CN107301649B - 一种基于超像素的区域合并sar图像海岸线检测算法 - Google Patents

一种基于超像素的区域合并sar图像海岸线检测算法 Download PDF

Info

Publication number
CN107301649B
CN107301649B CN201710454623.XA CN201710454623A CN107301649B CN 107301649 B CN107301649 B CN 107301649B CN 201710454623 A CN201710454623 A CN 201710454623A CN 107301649 B CN107301649 B CN 107301649B
Authority
CN
China
Prior art keywords
point
seed
representing
superpixel
pixels
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201710454623.XA
Other languages
English (en)
Other versions
CN107301649A (zh
Inventor
史晓非
王智罡
马海洋
丁星
冯建德
刘玲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dalian Maritime University
Original Assignee
Dalian Maritime University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dalian Maritime University filed Critical Dalian Maritime University
Priority to CN201710454623.XA priority Critical patent/CN107301649B/zh
Publication of CN107301649A publication Critical patent/CN107301649A/zh
Application granted granted Critical
Publication of CN107301649B publication Critical patent/CN107301649B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/13Edge detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/136Segmentation; Edge detection involving thresholding
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10032Satellite or aerial image; Remote sensing
    • G06T2207/10044Radar image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30181Earth observation
    • G06T2207/30184Infrastructure

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Image Analysis (AREA)

Abstract

本发明公开了一种基于超像素的区域合并SAR图像海岸线检测算法读取合成孔径雷达SAR图像I,输入k个超像素的种子点,计算种子点的位置并计算出各种子点的邻域点均值和中心点均值的相似程度Si,j,然后计算各种子点的均值和方差作为种子点的特征,重复步骤直至所有点的类别都不在发生变化。计算超像素的像素均值,超像素内像素数量和超像素内像素的标准差,直到迭代前后超像素不再合并,则输出海岸线检测结果。本发明通过构建一个新的局部窗,可以有效的解决传统矩形窗中因含有边缘导致计算出的特征模糊的问题,通过该局部窗构建一个相似性描述子,使得提取出的特征更加精确,使得超像素的边缘贴合度更高。

Description

一种基于超像素的区域合并SAR图像海岸线检测算法
技术领域
本发明涉及一种基于超像素的区域合并SAR图像海岸线检测算法,属于海岸线检测领域。
背景技术
合成孔径雷达是一种主动式微波探测器,利用合成孔径原理、信号处理方法和脉冲压缩技术,通过较小尺寸的真实天线孔径合成较大的等效天线孔径来成像。SAR图像已广泛应用于战略目标的识别探测、灾害控制、国土资源监测、海域使用管理、地图测绘、船舰目标识别、矿产勘探、农作物生长监测等领域并发挥重要作用。在海域使用管理中,海岸线检测是一个重要环节,通过检测海岸线可以监测海岸带变化。由于填海造地、江河泥沙堆积等原因,使得海岸线不断发生变化,能够长期监测海岸线的变化,对海域使用的动态监测具有一定实际意义。但由于相干斑、海风和陆地环境的复杂性等因素,使得海岸线检测具有较大难度。当海面或者陆地不均匀时,已有的区域合并海岸线检测算法容易出现无法合并的小区域,且需要人为设定合并的阈值。
发明内容
本发明针对以上问题的提出,一种基于超像素的区域合并SAR图像海岸线检测算法,其特征在于包括如下步骤:
S1:读取合成孔径雷达SAR(Synthetic Aperture Radar)图像I,输入k个超像素的种子点;
S2:根据所述种子点的数量k和图像的宽m和高n,计算种子点的位置;
S3:遍历所述合成孔径雷达图像I,根据邻域点j和种子点的相对位置关系确定邻域点局部窗和种子点局部窗的形状;所述邻域点j是指位于中心点i的2像素×2像素的局部窗内,分别计算出种子点局部窗和邻域点局部窗内邻域点和中心点的相似程度Si,j
S4:在邻域点和中心点的局部窗内对所述邻域点均值和中心点均值的相似程度Si,j在局部窗内采用聚类算法求得Ci,所述集合选取Si,j接近1的邻域点j作为和中心点i属于同一类的点,这些点的集合即Ci,并计算各中心点i的均值和集合Ci中每一个点均值的标准差作为中心点的特征;
S5:计算邻域点j和其周围每一个种子点的di,j;将邻域点j合并di,j最小的种子点中,并更新种子点i的特征和位置;所述合并邻域点j分配和中心点i相同的标签即两者属于同一类;
S6:重复步骤S3-S5直至所有点的类别都不在发生变化;
S7:计算超像素的像素均值,超像素内像素数量和超像素内像素的标准差;遍历所述图像I,计算出超像素i和超像素j之间的相似性di,j和两个超像素的相似性判断的阈值E,当di,j小于E的大小时合并超像素的区域;
S8:重复步骤S7,直到迭代前后超像素不再合并,则输出海岸线检测结果。
进一步的,所述种子点的位置计算为:
Figure BDA0001322719520000021
在计算结果5像素×5像素的局部窗内选择梯度最小的像素为所述图像I的一种子点。
进一步的,所述Si,j
Figure BDA0001322719520000022
其中,i表示中心点,j表示邻域点,μ(xi,yi)表示i局部邻域内的均值,μ(xj,yj)表示j局部邻域内的均值。
进一步的,所述dci,j
dci,j=||(μii)T-(μjj)T||
Figure BDA0001322719520000023
Figure BDA0001322719520000024
其中,μi表示第i类超像素的均值,σi表示第i类超像素标准差,μj表示第j类超像素的均值,σj表示第j类超像素标准差,m表示dci,j与dsi,j之间的权重系数,S表示第一次选取种子点时,两个种子点之间的距离,T表示向量的转置,xi表示超像素i中心点的行坐标,xj表示超像素j中心点的行坐标,yi表示超像素i中心点的列坐标,yj表示超像素j中心点的列坐标。
进一步的,均值μ和每一个点局部窗内均值的标准差σ为:
Figure BDA0001322719520000025
Figure BDA0001322719520000031
其中,Ci表示种子点第二类类像素的集合,N表示Ci中像素的个数,μs(xj,yj)表示(xj,yj)处像素局部窗内的均值,
Figure BDA0001322719520000032
表示集合Ci中所有μs的均值。
进一步的,所述更新种子点i的特征和位置为:
Figure BDA0001322719520000033
其中,s表示像素的位置,ls表示s处像素的标签值,ys表示s的列坐标,
Figure BDA0001322719520000034
表示更新后种子点的列坐标,M表示第i类超像素中种子点的数量。更新后种子点的行坐标如下式:
Figure BDA0001322719520000035
其中,xs表示s的行坐标,ls表示s处像素的标签值,M表示第i类超像素中种子点的数量,
Figure BDA0001322719520000036
表示更新后种子点的行坐标。
进一步的,所述超像素i和超像素j之间的相似性di,j
Figure BDA00013227195200000314
其中,
Figure BDA0001322719520000037
Figure BDA0001322719520000038
表示超像素i和超像素j内所有像素的均值,iter表示迭代次数,
Figure BDA0001322719520000039
其中,Ni表示超像素i中像素的个数,Nj表示超像素j中像素的个数,E表示的是两个超像素的相似性判断的阈值,
Figure BDA00013227195200000310
其中,
Figure BDA00013227195200000311
Figure BDA00013227195200000312
的表示超像素i和超像素j的均值,Cj的表示邻域超像素j对于中心超像素i的权重系数,
Figure BDA00013227195200000313
z1和z2表示超像素i和超像素j的统计量,
Figure BDA0001322719520000041
Figure BDA0001322719520000042
Figure BDA0001322719520000043
表示超像素i和超像素j的标准差。
更进一步的,当所述Si,j的值越接近于1时,则中心点i和邻域点j相似性越大;当Si,j的值越接近于0时,则中心点i和邻域点j相似性越小。
本发明的优点在于:本发明提出一种基于超像素的区域合并SAR图像海岸线检测算法,通过构建一个新的局部窗,可以有效的解决传统矩形窗中因含有边缘导致计算出的特征模糊的问题,通过该局部窗构建一个相似性描述子,使得提取出的特征更加精确,使得超像素的边缘贴合度更高。以超像素为基元,提出一种区域合并准则,该准则同时考虑了超像素的像素均值、相对大小和统计量信息,再根据邻域信息得到确定局部阈值,解决了已有算法中需要人为设置阈值的问题。
附图说明
为了更清楚的说明本发明的实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图做一简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明的整体流程图。
图2为本发明的局部窗的形状示意图。
图3为本发明的检测海岸线示意图。
具体实施方式
为使本发明的实施例的目的、技术方案和优点更加清楚,下面结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚完整的描述:
如图1、图3所示,一种基于超像素的区域合并SAR图像海岸线检测算法,包括如下步骤:
S1:读取合成孔径雷达SAR(Synthetic Aperture Radar)图像I,输入k个超像素的种子点;
S2:根据种子点的数量k和图像的宽m和高n,计算种子点的位置;
S3:遍历合成孔径雷达图像I,根据邻域点j和种子点的相对位置关系确定邻域点局部窗和种子点局部窗的形状;邻域点j是指位于中心点i的2像素×2像素的局部窗内,分别计算出种子点局部窗和邻域点局部窗内邻域点和中心点的相似程度Si,j
S4:在邻域点和中心点的局部窗内对邻域点均值和中心点均值的相似程度Si,j在局部窗内采用聚类算法求得Ci,集合选取Si,j接近1的邻域点j作为和中心点i属于同一类的点,这些点的集合即Ci,并计算各中心点的均值和集合Ci中每一个点均值的标准差作为中心点的特征;
S5:计算邻域点j和其周围每一个种子点的di,j;将邻域点j合并di,j最小的种子点中,并更新种子点i的特征和位置;合并邻域点j分配和中心点i相同的标签即两者属于同一类;
S6:重复步骤S3-S5直至所有点的类别都不在发生变化;
S7:计算超像素的像素均值,超像素内像素数量和超像素内像素的标准差;遍历图像I,计算出超像素i和超像素j之间的相似性di,j和两个超像素的相似性判断的阈值E,当di,j小于E的大小时合并超像素的区域;
S8:重复步骤S7,直到迭代前后超像素不再合并,则输出海岸线检测结果。
在本实施方式中,种子点的位置计算为:
Figure BDA0001322719520000051
在计算结果5像素×5像素的局部窗内选择梯度最小的像素为图像I的一种子点。在本实施方式中,如图2(a)-(h)所示,局部窗的形状其中B所在的3像素×3像素的局部窗是种子点的,A所在的3像素×3像素的局部窗是邻域点的,种子点和邻域点的局部窗是可以重合的,邻域点局部窗中含A的像素形成的集合是邻域点局部窗的形状,中心点局部窗内含B的像素形成的集合即中心点的局部窗。即中心点和邻域点的局部窗不再是固定大小的3像素×3像素的局部窗而是变成了根据邻域点和中心点的相对位置关系形成的三角形和矩形。可以理解为在其他实施方式中,只要能够在一定程度上剔除边缘对计算中心点或邻域点特征的影响即可。
在本实施方式中,Si,j
Figure BDA0001322719520000052
其中,i表示中心点,j表示邻域点,μ(xi,yi)表示i局部邻域内的均值,μ(xj,yj)表示j局部邻域内的均值。
作为优选的实施方式,dci,j
dci,j=||(μii)T-(μjj)T||
Figure BDA0001322719520000061
Figure BDA0001322719520000062
其中,μi表示第i类超像素的均值,σi表示第i类超像素标准差,μj表示第j类超像素的均值,σj表示第j类超像素的标准差,m表示dci,j与dsi,j之间的权重系数,S表示第一次选取种子点时,两个种子点之间的距离,T表示向量的转置,xi表示超像素i中心点的行坐标,xj表示超像素j中心点的行坐标,yi表示超像素i中心点的列坐标,yj表示超像素j中心点的列坐标。
在本实施方式中,均值μ和每一个点局部窗内均值的标准差σ为:
Figure BDA0001322719520000063
Figure BDA0001322719520000064
其中,Ci表示种子点第二类类像素的集合,N表示Ci中像素的个数,μs(xj,yj)表示(xj,yj)处像素局部窗内的均值,
Figure BDA0001322719520000065
表示集合Ci中所有μs的均值。
作为优选的实施方式,更新种子点i的特征和位置为:
Figure BDA0001322719520000066
其中,s表示像素的位置,ls表示s处像素的标签值,ys表示s的列坐标,
Figure BDA0001322719520000067
表示更新后种子点的列坐标,M表示第i类超像素中种子点的数量。更新后种子点的行坐标如下式:
Figure BDA0001322719520000068
其中,xs表示s的行坐标,ls表示s处像素的标签值,M表示第i类超像素中种子点的数量,
Figure BDA0001322719520000069
表示更新后种子点的行坐标。
作为优选的实施方式,超像素i和超像素j之间的相似性di,j
Figure BDA00013227195200000612
其中,
Figure BDA00013227195200000610
Figure BDA00013227195200000611
表示超像素i和超像素j内所有像素的均值,iter表示迭代次数,
Figure BDA0001322719520000071
其中,Ni表示超像素i中像素的个数,Nj表示超像素j中像素的个数,E表示的是两个超像素的相似性判断的阈值,
Figure BDA0001322719520000072
其中,
Figure BDA0001322719520000073
Figure BDA0001322719520000074
的表示超像素i和超像素j的均值,Cj的表示邻域超像素j对于中心超像素i的权重系数,
Figure BDA0001322719520000075
z1和z2表示超像素i和超像素j的统计量,
Figure BDA0001322719520000076
Figure BDA0001322719520000077
Figure BDA0001322719520000078
表示超像素i和超像素j的标准差。
在本实施方式中,当Si,j的值越接近于1时,则中心点i和邻域点j相似性越大;当Si,j的值越接近于0时,则中心点i和邻域点j相似性越小。可以理解为在其他实施方式中,只要能够区分中心点i和邻域点j的相似性即可。
实施例参数设置:
本发明的参数设置为:种子数k为300,dc与ds之间的权重系数m为0.5,超像素的最大迭代次数为10,局部窗的大小是3×3,区域合并的最大合并次数为7。
Gamma分布水平集方法的参数设置为:最大迭代次数是10000,弧长项系数μ为0.4,Heaviside函数的幅度为1,c1和c2的权值均为1,时间步长为0.1。
基于目标的区域合并算法参数设置为:粗合并类别数k为10,置信度λ为0.9。
实施例:
算法性能对比主要采用均方根误差RMSE和QA(overall accuracy)作为精度分析指标,首先进行RMSE对比,其计算公式如下:
Figure BDA0001322719520000079
其中RMSE代表了手绘海岸线与各种算法提取海岸线的平均误差,x1k表示人工手绘得到的海岸线提取结果的二值图中第k个位置像素的像素值。x2k表示上述理论模型得到的海岸线提取结果的二值图中第k个位置像素的像素值,N表示图像像素数。RMSE值越小说明与真实的海岸线越接近,精度越高。
针对Envisat图像,算法的RMSE对比如表1所示。
表1针对Envisat图像的三种算法RMSE对比
Figure BDA0001322719520000081
根据RMSE表达式可知,RMSE值越小说明模型检测结果和真实的海岸线结果越接近,水平集的方法和区域合并的方法并不能检测出海岸线的真实位置,而本发明算法可实现海岸线精确的检测,通过RMSE值可以看出本专利算法检测性能明显优于两种对比算法,针对Radarsat图像,算法的RMSE对比如表2所示。
表2针对Radarsat图像的三种算法RMSE对比
Figure BDA0001322719520000082
从上述实验数据可以看出对于Radarsat图像中对于海面比较均匀且海陆对比度比较大的图像,三种算法均能实现较好的实验结果,从RMSE值可以看出本发明算法的性能要优于其它两种对比算法。
下面本专利采用性能指标QA(overall accuracy)作为以上三种算法的性能评价标准,其表达式为:
Figure BDA0001322719520000091
其中,x1s表示人工手绘海岸线结果s位置像素的标签值,x2s表示实验得到的海岸线结果s位置像素的标签值,M表示图像的像素数,S表示图像位置集合。其含义是正确分类的像素占整体的百分比,其中参考标准是人工确定的海岸线。当QA的值越大,说明得到的海岸线越精确。实验图像与前一性能对比实验相同,针对Envisat图像,QA的性能指标如表3所示。
表3针对Envisat图像的三种算法QA对比
Figure BDA0001322719520000092
针对Radarsat图像,QA的性能指标如表4所示。
表4针对Radarsat图像的三种算法QA对比
Figure BDA0001322719520000093
以上所述,仅为本发明较佳的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,根据本发明的技术方案及其发明构思加以等同替换或改变,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种基于超像素的区域合并SAR图像海岸线检测算法,其特征在于包括如下步骤:
S1:读取合成孔径雷达SAR(Synthetic Aperture Radar)图像I,输入k个超像素的种子点;
S2:根据所输种子点的数量k和图像的宽m和高n,计算种子点的位置;
S3:遍历所述合成孔径雷达图像I,根据邻域点j和种子点i的相对位置关系确定邻域点局部窗和种子点局部窗的形状;所述邻域点j是指位于种子点的2像素×2像素的局部窗内,分别计算出种子点局部窗和邻域点局部窗内邻域点和种子点的相似程度Si,j
S4:在邻域点和种子点的局部窗内,求取对所述邻域点均值和种子点均值的相似程度Si,j, 在局部窗内采用聚类算法计算集合Ci,所述集合选取Si,j接近1的邻域点j作为和种子点i属于同一类的点,并计算各种子点i的均值和集合Ci中每一个点均值的标准差作为种子点的特征;
S5:计算邻域点j和其周围每一个种子点i的距离di,j;将邻域点j合并di,j最小的种子点中,并更新种子点i的特征和位置;所述合并邻域点j分配和种子点i相同的标签即两者属于同一类;
S6:重复步骤S3-S5直至所有点的类别都不再发生变化;
S7:计算超像素的像素均值,超像素内像素数量和超像素内像素的标准差;遍历所述图像I,计算出超像素i和超像素j之间的相似性di,j和两个超像素的相似性判断的阈值E,当di,j小于E的大小时合并超像素的区域;
S8:重复步骤S7,直到迭代前后超像素不再合并,则输出海岸线检测结果。
2.根据权利要求1所述的一种基于超像素的区域合并SAR图像海岸线检测算法,其特征还在于:
所述种子点的位置计算为:
Figure FDA0002699435650000011
在计算结果5像素×5像素的局部窗内选择梯度最小的像素为所述图像I的一种子点。
3.根据权利要求1所述的一种基于超像素的区域合并SAR图像海岸线检测算法,其特征还在于:所述Si,j
Figure FDA0002699435650000021
其中,i表示种子点,j表示邻域点,μ(xi,yi)表示i局部邻域内的均值,μ(xj,yj)表示j局部邻域内的均值,xi表示种子点i的横坐标,yi表示种子点i的纵坐标。
4.根据权利要求1所述的一种基于超像素的区域合并SAR图像海岸线检测算法,其特征还在于:
dci,j=||(μii)T-(μjj)T||
Figure FDA0002699435650000022
Figure FDA0002699435650000023
其中,μi表示第i类超像素的均值,σi表示第i类超像素标准差,μj表示第j类超像素的均值,σj表示第j类超像素标准差,m表示dci,j与dsi,j之间的权重系数,S表示第一次选取种子点时,两个种子点之间的距离,T表示向量的转置,xi表示超像素i种子点的行坐标,xj表示超像素j种子点的行坐标,yi表示超像素i种子点的列坐标,yj表示超像素j种子点的列坐标。
5.根据权利要求1所述的一种基于超像素的区域合并SAR图像海岸线检测算法,其特征还在于:
均值μ和每一个点局部窗内均值的标准差σ为:
Figure FDA0002699435650000024
Figure FDA0002699435650000025
其中,Ci表示种子点第二类类像素的集合,N表示Ci中像素的个数,μs(xj,yj)表示(xj,yj)处像素局部窗内的均值,
Figure FDA0002699435650000026
表示集合Ci中所有μs的均值。
6.根据权利要求1所述的一种基于超像素的区域合并SAR图像海岸线检测算法,其特征还在于:
所述更新种子点i的特征和位置为:
Figure FDA0002699435650000031
其中,s表示像素的位置,ls表示s处像素的标签值,ys表示s的列坐标,
Figure FDA0002699435650000032
表示更新后种子点的列坐标,M表示第i类超像素中种子点的数量;更新后种子点的行坐标如下式:
Figure FDA0002699435650000033
其中,xs表示s的行坐标,ls表示s处像素的标签值,M表示第i类超像素中种子点的数量,
Figure FDA0002699435650000034
表示更新后种子点的行坐标。
7.根据权利要求1所述的一种基于超像素的区域合并SAR图像海岸线检测算法,其特征还在于:所述超像素i和超像素j之间的相似性di,j
Figure FDA0002699435650000035
其中,
Figure FDA0002699435650000036
Figure FDA0002699435650000037
表示超像素i和超像素j内所有像素的均值,iter表示迭代次数,
Figure FDA0002699435650000038
其中,Ni表示超像素i中像素的个数,Nj表示超像素j中像素的个数,E表示的是两个超像素的相似性判断的阈值,
Figure FDA0002699435650000039
其中,
Figure FDA00026994356500000310
Figure FDA00026994356500000311
的表示超像素i和超像素j的均值,Cj的表示邻域超像素j对于中心超像素i的权重系数,
Figure FDA00026994356500000312
z1和z2表示超像素i和超像素j的统计量,
Figure FDA00026994356500000313
Figure FDA0002699435650000041
Figure FDA0002699435650000042
表示超像素i和超像素j的标准差。
8.根据权利要求3所述的一种基于超像素的区域合并SAR图像海岸线检测算法,其特征还在于:
当所述Si,j的值越接近于1时,则种子点i和邻域点j相似性越大;当Si,j的值越接近于0时,则种子点i和邻域点j相似性越小。
CN201710454623.XA 2017-06-15 2017-06-15 一种基于超像素的区域合并sar图像海岸线检测算法 Expired - Fee Related CN107301649B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710454623.XA CN107301649B (zh) 2017-06-15 2017-06-15 一种基于超像素的区域合并sar图像海岸线检测算法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710454623.XA CN107301649B (zh) 2017-06-15 2017-06-15 一种基于超像素的区域合并sar图像海岸线检测算法

Publications (2)

Publication Number Publication Date
CN107301649A CN107301649A (zh) 2017-10-27
CN107301649B true CN107301649B (zh) 2020-11-13

Family

ID=60134876

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710454623.XA Expired - Fee Related CN107301649B (zh) 2017-06-15 2017-06-15 一种基于超像素的区域合并sar图像海岸线检测算法

Country Status (1)

Country Link
CN (1) CN107301649B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108550174B (zh) * 2018-03-08 2020-06-26 中国地质大学(武汉) 一种基于半全局优化的海岸线超分辨率制图方法及系统
CN110097558B (zh) * 2019-04-19 2022-06-07 大连海事大学 Sar图像海岸线检测方法
CN110211106B (zh) * 2019-05-24 2022-10-18 大连海事大学 基于分段Sigmoid带宽的均值漂移SAR图像海岸线检测方法
CN113379695B (zh) * 2021-06-01 2024-03-29 大连海事大学 局部特征差异性耦合的sar图像近岸舰船检测方法
CN113610951B (zh) * 2021-08-12 2022-05-17 深圳市方直科技股份有限公司 自动描图方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102968798A (zh) * 2012-12-12 2013-03-13 北京航空航天大学 一种基于小波变换和otsu阈值的sar图像海陆分割方法
EP2919193A2 (en) * 2014-03-12 2015-09-16 Nokia Technologies OY Method and apparatus for image segmentation
CN105138992A (zh) * 2015-08-28 2015-12-09 大连海事大学 一种基于区域主动轮廓模型的海岸线检测方法
CN106023179A (zh) * 2016-05-13 2016-10-12 江苏科技大学 基于几何活动轮廓模型的sar图像海岸线提取方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102968798A (zh) * 2012-12-12 2013-03-13 北京航空航天大学 一种基于小波变换和otsu阈值的sar图像海陆分割方法
EP2919193A2 (en) * 2014-03-12 2015-09-16 Nokia Technologies OY Method and apparatus for image segmentation
CN105138992A (zh) * 2015-08-28 2015-12-09 大连海事大学 一种基于区域主动轮廓模型的海岸线检测方法
CN106023179A (zh) * 2016-05-13 2016-10-12 江苏科技大学 基于几何活动轮廓模型的sar图像海岸线提取方法

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
Separation Between Water and Land in SAR Images Using Region-Based Level Sets;Margarida Silveira et al;《IEEE GEOSCIENCE AND REMOTE SENSING LETTERS》;20090731;第6卷(第3期);第471-475页 *
SLIC Superpixels Compared to State-of-the-Art Superpixel Methods;Radhakrishna Achanta et al;《IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE》;20121130;第34卷(第11期);第2274-2281页 *
SUPERPIXEL-BASED COASTLINE EXTRACTION IN SAR IMAGES WITH SPECKLE NOISE REMOVAL;Xiaofang Liu et al;《2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS)》;20161103;第1034-1037页 *
基于混合边缘检测的极化SAR图像海岸线检测;刘春等;《系统工程与电子技术》;20160630;第38卷(第6期);第1262-1267页 *
基于种子点增长的SAR图像海岸线自动提取算法;谢明鸿等;《中国科学院研究生院学报》;20070131;第24卷(第1期);第93-98页 *

Also Published As

Publication number Publication date
CN107301649A (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
CN107301649B (zh) 一种基于超像素的区域合并sar图像海岸线检测算法
CN108573276B (zh) 一种基于高分辨率遥感影像的变化检测方法
CN104778721B (zh) 一种双目图像中显著性目标的距离测量方法
CN108830870B (zh) 基于多尺度结构学习的卫星影像高精度农田边界提取方法
CN106909902B (zh) 一种基于改进的层次化显著模型的遥感目标检测方法
CN107067405B (zh) 基于尺度优选的遥感影像分割方法
CN108446634B (zh) 基于视频分析和定位信息结合的航空器持续跟踪方法
CN110781756A (zh) 基于遥感图像的城市道路提取方法及装置
CN105389799B (zh) 基于素描图与低秩分解的sar图像目标检测方法
CN106991686B (zh) 一种基于超像素光流场的水平集轮廓跟踪方法
Wang et al. A novel multi-scale segmentation algorithm for high resolution remote sensing images based on wavelet transform and improved JSEG algorithm
Zhang et al. Superpixel generation for SAR imagery based on fast DBSCAN clustering with edge penalty
CN111541511A (zh) 复杂电磁环境下基于目标检测的通信干扰信号识别方法
CN110889843A (zh) 基于最大稳定极值区域的sar图像舰船目标检测方法
Xue et al. Unsupervised change detection using multiscale and multiresolution Gaussian-mixture-model guided by saliency enhancement
Xiang et al. Fast pixel-superpixel region merging for SAR image segmentation
Ghaffarian et al. An improved cluster-based snake model for automatic agricultural field boundary extraction from high spatial resolution imagery
CN108765440B (zh) 一种单极化sar图像的线引导超像素海岸线提取方法
KR20110094957A (ko) 레인지 영상으로부터의 객체 분할 장치 및 방법
Ming et al. Cropland extraction based on OBIA and adaptive scale pre-estimation
Yao et al. Automatic extraction of road markings from mobile laser-point cloud using intensity data
CN108509835B (zh) 基于DFIC超像素的PolSAR图像地物分类方法
CN111428627B (zh) 一种山地地貌遥感提取方法及系统
CN109508674A (zh) 基于区域划分的机载下视异构图像匹配方法
CN107256399B (zh) 一种基于Gamma分布超像素方法和基于超像素TMF的SAR图像海岸线检测方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20201113

Termination date: 20210615

CF01 Termination of patent right due to non-payment of annual fee