completed simultaneously with the deposition of the polymer film.
微流控芯片在真空气相沉积Parylene C薄膜之前,上表面需要贴一层透明胶带。Before the vacuum vapor deposition of the Parylene C film, the upper surface of the microfluidic chip needs to be pasted with a layer of transparent tape.
真空气相沉积的设备,其沉积腔的压强可调,并且在沉积过程中压强保持固定。For vacuum vapor deposition equipment, the pressure of the deposition chamber is adjustable, and the pressure remains fixed during the deposition process.
透明胶带的厚度要不小于0.05mm,即≥0.05mm。The thickness of the transparent tape should not be less than 0.05mm, that is, ≥0.05mm.
本发明的优点:(1)可以长时间保持微流控芯片的负压动力,时间可达30天或者更长,更利于无需外接动力源的微流控芯片使用负压驱动进样,在偏远地区与现场及时检测中应用;(2)芯片进样时无需拆除聚合物薄膜,薄膜可在芯片进样过程中保持芯片四周处于密封状态,进样效果更好,同时也能一定程度防止试剂的蒸发;(3)聚合物薄膜无色透明,没有荧光,不会影响芯片中生化反应的结果检测。The advantages of the present invention: (1) The negative pressure power of the microfluidic chip can be maintained for a long time, and the time can be up to 30 days or longer, which is more conducive to the use of negative pressure to drive the sample injection of the microfluidic chip without an external power source. (2) The polymer film does not need to be removed when the chip is injected. The film can keep the chip around the chip in a sealed state during the chip injection process, and the injection effect is better. Evaporation; (3) The polymer film is colorless and transparent, has no fluorescence, and will not affect the result detection of the biochemical reaction in the chip.
附图说明Description of drawings
图1是本发明方法的流程图。Figure 1 is a flow chart of the method of the present invention.
图2是实施例2的示意图,其中1为微流控芯片,2为上表面的胶带,3为沉积的Parylene C薄膜,4为进样口,5为螺母垫起的位置。2 is a schematic diagram of Example 2, wherein 1 is a microfluidic chip, 2 is an adhesive tape on the upper surface, 3 is a deposited Parylene C film, 4 is an injection port, and 5 is a position where the nut is padded.
图3是实施例2的结果图。FIG. 3 is a graph of the results of Example 2. FIG.
图4是实施例3的结果图。FIG. 4 is a graph of the results of Example 3. FIG.
图5是实施例4的示意图,其中10为负压驱动泵模块,由上表面的胶带2,沉积的Parylene C薄膜3,负压驱动PDMS模块5,下表面胶带6组成;7为微流控芯片,8为进样口,9为出样口,11为揭掉了下表面胶带的负压驱动泵模块。5 is a schematic diagram of Example 4, wherein 10 is a negative pressure driven pump module, which is composed of an
具体实施方式Detailed ways
下面结合附图和实施例对本发明做进一步说明。The present invention will be further described below with reference to the accompanying drawings and embodiments.
实施例1方法实施流程Embodiment 1 method implementation process
参见图1,一种长时间维持微流控芯片负压状态的方法的实施流程。实施对象为微流控芯片,采用的具体方式为在制作好的微流控芯片上表面贴一层透明胶带,之后在贴了透明胶带的微流控芯片表面沉积一层聚合物薄膜。Referring to FIG. 1 , an implementation flow of a method for maintaining a negative pressure state of a microfluidic chip for a long time. The implementation object is a microfluidic chip. The specific method used is to paste a layer of transparent tape on the surface of the fabricated microfluidic chip, and then deposit a layer of polymer film on the surface of the microfluidic chip with the transparent tape.
参见图2,图中左边是剖面示意图,在微流控芯片1上表面贴一层透明胶带2,在贴了透明胶带2的微流控芯片表面沉积一层Parylene C薄膜3,图中右边是芯片上表面示意图,其中进样口4设在两边,同时两边中间位置设有螺母5作为支撑垫起微流控芯片1,螺母5标准尺寸M6到M10均可。Referring to Figure 2, the left side of the figure is a cross-sectional schematic diagram. A layer of
微流控芯片的材质为具有透气性的聚合物材料,优选PDMS。芯片的大小按照需要可调。芯片的厚度按照需要可调,优选3–7mm。The material of the microfluidic chip is a gas-permeable polymer material, preferably PDMS. The size of the chip can be adjusted as needed. The thickness of the chip can be adjusted as required, preferably 3-7mm.
微流控芯片在沉积聚合物薄膜之前,上表面要贴一层透明胶带,防止聚合物薄膜在制作过程中直接沉积在芯片上表面造成的上表面模糊、堵塞进样口出样口、芯片密封不够严密等问题。透明胶带厚度不低于0.05mm,为了防止在抽真空的时候透明胶带变形且无法复原。Before depositing the polymer film on the microfluidic chip, a layer of transparent tape should be attached to the upper surface to prevent the upper surface of the microfluidic chip from being blurred, blocking the sample inlet and outlet, and sealing the chip caused by the polymer film directly deposited on the upper surface of the chip during the production process. Insufficient strictness and so on. The thickness of the scotch tape is not less than 0.05mm, in order to prevent the scotch tape from being deformed and unable to recover during vacuuming.
沉积的聚合物薄膜材料具有致密的、对气体分子具有低渗透率的、无色透明的、无荧光的性质,优选Parylene C。聚合物薄膜的厚度按照需要可调,优选10–15μm。The deposited polymer film material is dense, has low permeability to gas molecules, is colorless and transparent, and has no fluorescence properties, preferably Parylene C. The thickness of the polymer film can be adjusted as required, preferably 10–15 μm.
薄膜沉积的过程要求能够保持抽真空的状态,优选真空气相沉积方法。The process of thin film deposition requires the ability to maintain a vacuum state, and a vacuum vapor deposition method is preferred.
真空气相沉积的设备要求可以调节沉积腔的压强,并且在沉积进行中,压强保持稳定不变。压强可以为10–40mTorr,优选20mTorr。微流控芯片在放入真空气相沉积系统中时,底面需要悬空,保证也可以均匀沉积到Parylene C薄膜。The equipment of vacuum vapor deposition requires that the pressure of the deposition chamber can be adjusted, and the pressure remains stable during the deposition process. The pressure may be 10-40 mTorr, preferably 20 mTorr. When the microfluidic chip is placed in the vacuum vapor deposition system, the bottom surface needs to be suspended to ensure that the Parylene C film can be uniformly deposited.
实施例2自吸分液式数字聚合酶链式反应(digital PCR)芯片维持长时间负压的方法
参见图2,一种长时间维持微流控芯片负压状态的方法用于自吸分液式数字PCR芯片。它由微流控芯片1,芯片上表面的胶带2,芯片表面沉积的Parylene C薄膜3组成。Referring to Fig. 2, a method for maintaining the negative pressure state of the microfluidic chip for a long time is used in a self-priming and liquid-dispersing digital PCR chip. It consists of a microfluidic chip 1, an
微流控芯片1采用PDMS为材料,采用多层软光刻技术在硅片表面使用光胶制作具有微通道与微反应腔室的模具,先在模具上旋涂一层0.5mm厚的PDMS薄层,PDMS的比例为单体:固化剂=5:1。经85℃烘烤2min固化后,旋涂一层防蒸发层,85℃烘烤1min。之后在防蒸发层上浇注一层5mm厚的PDMS,PDMS的比例为单体:固化剂=10:1,并于85℃烘烤40min固化。将PDMS整体从模具上揭取下来,使用1mm直径的打孔器打出进样口4。将盖玻片用等离子体处理后与PDMS进行封接,之后置于85℃热板烘烤4h,完成芯片的加工。Microfluidic chip 1 uses PDMS as the material, and uses multi-layer soft lithography technology to use photoresist on the surface of the silicon wafer to make a mold with microchannels and microreaction chambers. First, spin a layer of 0.5mm thick PDMS on the mold. layer, the ratio of PDMS is monomer:curing agent=5:1. After curing at 85°C for 2 min, spin-coat an anti-evaporation layer and bake at 85°C for 1 min. After that, a layer of PDMS with a thickness of 5 mm is cast on the anti-evaporation layer, and the ratio of PDMS is monomer: curing agent=10:1, and it is cured by baking at 85° C. for 40 minutes. The whole PDMS was peeled off from the mold, and the injection port 4 was punched out with a 1mm diameter hole punch. The cover glass was treated with plasma and sealed with PDMS, and then placed on a hot plate at 85°C for 4 hours to complete the chip processing.
在制作好的微流控芯片1上表面粘贴厚度为0.07mm的透明胶带2,使用刮板赶走透明胶带与芯片上表面之间的气泡。贴好后沿芯片四周修剪胶带。A
芯片表面沉积的Parylene C薄膜3使用真空气相沉积系统沉积而成。在真空气相沉积系统的沉积腔内喷涂脱模剂,将其涂抹均匀。每张芯片使用两个螺母在位置5处垫起,使底面保持悬空,使Parylene C薄膜能够沉积到芯片底面。称取16.66g Parylene C原料,放入锡纸卷中,插入原料仓内。16.66g的Parylene C原料可以获得10μm厚的薄膜。先将冷阱打开,再将真空泵打开,对整个沉积系统抽真空,直至沉积腔压强达到10mTorr以下,即<10mTorr。打开裂解腔与蒸发腔的加热旋钮,待裂解腔温度升到690℃,蒸发腔温度达到135℃,Parylene C薄膜的沉积开始。此时沉积腔内的压强为20Pa,并且在沉积过程中一直保持20Pa。The
当原料仓内的原料全部蒸发裂解后,沉积腔内的压强逐渐降低,裂解腔、蒸发腔、沉积腔内的温度都开始回落,待裂解腔的温度降至350℃以下,关闭系统,待沉积腔内压强达到大气压,取出芯片。此时芯片表面已经沉积了一层均匀、致密、透明的Parylene C薄膜,厚度为10μm。When all the raw materials in the raw material warehouse are evaporated and cracked, the pressure in the deposition chamber gradually decreases, and the temperature in the cracking chamber, evaporation chamber, and deposition chamber begins to drop. When the temperature of the cracking chamber drops below 350 °C, the system is closed and the deposition is to be performed. The pressure in the chamber reaches atmospheric pressure, and the chip is taken out. At this point, a uniform, dense and transparent Parylene C film with a thickness of 10 μm has been deposited on the surface of the chip.
将沉积了Parylene C涂层的芯片在大气压下常温保存30天。使用注射器针头扎开进样口4,加入human 18S ribosomal RNA plasmid以及配套的PCR的反应试剂,随后加入与反应试剂不相容的油相液体,封闭进样口4,在芯片中进行数字PCR反应,结果见图3。The chips deposited with Parylene C coating were stored at room temperature for 30 days under atmospheric pressure. Use a syringe needle to pierce the injection port 4, add human 18S ribosomal RNA plasmid and the matching PCR reaction reagent, then add the oil phase liquid that is incompatible with the reaction reagent, close the injection port 4, and perform a digital PCR reaction in the chip , and the results are shown in Figure 3.
实施例3Parylene C薄膜厚度对微流控芯片的负压保持时间研究Example 3 Study on the negative pressure retention time of the microfluidic chip by the thickness of the Parylene C film
本实施例采用实施例2的装置进样,在沉积Parylene C薄膜时分别选用8.33g,16.66g和24.99g原料,获得5μm,10μm和15μm厚的Parylene C薄膜。In this example, the device of Example 2 is used for sample injection, and 8.33g, 16.66g and 24.99g of raw materials are respectively used to deposit Parylene C films to obtain 5μm, 10μm and 15μm thick Parylene C films.
在第一天、第二天,...,第三十天,分别取不同厚度Parylene C薄膜包被的微流控芯片,使用注射器针头扎开进样口4,加入钙黄绿素荧光染料,之后加入油相液体封闭,统计进样时间。On the first day, the second day, ..., the thirtieth day, take microfluidic chips coated with different thicknesses of Parylene C film, use a syringe needle to pierce the injection port 4, add calcein fluorescent dye, and then The oil phase liquid was added to seal, and the injection time was counted.
采用实施例2的进样装置制作的微流控芯片,未沉积Parylene C薄膜的,在抽真空处理后,放置18h,就已经无法完成荧光染料的完全进样。The microfluidic chip fabricated using the sample injection device of Example 2, without the Parylene C film deposited, was unable to complete the complete injection of the fluorescent dye after being vacuumed and placed for 18 hours.
沉积了Parylene C薄膜的微流控芯片可以保持30天仍然能够完全进样。结果参见图4。The microfluidic chip deposited with the Parylene C film can remain fully injected for 30 days. See Figure 4 for the results.
实施例4一种长时间维持负压驱动泵动力的方法Embodiment 4 A kind of method of maintaining negative pressure driving pump power for a long time
一种长时间维持负压驱动泵动力的方法用于普通微流控芯片进样分析。它由负压驱动泵模块10和微流控芯片7组成。其中负压驱动泵模块10由上表面的胶带2,沉积的Parylene C薄膜3,负压驱动PDMS模块5,下表面胶带6组成;微流控芯片7包括进样口8,出样口9;11为揭掉了下表面胶带的负压驱动泵模块。A method for maintaining the power of a pump driven by negative pressure for a long time is used for sample injection analysis of common microfluidic chips. It consists of a negative pressure driven
负压驱动泵模块10采用PDMS为材料,按照单体:固化剂=10:1的比例配比。用干净的硅片作为底面,浇注出高为5mm的PDMS模块,85℃烘烤1h至完全固化。切割为宽度与芯片7相同,长度约20mm的长方体。得到负压驱动PDMS模块5。The negative pressure driving
在制作好的负压驱动PDMS模块5上表面黏贴厚度为0.07mm的透明胶带2,下表面黏贴厚度为0.07mm的透明胶带6。使用刮板赶走透明胶带与芯片上表面之间的气泡。A
使用实施例2中的真空气相沉积方法,在芯片表面沉积Parylene C薄膜3。Using the vacuum vapor deposition method in Example 2, a
将需要检测的试剂加在进样口8,把负压驱动泵模块10的下表面胶带6揭下,露出PDMS底面,得到揭掉了下表面胶带的负压驱动模块11。将揭掉了下表面胶带的负压驱动泵模块11的露出PDMS底面的一侧贴在出样口9上。负压驱动泵模块提供的负压动力,能够将进样口8的待检测试剂吸入芯片,最终流至出样口9,完成检测。结果参见图5。The reagent to be detected is added to the sample inlet 8, and the
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710475437.4A CN107308996B (en) | 2017-06-21 | 2017-06-21 | Method for maintaining negative pressure state of micro-fluidic chip for long time |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710475437.4A CN107308996B (en) | 2017-06-21 | 2017-06-21 | Method for maintaining negative pressure state of micro-fluidic chip for long time |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107308996A CN107308996A (en) | 2017-11-03 |
CN107308996B true CN107308996B (en) | 2020-03-17 |
Family
ID=60184039
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710475437.4A Active CN107308996B (en) | 2017-06-21 | 2017-06-21 | Method for maintaining negative pressure state of micro-fluidic chip for long time |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107308996B (en) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102395830A (en) * | 2009-03-13 | 2012-03-28 | 戈尔企业控股股份有限公司 | Moisture resistant coatings for polymeric enclosures |
CN103071548A (en) * | 2012-04-05 | 2013-05-01 | 浙江大学 | Power source-free and valve-free type single molecule detection chip and applications thereof |
CN106531646A (en) * | 2016-12-26 | 2017-03-22 | 中国科学院长春光学精密机械与物理研究所 | Method for packaging microfluidic chip |
CN206215248U (en) * | 2016-11-07 | 2017-06-06 | 华南理工大学 | A kind of micro-fluidic chip of the microfluid spontaneous vasomotion of negative pressure guiding |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2848477B1 (en) * | 2002-12-17 | 2006-03-24 | Commissariat Energie Atomique | METHOD AND DEVICE FOR CONTAINING A LIQUID |
KR100613398B1 (en) * | 2003-11-25 | 2006-08-17 | 한국과학기술연구원 | Cantilever sensor type analysis system, manufacturing method and ultrafine material detection method using the same |
-
2017
- 2017-06-21 CN CN201710475437.4A patent/CN107308996B/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102395830A (en) * | 2009-03-13 | 2012-03-28 | 戈尔企业控股股份有限公司 | Moisture resistant coatings for polymeric enclosures |
CN103071548A (en) * | 2012-04-05 | 2013-05-01 | 浙江大学 | Power source-free and valve-free type single molecule detection chip and applications thereof |
CN206215248U (en) * | 2016-11-07 | 2017-06-06 | 华南理工大学 | A kind of micro-fluidic chip of the microfluid spontaneous vasomotion of negative pressure guiding |
CN106531646A (en) * | 2016-12-26 | 2017-03-22 | 中国科学院长春光学精密机械与物理研究所 | Method for packaging microfluidic chip |
Also Published As
Publication number | Publication date |
---|---|
CN107308996A (en) | 2017-11-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US8900529B2 (en) | Microfluidic chamber device and fabrication | |
CN103071548B (en) | A kind of passive delivery valveless type Single Molecule Detection chip and application | |
Skelley et al. | An active bubble trap and debubbler for microfluidic systems | |
EP2408900B1 (en) | Microorganism culture device and method of operation thereof | |
CN108499619B (en) | Membrane integrated type micro-fluidic filter chip and preparation method and application thereof | |
CN101825624B (en) | Miniaturized total analysis device formed by six-channel microfluidic chip and quartz crystal microbalance | |
CN105032512A (en) | Integrated micro-fluidic chip for screening drug compatibility, as well as preparation method and application of integrated micro-fluidic chip | |
CN104130932A (en) | Agarose microfluidic chip based bacteria enrichment device | |
CN108373969A (en) | A digital PCR chip and its preparation method and use method | |
JP2005257283A (en) | Microchip | |
EP3388841B1 (en) | Microchip and method for manufacturing the same | |
JP2017516099A (en) | Microfluidic flow cell assembly for imaging and method of use | |
EP3143380B1 (en) | Microfluidic flow cell assemblies and method of use | |
CN107308996B (en) | Method for maintaining negative pressure state of micro-fluidic chip for long time | |
CN102796659B (en) | Porous single cell observation plate and use thereof | |
CN108080043A (en) | The multichannel micro-fluidic chip device and preparation method of negative pressure of vacuum sample introduction and application | |
CN112934277B (en) | Rapid low-consumption sample filling method for microfluidic chip | |
CN112592815A (en) | Microfluidic chip for carrying out multiple microRNA detection and application | |
JP2005262522A (en) | Production method of polymer sheet | |
US9080941B2 (en) | Microfluidic flow cell assemblies for imaging and method of use | |
WO2021082951A1 (en) | Digital pcr method, chip, preparation method and circulation system | |
CN110227563B (en) | Evaporation-proof sealing method for PDMS (polydimethylsiloxane) micro-fluidic chip and PDMS micro-fluidic chip | |
CN103018437A (en) | Immunofluorescence microfluidic chip based on quantum dots, as well as preparation method and use of chip | |
CN108148750B (en) | Preparation method of multifunctional microfluidic chip for in situ formation of embryoid body | |
Lin et al. | Passively Driven Microfluidic Device with Simple Operation for Quantitative Droplet LAMP Sssay For Point-of-Care Analysis |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |