CN107301638B - 一种基于弧支持线段的椭圆检测方法 - Google Patents

一种基于弧支持线段的椭圆检测方法 Download PDF

Info

Publication number
CN107301638B
CN107301638B CN201710390288.1A CN201710390288A CN107301638B CN 107301638 B CN107301638 B CN 107301638B CN 201710390288 A CN201710390288 A CN 201710390288A CN 107301638 B CN107301638 B CN 107301638B
Authority
CN
China
Prior art keywords
line segment
arc
ellipse
oval
initial
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710390288.1A
Other languages
English (en)
Other versions
CN107301638A (zh
Inventor
卢长胜
夏思宇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Southeast University
Original Assignee
Southeast University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Southeast University filed Critical Southeast University
Priority to CN201710390288.1A priority Critical patent/CN107301638B/zh
Publication of CN107301638A publication Critical patent/CN107301638A/zh
Application granted granted Critical
Publication of CN107301638B publication Critical patent/CN107301638B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F18/00Pattern recognition
    • G06F18/20Analysing
    • G06F18/23Clustering techniques

Landscapes

  • Engineering & Computer Science (AREA)
  • Data Mining & Analysis (AREA)
  • Theoretical Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Evolutionary Biology (AREA)
  • Evolutionary Computation (AREA)
  • Artificial Intelligence (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Quality & Reliability (AREA)
  • Image Analysis (AREA)

Abstract

本发明属于计算机视觉,模式识别,图像处理技术领域,涉及一种高精度、高鲁棒性和快速的椭圆检测技术,具体涉及一种基于弧支持线段的椭圆检测方法,包括如下步骤:步骤一、运用弧支持线段检测方法从原始灰度图像中提取弧支持线段的集合;步骤二、基于弧支持线段的连续性与凸性,实现对弧支持线段进行分组;步骤三、采用两种方式分别从弧支持线段的分组中提取初始椭圆,得到初始椭圆集合;步骤四、运用椭圆类聚合算法对初始椭圆集合进行聚类分析,产生候选椭圆;步骤五、应用椭圆的集合性质,对候选椭圆进行验证,检测出椭圆。其具有高鲁棒性,精确,低误识,高效的性能,能够应对复杂环境干扰。

Description

一种基于弧支持线段的椭圆检测方法
技术领域
本发明属于计算机视觉,模式识别,图像处理技术领域,涉及一种高精度、高鲁棒性和快速的椭圆检测技术,具体涉及一种基于弧支持线段的椭圆检测方法。
背景技术
首先,椭圆检测方法是计算机视觉和图像处理领域中的基石,具有非常重要的研究意义和极大的应用价值。在形状识别,物体识别和定位,边缘轮廓建模和图像分割中都有起着重要的作用。
在椭圆检测领域,比较突出的检测方法主要是基于霍夫变换(HT),和基于边界跟踪的椭圆检测方法。对于标准的HT椭圆检测方法,有三个方面的缺点导致在实际中难以进行应用。第一,HT方法需要存储五维的累加器,耗费大量的存储空间;第二HT方法在五维空间中搜索峰值,需要耗费大量的时间;第三严重依赖参数。因此随机霍夫变换(SHT)针对以上前两个缺点进行改进,随机的选取5个点并映射到椭圆参数空间中,并且采用了一维的数组而非累加器。还有的方法,例如McLaughlin等,对HT的五维参数空间进行降维,采取先求椭圆中心,再求剩余参数的策略。但是HT方法及其变体,都无法在椭圆检测上表现出良好的性能。
另一个,便是基于边界跟踪的椭圆检测方法。该类方法通过提取边界图中的线段,然后依据线段连接边缘像素形成弧片段,根据边缘的连续性和凸性,将弧片段进行连接,并运用不同的技巧对弧片段进行分组,最后对分组进行拟合得到椭圆。该类方法主要问题在于一下几点,第一,弧片段的连接仅依赖于距离,容易连接错误。第二,进行分组时,需要明确的是极其难通过搜索或者优化方法将属于同一个椭圆的弧片段都分为同一组,因此最后会导致误识别。第三,该类方法未充分利用椭圆的几何性质,以及梯度信息,耗时长,鲁棒性不高。
发明内容
本发明提供一种基于弧支持线段的椭圆检测方法,其具有高鲁棒性,精确,低误识,高效的性能,能够应对复杂环境干扰(光照明暗,椭圆缺失,断续,模糊,复杂背景,大量噪声等)。
为实现上述技术目的,本发明采取具体的技术方案为,一种基于弧支持线段的椭圆检测方法,包括如下步骤:
步骤一、运用线段检测方法从原始灰度图像中提取弧支持线段的集合,弧支持线段为去除直线段的曲线边缘得到的线段;
步骤二、基于弧支持线段的连续性与凸性,对属于同一曲线边缘的弧支持线段进行鲁棒性连接,实现对弧支持线段进行分组;
步骤三、采用两种方式分别从弧支持线段的分组中提取初始椭圆,方式一:对于分组内连接的弧支持线段所跨弧度角度大于Tsa的分组直接进行椭圆拟合,Tsa为90°,从而得到若干个初始椭圆;方式二:将步骤二得到的分组按两个一对进行任意组对,对组对进行极性分析、区域限制算法和自适应内点准则验证得出有效组对,拟合有效组对得到若干个初始椭圆;其中,极性分析是要求组对的两个分组极性一致,区域限制算法要求两个分组要在彼此的弧支持方向指向的区域内,自适应内点准则要求由两个分组内每一条弧支持线段的支持内点数量要大于自身线段长度对应的像素点的数量;支持内点指的是距离初始椭圆的边界距离小于ε的边缘点,ε为2个像素,其梯度方向与初始椭圆的法线方向差值不超过α,α为22.5°;方式一与方式二得到的初始椭圆均采用表示,(x,y)i是初始椭圆ei的对称中心,(a,b)i为初始椭圆ei的长短半轴,为初始椭圆ei的倾角;通过两种方式分别从弧支持线段的分组中产生的若干个初始椭圆,共同构成初始椭圆集合,初始椭圆集合为Einit,其中Ninit为两种方式产生的初始椭圆数量总数;
步骤四、运用椭圆类聚合算法对初始椭圆集合进行聚类分析,产生候选椭圆;
步骤五、应用椭圆的几何性质,对候选椭圆进行验证,检测出椭圆。
作为本发明改进的技术方案,弧支持线段的提取方法如下:
步骤一、对原始灰度图像进行Sobel算子得到梯度图;
步骤二、在梯度图中,剔除梯度幅度小于最大梯度幅度10%的点,并依据幅度大小进行伪排序;
步骤三依伪排序在梯度图中选择种子点进行区域增长算法,得到候选区域RL,RL中整体梯度表现的方向为式一:
式中,pj属于RL中的像素点,GradAngle(pj)为pj的梯度,GradAngle(RL)为RL中整体梯度表现方向;
步骤四、计算线段候选区域RL的几何中心C,依据通过C且垂直Angle(L)的直线将RL划分为两个子区域RL 1、RL 2,再次运用式一即能估计出子区域RL 1、RL 2梯度方向,其中,L为候选区域的线段近似,Angle(L)为L的方向;这里线段近似指的是用一个矩形将该候选区域包围,然后矩形的两个端点连接成一条线段;
步骤五、若候选区域RL是弧支持线段的候选区域,则必须满足角度差Tai,Tai为2.5;且GradAngle(RL),角度变化的方向要一致,要同为顺时针或者同为逆时针,如果同为顺时针,定义区域RL产生的线段极性为负;如果同为逆时针,定义其极性为正;
步骤六、通过对比模型对候选区域RL进行验证,即能提取到弧支持线段。
作为本发明改进的技术方案,步骤二中对弧支持线段进行分组,具体包括,选取弧支持线段的集合中任意一条弧支持线段作为种子线段Ls,根据种子线段Ls的极性确定曲线边缘的凸性,进而确定种子线段Ls头部的局部邻域和尾部的局部邻域,统计局部邻域弧支持线段所对应候选区域的像素点数量,且像素点数量要求大于等于局部邻域像素点总数的由此统计出具有最大统计值对应的弧支持线段,从而进行连接,连接的弧支持线段代表一个分组。
作为本发明改进的技术方案,步骤三中对单个分组或者组队进行椭圆拟合,得到初始椭圆,具体包括如下步骤:在直接最小二乘椭圆拟合算法中,假设待拟合样本点Γ={p1,p2,p3,…pn},pi={xi,yi},则散布矩阵S=DTD,其中设计矩阵D为:
通过求解特征系统EigenSystem=S-1C中特征值,特征值为正数时所对应的广义特征向量即为拟合的椭圆,其中C是约束矩阵
作为本发明改进的技术方案,步骤三中初始椭圆的边界是运用Canny算子得到边缘图后得出的。
作为本发明改进的技术方案,步骤四中椭圆类聚合算法对初始椭圆集合进行聚类分析包括如下步骤:步骤A、令初始椭圆集合为Einit,其中, (x,y)i是初始椭圆ei的对称中心,(a,b)i为初始椭圆ei的长短半轴,为初始椭圆ei的倾角,Ninit为步骤三中方式一与方式二生产的初始椭圆数量总数;
步骤B、运用均值漂移算法对Einit的椭圆中心进行聚类,可得到n center个椭圆中心的聚类中心;n center个椭圆对称中心的聚类中心分别为 n center是椭圆对称中心的聚类中心的数量,表示第k个聚类中心;
步骤C、对Einit按照n center聚类中心的距离进行划分,也就是第k(k=1~n center)个椭圆聚类中心对应的初始椭圆子集为Point→ClusterCenter表示数据点Point最近的类簇中心为ClusterCenter;
步骤D、对每一个Ωk按照椭圆倾角方向进行聚类,得到个倾角的聚类中心于是Ωk能被划分为个椭圆子集,第个倾角聚类中心对应的椭圆子集Ωk,s
步骤E、对Ωk,s按照椭圆长短半轴进行均值漂移聚类,得到个椭圆长短半轴的聚类中心于是,初始椭圆集合Einit的聚类出来的候选椭圆集合为Ecandidate,其中k=1~n center候选椭圆集合中的椭圆个数为
作为本发明改进的技术方案,所述步骤五具体包括如下步骤,先对候选椭圆集合Ecandidate进行椭圆质量评价,然后按照评价高低进行伪排序;依次地对每个候选椭圆,由于椭圆周长能用其边缘上的支持内点进行近似,因此测量其边缘支持内点的数量与椭圆近似周长像素点的比例不小于Tni、边缘连通量的角度总共跨度大于或等于Tac,Tni为0.65,Tac为165°。
有益效果
本发明的技术方案能从原始灰度图中进行弧支持线段的提取,使得弧支持线段具备丰富的几何性质,例如整体梯度方向,可能出现椭圆方向,极性性质。
本发明提出一种在像素点统计水平上的线段连接方法,以及提出有效的区域限制的组(组内包含属于同一曲线边缘的线段)配对方法、提出高效的分层椭圆聚类算法以及运用高级的椭圆验证技术。
综上,本申请的椭圆检测算法达到能够高鲁棒性,精确,低误识,高效的性能,能够应对复杂环境干扰(光照明暗,椭圆缺失,断续,模糊,复杂背景,大量噪声等)。
附图说明
图1实施例中涉及的原始灰度图像;
图2实施例中便是提取的弧支持线段图;
图3实施例中检测到的椭圆示意图。
具体实施方式
为使本发明实施例的目的和技术方案更加清楚,下面将结合本发明实施例对本发明的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
一种基于弧支持线段的椭圆检测方法,包括以下步骤:
步骤S1,运用改进的线性复杂度的线段检测方法提取弧支持线段,并基于曲线的连续性和凸性进行线段分组;
步骤S2,运用两种方式产生初始椭圆集合。第一种方式是对具有较高显著性的分组直接进行椭圆拟合(对于分组内连接的弧支持线段所跨弧度角度大于Tsa的分组直接进行椭圆拟合,Tsa为90°),从而得到初始椭圆(这里的椭圆拟合是指对组内的线段的端点构成的点集直接进行椭圆拟合)。第二种方式是对每两个组构成的组对,进行相应的极性分析,区域限制和自适应内点准则验证。通过三个限制条件的组对构成有效组对,拟合有效组对得到初始椭圆。三个限制条件分别为:极性分析、是要求两个分组能够配对的前提是极性一致;区域限制算法、要求两个分组要在彼此的弧支持方向指向的区域内才能可能构成椭圆;自适应内点准则、要求由两个分组内每一条弧支持线段的支持内点数量要大于自身线段长度对应的像素点的数量;其中支持内点指的是距离初始椭圆(这里是用组队拟合得出的)的边界距离小于ε的边缘点,ε为2个像素,支持内点的梯度方向与初始椭圆的法线方向差值需要满足不超过α,该值为22.5°;这里,初始椭圆的边界是运用Canny算子得到边缘图后得出的;边缘图的作用一方面是为了寻找支持内点,另一方面可以通过这些支持内点进行椭圆的再次拟合和验证。
步骤S3,运用椭圆聚类算法对初始椭圆集合进行高效聚类,产生候选椭圆。
步骤S4,应用椭圆的几何性质,对候选椭圆进行验证,从而得到候选椭圆。
其中,步骤S1中的弧支持线段的提取方法如下:对原始灰度图像(如图1)进行Sobel算子得到梯度图。
在梯度图中,剔除梯度幅度小于最大梯度幅度10%的点,并依据幅度大小进行伪排序,依序在梯度图中选择种子点进行区域增长算法,得到候选区域RL
RL中整体梯度表现的方向为
其中pj属于RL中的像素点,GradAngle(pj)为pj的梯度;
计算线段候选区域RL的几何中心C,依据通过C且垂直Angle(L)的直线将RL划分为两个子区域RL 1,RL 2;其中,L为候选区域的线段近似,Angle(L)为L的方向;这里线段近似指的是用一个矩形将该候选区域包围,然后矩形的两个端点连接成一条线段;
再次运用公式(1)即可估计出子区域RL 1,RL 2梯度方向;若候选区域RL是弧支持线段的候选区域,则必须满足一定的角度差Tai,该角度为2.5°。然后通过对比模型(现有技术,参考文献LSD:AFast Line Segment Detectorwith a False Detection Control)对候选区域RL进行验证,即可提取到弧支持线段,如图2所示,便是提取的弧支持线段的示意图。
注意,由于具有旋转方向特性,本发明定义当其旋转方向为顺时针时,对应提取的弧支持线段极性为负;为逆时针时,极性为正。
其中,所述步骤S1中的线段分组算法为:首先选取弧支持线段集合中任意一条线段作为种子线段Ls,根据种子线段Ls的极性确定曲线边缘的凸性,进而确定头部和尾部的局部邻域,本实施例中该局部领域为5x5像素区域,统计局部邻域它弧支持线段的对应的候选区域的像素点数量,且数量要求大于等于局部领域所对应像素点总数的由此统计出具有最大统计值对应的线段,从而进行连接得到分组。
其中,所述步骤S2中的直接椭圆拟合方法的叠加原理如下:在直接最小二乘椭圆拟合算法中,假设待拟合样本点Γ={p1,p2,p3,…pn},pi={xi,yi},则散布矩阵S=DTD,其中设计矩阵D为
于是通过求解特征系统EigenSystem=S-1C中特征值为正数对应的广义特征向量即为拟合的椭圆,其中C是约束矩阵
假设线段Li两个端点对应的设计矩阵是D(Li),散布矩阵是S(Li),如果一个分组中有n条线段,则由这2n个端点构成的设计矩阵Df,散布矩阵Sf分别为
因此,本发明只需要计算一次所有弧支持线段的散布矩阵即可高效进行椭圆拟合计算。
其中,所述步骤S3中的初始椭圆集合的聚类算法如下:整个聚类算法分三步进行。令初始椭圆集合为Einit,其中第一,先运用均值漂移对Einit的椭圆中心进行聚类,可得到n center个椭圆中心的聚类中心为Ninit为两种方式产生的初始椭圆数量总数。于是可以对Einit按照n center聚类中心按照距离进行划分,也就是第k(k=1~n center)个椭圆聚类中心对应的初始椭圆子集为Point→ClusterCenter表示数据点Point最近的类簇中心为ClusterCenter(类簇中心)。第二,接下来,对每一个Ωk按照椭圆倾角方向进行聚类,可得到个倾角的聚类中心于是Ωk可以划分为个椭圆子集,第个倾角聚类中心对应的椭圆子集Ωk,s第三,对Ωk,s按照椭圆长短半轴进行均值漂移聚类,可以得到个椭圆长短半轴的聚类中心于是,初始椭圆集合Einit的聚类出来的候选椭圆集合为Ecandidate,其中k=1~n center 候选椭圆集合中的椭圆个数为
其中,步骤S4中,先对所述的候选椭圆集合Ecandidate进行椭圆质量评价,然后按照评价高低进行伪排序。依次地对每个候选椭圆,测量其边缘支持内点的数量与椭圆近似周长像素点的比例并要不小于Tni,该值为0.6,以及边缘连通量的角度总共跨度,且应大于或等于Tac,该值为165°。通过验证的候选椭圆,将会进行再次拟合,从而提高椭圆的精度。如图3所示,便是检测到的椭圆示意图。
以上仅为本发明的实施方式,其描述较为具体和详细,但并不能因此而理解为对本发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些均属于本发明的保护范围。

Claims (7)

1.一种基于弧支持线段的椭圆检测方法,其特征在于,包括如下步骤:
步骤一、运用线段检测方法从原始灰度图像中提取弧支持线段的集合,弧支持线段为去除直线段的曲线边缘得到的线段;
步骤二、基于弧支持线段的连续性与凸性,对属于同一曲线边缘的弧支持线段进行鲁棒性连接,实现对弧支持线段进行分组;
步骤三、采用两种方式分别从弧支持线段的分组中提取初始椭圆,方式一:对于分组内连接的弧支持线段所跨弧度角度大于Tsa的分组直接进行椭圆拟合,Tsa为90°,从而得到若干个初始椭圆;方式二:将步骤二得到的分组按两个一对进行任意组对,对组对进行极性分析、区域限制算法和自适应内点准则验证得出有效组对,拟合有效组对得到若干个初始椭圆;其中,极性分析是要求组对的两个分组极性一致,区域限制算法要求两个分组要在彼此的弧支持方向指向的区域内,自适应内点准则要求由两个分组内每一条弧支持线段的支持内点数量要大于自身线段长度对应的像素点的数量;支持内点指的是距离初始椭圆的边界距离小于ε的边缘点,ε为2个像素,其梯度方向与初始椭圆的法线方向差值不超过α,α为22.5°;方式一与方式二得到的初始椭圆均采用表示,(x,y)i是初始椭圆ei的对称中心,(a,b)i为初始椭圆ei的长短半轴,为初始椭圆ei的倾角;通过两种方式分别从弧支持线段的分组中产生的若干个初始椭圆,共同构成初始椭圆集合,初始椭圆集合为Einit,其中Ninit为两种方式产生的初始椭圆数量总数;
步骤四、运用椭圆类聚合算法对初始椭圆集合进行聚类分析,产生候选椭圆;
步骤五、应用椭圆的几何性质,对候选椭圆进行验证,检测出椭圆。
2.根据权利要求1所述的一种基于弧支持线段的椭圆检测方法,其特征在于,弧支持线段的提取方法如下:
步骤一、对原始灰度图像进行Sobel算子得到梯度图;
步骤二、在梯度图中,剔除梯度幅度小于最大梯度幅度10%的点,并依据幅度大小进行伪排序;
步骤三、依伪排序在梯度图中选择种子点进行区域增长算法,得到候选区域RL,RL中整体梯度表现的方向为式一:
式中,pj属于RL中的像素点,GradAngle(pj)为pj的梯度,GradAngle(RL)为RL中整体梯度表现方向;
步骤四、计算线段候选区域RL的几何中心C,依据通过C且垂直Angle(L)的直线将RL划分为两个子区域RL 1、RL 2,再次运用式一即能估计出子区域RL 1、RL 2梯度方向,其中,L为候选区域的线段近似,Angle(L)为L的方向;这里线段近似指的是用一个矩形将该候选区域包围,然后矩形的两个端点连接成一条线段;
步骤五、若候选区域RL是弧支持线段的候选区域,则必须满足角度差Tai,Tai为2.5;且GradAngle(RL),角度变化的方向要一致,要同为顺时针或者同为逆时针,如果同为顺时针,定义区域RL产生的线段极性为负;如果同为逆时针,定义其极性为正;
步骤六、通过对比模型对候选区域RL进行验证,即能提取到弧支持线段。
3.根据权利要求1所述的一种基于弧支持线段的椭圆检测方法,其特征在于,步骤二中对弧支持线段进行分组,具体包括,选取弧支持线段的集合中任意一条弧支持线段作为种子线段Ls,根据种子线段Ls的极性确定曲线边缘的凸性,进而确定种子线段Ls头部的局部邻域和尾部的局部邻域,统计局部邻域弧支持线段所对应候选区域的像素点数量,且像素点数量要求大于等于局部邻域像素点总数的由此统计出具有最大统计值对应的弧支持线段,从而进行连接,连接的弧支持线段代表一个分组。
4.根据权利要求1所述的一种基于弧支持线段的椭圆检测方法,其特征在于,步骤三中对单个分组或者组队进行椭圆拟合,得到初始椭圆,具体包括如下步骤:在直接最小二乘椭圆拟合算法中,假设待拟合样本点Γ={p1,p2,p3,...pn},pi={xi,yi},则散布矩阵S=DTD,其中设计矩阵D为:
通过求解特征系统EigenSystem=S-1C中特征值,特征值为正数时所对应的广义特征向量即为拟合的椭圆,其中C是约束矩阵
5.根据权利要求1所述的一种基于弧支持线段的椭圆检测方法,其特征在于,步骤三中初始椭圆的边界是运用Canny算子得到边缘图后得出的。
6.根据权利要求1所述的一种基于弧支持线段的椭圆检测方法,其特征在于,步骤四中椭圆类聚合算法对初始椭圆集合进行聚类分析包括如下步骤:
步骤A、运用均值漂移算法对Einit的椭圆中心进行聚类,可得到ncenter个椭圆中心的聚类中心;ncenter个椭圆对称中心的聚类中心分别为 ncenter是椭圆对称中心的聚类中心的数量,表示第k个聚类中心;
步骤B、对Einit按照ncenter聚类中心的距离进行划分,也就是第k个椭圆聚类中心对应的初始椭圆子集为其中k=1~ncenter;Point→ClusterCenter表示数据点Point最近的类簇中心为ClusterCenter;
步骤C、对每一个Ωk按照椭圆倾角方向进行聚类,得到个倾角的聚类中心于是Ωk能被划分为个椭圆子集,第s个倾角聚类中心对应的椭圆子集Ωk,s其中
步骤D、对Ωk,s按照椭圆长短半轴进行均值漂移聚类,得到个椭圆长短半轴的聚类中心于是,初始椭圆集合Einit的聚类出来的候选椭圆集合为Ecandidate,其中 候选椭圆集合中的椭圆个数为
7.根据权利要求1所述的一种基于弧支持线段的椭圆检测方法,其特征在于,所述步骤五具体包括如下步骤,先对候选椭圆集合Ecandidate进行椭圆质量评价,然后按照评价高低进行伪排序;依次地对每个候选椭圆,由于椭圆周长能用其边缘上的支持内点进行近似,因此测量其边缘支持内点的数量与椭圆近似周长像素点的比例不小于Tni、边缘连通量的角度总共跨度大于或等于Tac,Tni为0.65,Tac为165°。
CN201710390288.1A 2017-05-27 2017-05-27 一种基于弧支持线段的椭圆检测方法 Active CN107301638B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710390288.1A CN107301638B (zh) 2017-05-27 2017-05-27 一种基于弧支持线段的椭圆检测方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710390288.1A CN107301638B (zh) 2017-05-27 2017-05-27 一种基于弧支持线段的椭圆检测方法

Publications (2)

Publication Number Publication Date
CN107301638A CN107301638A (zh) 2017-10-27
CN107301638B true CN107301638B (zh) 2019-09-10

Family

ID=60137187

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710390288.1A Active CN107301638B (zh) 2017-05-27 2017-05-27 一种基于弧支持线段的椭圆检测方法

Country Status (1)

Country Link
CN (1) CN107301638B (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108492293B (zh) * 2018-03-22 2021-11-26 东南大学 一种基于图像的汽车轮毂钢套检测方法
CN109409182B (zh) * 2018-07-17 2021-03-05 宁波华仪宁创智能科技有限公司 基于图像处理的胚胎自动识别方法
CN110276324B (zh) * 2019-06-27 2021-06-22 北京万里红科技股份有限公司 一种虹膜图像中确定瞳孔椭圆的方法
CN110530863B (zh) * 2019-08-27 2022-04-05 南京末梢信息技术有限公司 一种汽车轮毂混包检测装置及方法
CN111563925B (zh) * 2020-05-07 2023-08-11 大连理工大学 一种基于广义Pascal映射的椭圆检测加速方法
CN111724378A (zh) * 2020-06-24 2020-09-29 武汉互创联合科技有限公司 一种显微图像细胞计数与姿态识别方法及系统
CN111724379B (zh) * 2020-06-24 2024-05-24 武汉互创联合科技有限公司 基于组合视图的显微图像细胞计数与姿态识别方法及系统
CN112967281B (zh) * 2021-04-07 2022-11-08 洛阳伟信电子科技有限公司 一种基于弧支持生长的椭圆检测算法
CN116503387B (zh) * 2023-06-25 2024-03-26 聚时科技(深圳)有限公司 图像检测方法、装置、设备、系统及可读存储介质
CN118212205B (zh) * 2024-03-27 2024-07-26 海微智造技术(武汉)有限公司 一种车载屏幕结构件椭圆特征检测的方法、设备及介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107117A (ja) * 2004-10-05 2006-04-20 Matsushita Electric Ind Co Ltd 楕円検出装置および楕円検出方法
CN104239870A (zh) * 2014-09-25 2014-12-24 哈尔滨工业大学 一种基于曲线弧分割的椭圆检测方法
CN106372642A (zh) * 2016-08-31 2017-02-01 北京航空航天大学 基于轮廓曲线分割弧合并与组合的椭圆快速检测方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006107117A (ja) * 2004-10-05 2006-04-20 Matsushita Electric Ind Co Ltd 楕円検出装置および楕円検出方法
CN104239870A (zh) * 2014-09-25 2014-12-24 哈尔滨工业大学 一种基于曲线弧分割的椭圆检测方法
CN106372642A (zh) * 2016-08-31 2017-02-01 北京航空航天大学 基于轮廓曲线分割弧合并与组合的椭圆快速检测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
李楠楠等.《基于边界曲线弧分割的多椭圆检测》.《计算机应用》.2011,第31卷(第7期),1853-1855.

Also Published As

Publication number Publication date
CN107301638A (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
CN107301638B (zh) 一种基于弧支持线段的椭圆检测方法
CN110807781B (zh) 一种保留细节与边界特征的点云精简方法
CN106683076B (zh) 基于纹理特征聚类的机车轮对踏面损伤检测的方法
CN105701483B (zh) 一种融合多光谱遥感数据和夜间灯光遥感数据的城市边界提取方法
CN103034863B (zh) 一种结合核Fisher与多尺度提取的遥感影像道路获取方法
CN103793708B (zh) 一种基于仿射校正的多尺度车牌精准定位方法
CN104700062B (zh) 一种识别二维码的方法及设备
CN106296638A (zh) 显著性信息取得装置以及显著性信息取得方法
CN108121985A (zh) 一种基于机器视觉的双指针仪表读数方法
CN106023298A (zh) 基于局部泊松曲面重建的点云刚性配准方法
CN103512558B (zh) 一种锥形目标双目视频位姿测量方法及靶标图案
CN107798696A (zh) 一种基于保局pca的三维点云配准方法
CN104680161A (zh) 一种身份证数字识别方法
CN104573707B (zh) 一种基于多特征融合的车牌汉字识别方法
CN105335725A (zh) 一种基于特征融合的步态识别身份认证方法
CN103940708B (zh) 一种钢材全形态晶粒的快速测量、精细分类方法
CN104123554B (zh) 基于mmtd的sift图像特征提取方法
CN106709500A (zh) 一种图像特征匹配的方法
CN104537342B (zh) 一种结合山脊边界检测及霍夫变换的快速车道线检测方法
CN105956544B (zh) 一种基于结构指数特征的遥感影像道路交叉口提取的方法
Aldana-Iuit et al. In the saddle: chasing fast and repeatable features
CN106485252A (zh) 图像配准试验点阵靶标图像特征点识别方法
CN102446356A (zh) 一种获取均匀分布匹配点的遥感影像并行自适应匹配方法
CN103733322A (zh) 提供裂纹检测用预测模型的方法和检测半导体结构上的裂纹的方法
Shah et al. A novel 3D vorticity based approach for automatic registration of low resolution range images

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant