CN107300809B - Flexible LCD - Google Patents
Flexible LCD Download PDFInfo
- Publication number
- CN107300809B CN107300809B CN201710541529.8A CN201710541529A CN107300809B CN 107300809 B CN107300809 B CN 107300809B CN 201710541529 A CN201710541529 A CN 201710541529A CN 107300809 B CN107300809 B CN 107300809B
- Authority
- CN
- China
- Prior art keywords
- thickness direction
- retardation value
- liquid crystal
- direction retardation
- flexible substrate
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000004973 liquid crystal related substance Substances 0.000 claims abstract description 135
- 239000000758 substrate Substances 0.000 claims abstract description 133
- 230000003287 optical effect Effects 0.000 claims description 64
- 239000004642 Polyimide Substances 0.000 claims description 12
- 229920001721 polyimide Polymers 0.000 claims description 12
- 230000005684 electric field Effects 0.000 claims description 8
- 239000010408 film Substances 0.000 description 55
- 239000011521 glass Substances 0.000 description 9
- 238000010586 diagram Methods 0.000 description 4
- 239000000463 material Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 239000004033 plastic Substances 0.000 description 3
- 229920003023 plastic Polymers 0.000 description 3
- 238000000576 coating method Methods 0.000 description 2
- 239000011159 matrix material Substances 0.000 description 2
- 238000002834 transmittance Methods 0.000 description 2
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 239000004962 Polyamide-imide Substances 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000005038 ethylene vinyl acetate Substances 0.000 description 1
- 229920001477 hydrophilic polymer Polymers 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- -1 polyethylene Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000010409 thin film Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/1335—Structural association of cells with optical devices, e.g. polarisers or reflectors
- G02F1/13363—Birefringent elements, e.g. for optical compensation
-
- G—PHYSICS
- G02—OPTICS
- G02F—OPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
- G02F1/00—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
- G02F1/01—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour
- G02F1/13—Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour based on liquid crystals, e.g. single liquid crystal display cells
- G02F1/133—Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
- G02F1/1333—Constructional arrangements; Manufacturing methods
- G02F1/133305—Flexible substrates, e.g. plastics, organic film
Landscapes
- Physics & Mathematics (AREA)
- Nonlinear Science (AREA)
- Mathematical Physics (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Liquid Crystal (AREA)
- Polarising Elements (AREA)
Abstract
本发明实施例是关于一种可挠式液晶显示器,其包括液晶层;以及夹设(sandwich)上述液晶层的第一可挠式基板及第二可挠式基板。上述第一可挠式基板具有第一厚度方向位相差值,第二可挠式基板具有一第二厚度方向位相差值,且第一厚度方向位相差值及第二厚度方向位相差值的总和为20nm至220nm。上述可挠式液晶显示器是运行于横向电场切换(in‑plane switching,IPS)模式或是边界电场切换(fringe field switching,FFS)模式。
Embodiments of the present invention relate to a flexible liquid crystal display, which includes a liquid crystal layer; and a first flexible substrate and a second flexible substrate sandwiching the liquid crystal layer. The first flexible substrate has a first thickness direction phase difference value, the second flexible substrate has a second thickness direction phase difference value, and the sum of the first thickness direction phase difference value and the second thickness direction phase difference value is is 20nm to 220nm. The above-mentioned flexible liquid crystal display operates in an in-plane switching (IPS) mode or a fringe field switching (FFS) mode.
Description
技术领域technical field
本发明实施例是有关于一种液晶显示器,且特别有关于一种可挠式液晶显示器。Embodiments of the present invention relate to a liquid crystal display, and in particular, to a flexible liquid crystal display.
背景技术Background technique
随着携带式显示器被广泛地应用,针对可挠式显示器的开发也越趋积极。目前可挠式显示器的开发主要以可挠式有机发光二极管(OLED)显示器为主,然而其制造成本较高。With the widespread use of portable displays, the development of flexible displays has become more active. At present, the development of flexible displays is mainly based on flexible organic light emitting diode (OLED) displays, but the manufacturing cost thereof is relatively high.
另一方面,液晶显示器由于成本较低且耐湿性较佳,因此可挠式液晶显示器也成为各家厂商努力发展的对象。为了达到“可挠曲”的要求,一般是以塑胶基板取代传统的玻璃基板。然而,塑胶基板能否与液晶层的光学性质搭配亦为影响显示效果的重要关键。On the other hand, due to the low cost and good moisture resistance of liquid crystal displays, flexible liquid crystal displays have also become the object of development by various manufacturers. In order to meet the requirement of "flexibility", the traditional glass substrate is generally replaced by a plastic substrate. However, whether the plastic substrate can be matched with the optical properties of the liquid crystal layer is also an important key that affects the display effect.
因此,如何搭配液晶与塑胶基板的光学特性以提高整体的光学表现为可挠式液晶显示器发展上一重要课题。Therefore, how to match the optical properties of the liquid crystal and the plastic substrate to improve the overall optical performance is an important issue in the development of the flexible liquid crystal display.
发明内容SUMMARY OF THE INVENTION
本发明实施例提供一种可挠式液晶显示器,包括:液晶层;以及夹设上述液晶层的第一可挠式基板及第二可挠式基板。上述第一可挠式基板具有第一厚度方向位相差值,第二可挠式基板具有第二厚度方向位相差值,且第一厚度方向位相差值及第二厚度方向位相差值的总和为20nm至220nm。上述可挠式液晶显示器是运行于横向电场切换(in-planeswitching,IPS)模式或是边界电场切换(fringe field switching,FFS)模式。An embodiment of the present invention provides a flexible liquid crystal display, including: a liquid crystal layer; and a first flexible substrate and a second flexible substrate sandwiching the liquid crystal layer. The first flexible substrate has a first thickness direction retardation value, the second flexible substrate has a second thickness direction retardation value, and the sum of the first thickness direction retardation value and the second thickness direction retardation value is 20nm to 220nm. The above-mentioned flexible liquid crystal display operates in an in-plane switching (IPS) mode or a fringe field switching (FFS) mode.
本发明实施例亦提供一种可挠式液晶显示器,包括:液晶层;夹设上述液晶层的第一可挠式基板及第二可挠式基板;以及第一光学补偿膜,设置于第一可挠式基板上。上述第一可挠式基板具有第一厚度方向位相差值,第二可挠式基板具有第二厚度方向位相差值,第一光学补偿膜具有第三厚度方向位相差值,且第一厚度方向位相差值、第二厚度方向位相差值及第三厚度方向位相差值的总和为20nm至220nm。上述可挠式液晶显示器是运行于横向电场切换(in-plane switching,IPS)模式或是边界电场切换(fringe fieldswitching,FFS)模式。An embodiment of the present invention also provides a flexible liquid crystal display, including: a liquid crystal layer; a first flexible substrate and a second flexible substrate sandwiching the liquid crystal layer; and a first optical compensation film disposed on the first on a flexible substrate. The first flexible substrate has a first thickness direction retardation value, the second flexible substrate has a second thickness direction retardation value, the first optical compensation film has a third thickness direction retardation value, and the first thickness direction retardation value is The sum of the retardation value, the second thickness direction retardation value, and the third thickness direction retardation value is 20 nm to 220 nm. The above-mentioned flexible liquid crystal display operates in an in-plane switching (IPS) mode or a fringe field switching (FFS) mode.
本发明实施例另提供一种可挠式液晶显示器,包括:液晶层;夹设上述液晶层的第一可挠式基板及第二可挠式基板;第一光学补偿膜,设置于第一可挠式基板上;以及第二光学补偿膜,设置于第二可挠式基板上。上述第一可挠式基板具有第一厚度方向位相差值,第二可挠式基板具有第二厚度方向位相差值,第一光学补偿膜具有第三厚度方向位相差值,第二光学补偿膜具有第四厚度方向位相差值,且第一厚度方向位相差值、第二厚度方向位相差值、第三厚度方向位相差值及第四厚度方向位相差值的总和为20nm至220nm。上述可挠式液晶显示器是运行于横向电场切换(in-plane switching,IPS)模式或是边界电场切换(fringe field switching,FFS)模式。An embodiment of the present invention further provides a flexible liquid crystal display, comprising: a liquid crystal layer; a first flexible substrate and a second flexible substrate sandwiching the liquid crystal layer; a first optical compensation film disposed on the first flexible substrate on the flexible substrate; and a second optical compensation film disposed on the second flexible substrate. The above-mentioned first flexible substrate has a first thickness direction retardation value, the second flexible substrate has a second thickness direction retardation value, the first optical compensation film has a third thickness direction retardation value, and the second optical compensation film has a thickness direction retardation value. There is a fourth thickness direction retardation value, and the sum of the first thickness direction retardation value, the second thickness direction retardation value, the third thickness direction retardation value and the fourth thickness direction retardation value is 20 nm to 220 nm. The above-mentioned flexible liquid crystal display operates in an in-plane switching (IPS) mode or a fringe field switching (FFS) mode.
附图说明Description of drawings
以下将配合所附附图详述本发明的实施例。应注意的是,依据在业界的标准做法,各种特征并未按照比例绘制且仅用以说明例示。事实上,可能任意地放大或缩小元件的尺寸,以清楚地表现出本发明实施例的特征。Embodiments of the present invention will be described in detail below with reference to the accompanying drawings. It should be noted that, in accordance with standard practice in the industry, the various features are not drawn to scale and are illustrative only. In fact, the dimensions of elements may be arbitrarily enlarged or reduced to clearly characterize the embodiments of the invention.
图1根据本发明一些实施例绘示出在液晶层的位相差值(Delta_nd)为350nm时,设置于液晶层一侧的膜层的厚度方向位相差值的总和与IPS/FFS液晶显示器的漏光量之间的关系;1 shows the sum of the retardation values in the thickness direction of the films disposed on one side of the liquid crystal layer and the light leakage of the IPS/FFS liquid crystal display when the retardation value (Delta_nd) of the liquid crystal layer is 350 nm according to some embodiments of the present invention relationship between quantities;
图2根据本发明第一实施例绘示出可挠式液晶显示器10的剖面图;2 shows a cross-sectional view of the flexible
图3根据本发明第二实施例绘示出可挠式液晶显示器20的剖面图;3 shows a cross-sectional view of the flexible
图4根据本发明第三实施例绘示出可挠式液晶显示器30的剖面图;4 illustrates a cross-sectional view of the flexible
图5A绘示出使用玻璃基板的IPS/FFS液晶显示器的各视角的漏光量分布图;5A is a diagram illustrating the distribution of light leakage at various viewing angles of an IPS/FFS liquid crystal display using a glass substrate;
图5B是根据本发明的实施例,绘示出使用聚亚酰胺基板的IPS/FFS液晶显示器的各视角的漏光量分布图;5B is a diagram illustrating the light leakage distribution at each viewing angle of an IPS/FFS liquid crystal display using a polyimide substrate according to an embodiment of the present invention;
图6A绘示出使用玻璃基板的IPS/FFS液晶显示器的各视角的漏光量分布图;6A is a diagram illustrating the distribution of light leakage at various viewing angles of an IPS/FFS liquid crystal display using a glass substrate;
图6B是根据本发明的实施例,绘示出使用聚亚酰胺基板以及光学补偿模的IPS/FFS液晶显示器的各视角的漏光量分布图。FIG. 6B is a diagram illustrating the distribution of light leakage at various viewing angles of an IPS/FFS liquid crystal display using a polyimide substrate and an optical compensation mode according to an embodiment of the present invention.
【符号说明】【Symbol Description】
10、20、30~可挠式液晶显示器10, 20, 30~Flexible LCD
100~液晶层100~Liquid crystal layer
100’~液晶显示单元100'~LCD display unit
102~第一可挠式基板102~The first flexible substrate
104~第二可挠式基板104~Second flexible substrate
106~第一偏光板106~First polarizer
108~第二偏光板108~Second polarizer
200~第一光学补偿膜200~The first optical compensation film
300~第二光学补偿膜300~Second Optical Compensation Film
具体实施方式Detailed ways
以下公开许多不同的实施方法或是例子来实行本发明的不同特征,以下描述具体的元件及其排列的实施例以阐述本发明。当然这些实施例仅用以例示,且不该以此限定本发明的范围。例如,在说明书中提到第一元件形成于第二元件之上,其包括第一元件与第二元件是直接接触的实施例,另外也包括于第一元件与第二元件之间另外有其他元件的实施例,亦即,第一元件与第二元件并非直接接触。此外,在不同实施例中可能使用重复的标号或标示,这些重复仅为了简单清楚地叙述本发明实施例,不代表所讨论的不同实施例及/或结构之间有特定的关系。A number of different implementations or examples are disclosed below for carrying out the various features of the invention, and examples of specific elements and arrangements thereof are described below to illustrate the invention. Of course, these examples are only for illustration, and should not limit the scope of the present invention. For example, it is mentioned in the specification that the first element is formed on the second element, which includes an embodiment in which the first element and the second element are in direct contact, and also includes other elements between the first element and the second element. Embodiments of the elements, ie the first element and the second element are not in direct contact. In addition, repeated reference numerals or symbols may be used in different embodiments, and these repetitions are only for the purpose of simply and clearly describing the embodiments of the present invention, and do not represent a specific relationship between the different embodiments and/or structures discussed.
此外,其中可能用到与空间相关用词,例如“在…下方”、“下方”、“较低的”、“上方”、“较高的”及类似的用词,这些空间相关用词是为了便于描述图示中一个(些)元件或特征与另一个(些)元件或特征之间的关系,这些空间相关用词包括使用中或操作中的装置的不同方位,以及附图中所描述的方位。装置可能被转向不同方位(旋转90度或其他方位),则其中使用的空间相关形容词也可相同地照着解释。In addition, where spatially relative terms such as "below", "below", "lower", "above", "higher" and similar terms may be used, these spatially relative terms are For convenience in describing the relationship between one element or feature(s) and another element or feature(s) in the figures, these spatially relative terms include different orientations of the device in use or operation, as well as the descriptions in the figures. orientation. The device may be turned in a different orientation (rotated 90 degrees or otherwise) and the spatially relative adjectives used therein are to be interpreted in the same way.
另外,本发明实施例关于光学性质的用语的定义如下:In addition, the definitions of terms related to optical properties in the embodiments of the present invention are as follows:
(1)nx为膜层的面内折射率最大的方向(即迟相轴方向)上的折射率,ny为膜层的面内与迟相轴方向垂直的方向(即进相轴方向)上的折射率,nz为膜层厚度方向的折射率,d为膜层的厚度。(1) n x is the refractive index in the direction of the maximum in-plane refractive index of the film layer (that is, the direction of the slow axis), and ny is the direction perpendicular to the direction of the slow axis in the film layer (that is, the direction of the advancing axis) ), n z is the refractive index in the thickness direction of the film, and d is the thickness of the film.
(2)膜面内位相差值R0是定义为(nx-ny)×d。一般而言,膜面内位相差值是使用波长590nm(纳米)的光来测定。(2) The film in-plane retardation value R0 is defined as (n x -ny )×d. In general, the film in-plane retardation value is measured using light having a wavelength of 590 nm (nanometer).
(3)厚度方向位相差值Rth是定义为{[(nx+ny)/2]-nz}×d。一般而言,厚度方向位相差值是使用波长590nm的光来测定。(3) The thickness direction retardation value Rth is defined as {[(n x + ny )/2]-n z }×d. In general, the thickness direction retardation value is measured using light having a wavelength of 590 nm.
一般而言,横向电场切换(In-Plane-Switching,IPS)液晶显示面板包括一对基板以及设置于上述基板之间的液晶层,且液晶层里的液晶分子平行于基板排列。其中一个基板为晶体管阵列基板且包含多个像素电极和共电压电极,其中像素电极和共电压电极位于共平面上且交叉排列。另外,边缘电场切换(Fringe-Field Switching,FFS)液晶显示面板同样包括一对基板以及设置于上述基板之间的液晶层,且液晶层里的液晶分子平行于基板排列。与IPS不同的是,FFS的晶体管阵列基板里的像素电极和共电压电极非位于共平面上。虽然IPS和FFS结构有些微不同,然操作模式却极为类似。当给予对应的信号于像素电极时,像素电极和共电压电极形成电场,液晶分子可透过电场驱动呈水平扭转(平行于基板)使得部分光线可通过液晶平面。由于液晶分子呈水平扭转,因此IPS或FFS液晶显示面板能得到较佳的视角(例如:上下左右178度的视角)。然而,也由于IPS/FFS液晶显示面板的液晶分子呈水平排列,光线的穿透率也较不佳。为了有更好的展示亮色就要增加背光的发光度,进而导致漏光的问题,使得IPS/FFS液晶显示面板的对比不佳。Generally speaking, an In-Plane-Switching (IPS) liquid crystal display panel includes a pair of substrates and a liquid crystal layer disposed between the substrates, and the liquid crystal molecules in the liquid crystal layer are arranged parallel to the substrates. One of the substrates is a transistor array substrate and includes a plurality of pixel electrodes and common voltage electrodes, wherein the pixel electrodes and the common voltage electrodes are located on a coplanar and arranged in a cross. In addition, a fringe-field switching (FFS) liquid crystal display panel also includes a pair of substrates and a liquid crystal layer disposed between the substrates, and the liquid crystal molecules in the liquid crystal layer are arranged parallel to the substrates. Different from IPS, the pixel electrode and common voltage electrode in the transistor array substrate of FFS are not located on the same plane. Although the IPS and FFS structures are slightly different, the modes of operation are very similar. When a corresponding signal is given to the pixel electrode, the pixel electrode and the common voltage electrode form an electric field, and the liquid crystal molecules can be driven by the electric field to be horizontally twisted (parallel to the substrate) so that part of the light can pass through the liquid crystal plane. Since the liquid crystal molecules are horizontally twisted, the IPS or FFS liquid crystal display panel can obtain a better viewing angle (eg, a viewing angle of 178 degrees up and down, left and right). However, because the liquid crystal molecules of the IPS/FFS liquid crystal display panel are arranged horizontally, the transmittance of light is also poor. In order to have a better display of bright colors, it is necessary to increase the luminosity of the backlight, which leads to the problem of light leakage, which makes the contrast of the IPS/FFS LCD panel poor.
据此,本发明提供一种用于IPS/FFS模式的液晶显示器的结构,特别是用在可挠式液晶显示器,使得其除了具有视角佳的特性外,还具有低漏光高对比的特性。Accordingly, the present invention provides a structure for an IPS/FFS mode liquid crystal display, especially for a flexible liquid crystal display, which not only has the characteristics of good viewing angle, but also has the characteristics of low light leakage and high contrast.
请参照图1,根据本发明一些实施例,其绘示出在液晶层的位相差值(Delta_nd)为350nm时,设置于液晶层一侧的膜层的厚度方向位相差值的总和与IPS/FFS液晶显示器的漏光量之间的关系。由图1可以清楚地看出,在设置于液晶层一侧的膜层的厚度方向位相差值的总和为10nm至110nm(较佳为40nm至80nm)时,FFS/IPS显示器可具有较佳的光学表现。换言之,若设置于液晶层一侧的膜层的厚度方向位相差值的总和可控制在10nm至110nm(较佳为40nm至80nm)时,FFS/IPS显示器的漏光量可控制在0.006%以下(较佳为0.005%以下,更佳为0.004%以下),因此可改善FFS/IPS显示器在各视角的对比度。Please refer to FIG. 1 , according to some embodiments of the present invention, when the retardation value (Delta_nd) of the liquid crystal layer is 350 nm, the sum of the retardation value in the thickness direction of the film layer disposed on one side of the liquid crystal layer and IPS/ The relationship between the light leakage amount of the FFS liquid crystal display. It can be clearly seen from FIG. 1 that when the sum of the retardation values in the thickness direction of the film layers disposed on one side of the liquid crystal layer is 10 nm to 110 nm (preferably 40 nm to 80 nm), the FFS/IPS display can have better performance. optical performance. In other words, if the sum of the retardation values in the thickness direction of the films disposed on one side of the liquid crystal layer can be controlled within 10 nm to 110 nm (preferably 40 nm to 80 nm), the light leakage of the FFS/IPS display can be controlled below 0.006% ( Preferably it is 0.005% or less, more preferably 0.004% or less), so the contrast ratio of the FFS/IPS display at each viewing angle can be improved.
【第一实施例】[First Embodiment]
本实施例是根据上述图1的结果搭配可挠式基板与液晶层的位相差值,以使可挠式液晶显示器可具有良好的光学表现。In this embodiment, according to the result of FIG. 1 , the phase difference between the flexible substrate and the liquid crystal layer is matched, so that the flexible liquid crystal display can have good optical performance.
请参照图2,其绘示出本实施例的可挠式液晶显示器10,其包括液晶显示单元100’、第一偏光板106及第二偏光板108,其中液晶显示单元100’包括液晶层100、第一可挠式基板102及第二可挠式基板104。于本实施例中,可挠式液晶显示器10操作于IPS模式或是FFS模式。换言之,液晶层100里的液晶分子与第一可挠式基板102及第二可挠式基板104呈水平排列,且像素电极和共电压电极(未绘于附图)位于液晶层100的同一侧(亦即,像素电极和共电压电极共同位于第一可挠式基板102上或是共同位于第二可挠式基板104上)。Please refer to FIG. 2 , which illustrates the flexible
在一些实施例中,液晶层100的位相差值(Delta_nd)可为310nm至370nm,其中液晶层100的折射率差Δn可介于约0.09和0.12之间。In some embodiments, the phase difference value (Delta_nd) of the
请继续参照图2,第一可挠式基板102及第二可挠式基板104是夹设(sandwich)液晶层100。在一些实施例中,第一可挠式基板102及第二可挠式基板104是各自与液晶层100直接接触。Please continue to refer to FIG. 2 , the first
举例来说,第一可挠式基板102可为主动矩阵基板,其设有控制液晶的电光学特性的开关元件(例如:薄膜晶体管),以及对上述开关元件供给栅极信号的扫描线与供给源极信号的信号线,第二可挠式基板104可为彩色滤光片基板,其设有彩色滤光片。然而,上述彩色滤光片亦可设置于主动矩阵基板。For example, the first
举例而言,第一可挠式基板102及第二可挠式基板104可由聚亚酰胺(polyimide,简称PI)形成,不同于传统的玻璃基板,以聚亚酰胺所形成的基板因高分子结构及制程条件等影响,其具有光学异向的特性,因而产生光学位相差值,因此在与液晶层一起使用时,须考虑其与液晶层的光学性质的搭配以获得较佳的光学表现。举例来说,上述由聚亚酰胺所形成的基板102及104各自可具有适当的光学异向性,例如nx=ny>nz。另外,第一可挠式基板102及第二可挠式基板104的可见光透光率各自可大于90%(例如90.99%至99.99%)。此外,上述由聚亚酰胺所形成的基板102及104具有可挠曲的特性,而可满足可挠式液晶显示器10可挠曲的需求。举例而言,可于玻璃等基板涂布聚亚酰胺材料,并于成膜之后取下作为第一可挠式基板102及第二可挠式基板104。For example, the first
第一可挠式基板102具有第一厚度方向位相差值R1,第二可挠式基板104具有第二厚度方向位相差值R2,根据图1所呈现的结果,为配合位相差值为310nm至370nm的液晶层100,第一厚度方向位相差值及第二厚度方向位相差值的总和R1+R2可为20nm至220nm,较佳为80nm至160nm,而使得可挠式液晶显示器10具有较低的漏光量及较佳的光学表现(例如:高对比度)。在一些实施例中,第一可挠式基板102及第二可挠式基板104的膜面内位相差值各自可为0nm。于一些实施例中,第一可挠式基板102及第二可挠式基板104中至少一者的厚度可为1μm至25μm,较佳为5μm至20μm,借此让第一厚度方向位相差值R1及第二厚度方向位相差值R2至少一者控制在10nm至110nm,较佳为40nm至80nm。应注意的是,第一厚度方向位相差值R1及第二厚度方向位相差值R2可为相同或不同。借此,操作于IPS模式或FFS模式的可挠式液晶显示器10的漏光量可控制在0.006%以下(较佳为0.005%以下,更佳为0.004%以下),让在各视角的对比度得以提升。The first
请参照图5A及图5B,其各自绘示出使用玻璃基板的IPS/FFS液晶显示器、以及本实施例使用聚亚酰胺基板(例如:R1+R2=120nm)的IPS/FFS液晶显示器两者的各视角的漏光量,其中区块R代表漏光量较大的部分(漏光量大于0.006%),LV表示整个区域的最大漏光量。由图5A及图5B可以清楚地看出,第一可挠式基板102的第一厚度方向位相差值R1和第二可挠式基板104的第二厚度方向位相差值R2的总和R1+R2在120nm时,相较于玻璃基板的液晶显示器,各视角的漏光量都有明显地减少,其中整个区域的最大漏光量从0.0071%降低至0.0045%。Please refer to FIG. 5A and FIG. 5B , which respectively illustrate the IPS/FFS liquid crystal display using a glass substrate and the IPS/FFS liquid crystal display using a polyimide substrate (eg, R1+R2=120 nm) in this embodiment. The amount of light leakage at each viewing angle, where block R represents the part with a larger amount of light leakage (the amount of light leakage is greater than 0.006%), and LV represents the maximum amount of light leakage in the entire area. It can be clearly seen from FIG. 5A and FIG. 5B , the sum R1+R2 of the first thickness direction retardation value R1 of the first
请继续参照图2,第一偏光板106及第二偏光板108是夹设第一可挠式基板102、第二可挠式基板104及液晶层100。在一些实施例中,第一偏光板106是与第一可挠式基板102直接接触且第二偏光板108是与第二可挠式基板104直接接触而无其他膜层介于其间。第一偏光板106及第二偏光板108各自可具有适当的厚度。第一偏光板106及第二偏光板108各自可包括吸附碘或二色性染料后经单轴延伸的亲水性高分子膜,例如:聚乙烯醇系膜、部分二甲氧甲烷化聚乙烯醇系膜、乙烯-乙酸乙烯酯共聚物系部分皂化膜、上述的组合或其他适当的材料。Please continue to refer to FIG. 2 , the
综合上述,本实施例是使得第一可挠式基板102与第二可挠式基板104具有适当的厚度方向位相差值(例如:两者的厚度方向位相差值的总和为20nm至220nm,较佳为80nm至160nm),使其与位相差值为310nm至370nm的液晶层100搭配使用时可具有较佳的光学表现。To sum up the above, in this embodiment, the first
【第二实施例】[Second Embodiment]
请参照图3,其绘示出本实施例的可挠式液晶显示器20,其与第一实施例的可挠式液晶显示器10的差异在于可挠式液晶显示器20的第一可挠式基板102与第一偏光板106之间更设置有第一光学补偿膜200。另外,可挠式液晶显示器20是适当地搭配光学补偿膜200、第一可挠式基板102、第二可挠式基板104及液晶层的位相差值而可具有良好的光学表现。Please refer to FIG. 3 , which illustrates the flexible
上述第一光学补偿膜200可具有适当的光学异向性,例如nx=ny<nz,而可与第一基板102及第二基板104(其光学异向性可为nx=ny>nz)相互搭配而得到适当的厚度方向位相差值的总和,因此可增加膜层设计的弹性。于本实施例中,第一可挠式基板102具有第一厚度方向位相差值R1,第二可挠式基板104具有第二厚度方向位相差值R2,第一光学补偿膜200具有第三厚度方向位相差值R3。举例而言,第三厚度方向位相差值R3可为0至-500nm。为配合位相差值为310nm至370nm的液晶层100,第一厚度方向位相差值R1、第二厚度方向位相差值R2及第三厚度方向位相差值R3的总和R1+R2+R3可为20nm至220nm,较佳为80nm至160nm,而使得可挠式液晶显示器20具有较低的漏光量及较佳的光学表现(例如:高对比度)。The above-mentioned first
举例而言,第一厚度方向位相差值及第三厚度方向位相差值的总和R1+R3与第二厚度方向位相差值R2至少一者为10nm至110nm,较佳为40nm至80nm。应注意的是,第一厚度方向位相差值及第三厚度方向位相差值的总和R1+R3与第二厚度方向位相差值R2可为相同或不同。借此,操作于IPS模式或FFS模式的可挠式液晶显示器20的漏光量可控制在0.006%以下(较佳为0.005%以下,更佳为0.004%以下),让在各视角的对比度得以提升。For example, at least one of the sum R1+R3 of the first thickness direction retardation value and the third thickness direction retardation value and the second thickness direction retardation value R2 is 10 nm to 110 nm, preferably 40 nm to 80 nm. It should be noted that the sum R1+R3 of the first thickness direction retardation value and the third thickness direction retardation value and the second thickness direction retardation value R2 may be the same or different. Thereby, the light leakage amount of the flexible
第一光学补偿膜200的厚度可为0.1至50μm,较佳为1至20μm,借此让第三厚度方向位相差值R3控制在0nm至-500nm。举例而言,第一光学补偿膜200可由聚酰胺、聚酰亚胺、聚酯、聚醚酮、聚酰胺酰亚胺、聚酯酰亚胺、上述的组合或其他适当的材料所形成。举例而言,可利用液晶涂布法或其他适当的方法形成第一光学补偿膜200,在一些以液晶涂布法形成第一光学补偿膜200的实施例中,其可为圆盘状的液晶形式。The thickness of the first
在一些实施例中,第一光学补偿膜200可与第一可挠式基板102及/或第一偏光板106直接接触而无其他膜层介于其间。另外,虽然于本实施例中,第一光学补偿膜200为单一膜层,然而若可满足上述位相差值的相关条件,在一些其他的实施例中,第一光学补偿膜200亦可包括多个子层。In some embodiments, the first
【第三实施例】[Third Embodiment]
请参照图4,其绘示出本实施例的可挠式液晶显示器30,其与第二实施例的可挠式液晶显示器20的差异在于可挠式液晶显示器30的第二可挠式基板104与第二偏光板108之间具有第二光学补偿膜300。第二光学补偿膜300可包括与第一光学补偿膜200相同或相似的性质。Please refer to FIG. 4 , which illustrates the flexible
上述第二光学补偿膜300可具有适当的光学异向性,例如nx=ny<nz,而可与第一基板102、第二基板104以及第一光学补偿膜200相互搭配而得到适当的厚度方向位相差值的总和,因此可增加膜层设计的弹性。The above-mentioned second optical compensation film 300 can have appropriate optical anisotropy, for example, n x = ny <n z , and can be matched with the
于本实施例中,第一可挠式基板102具有第一厚度方向位相差值R1,第二可挠式基板104具有第二厚度方向位相差值R2,第一光学补偿膜200具有第三厚度方向位相差值R3,第二光学补偿膜300具有第四厚度方向位相差值R4。举例而言,第三厚度方向位相差值R3及第四厚度方向位相差值R4至少一者可为0至-500nm。为配合位相差值为310nm至370nm的液晶层100,第一厚度方向位相差值、第二厚度方向位相差值、第三厚度方向位相差值及第四厚度方向位相差值的总和R1+R2+R3+R4可为20nm至220nm,较佳为80nm至160nm,而使得可挠式液晶显示器30具有较低的漏光量及较佳的光学表现(例如:高对比度)。In this embodiment, the first
举例而言,第一厚度方向位相差值及第三厚度方向位相差值的总和R1+R3与第二厚度方向位相差值及第四厚度方向位相差值的总和R2+R4至少一者为10nm至110nm,较佳为40nm至80nm。应注意的是,第一厚度方向位相差值及第三厚度方向位相差值的总和R1+R3与第二厚度方向位相差值及第四厚度方向位相差值的总和R2+R4可为相同或不同。借此,操作于IPS模式或FFS模式的可挠式液晶显示器30的漏光量可控制在0.006%以下(较佳为0.005%以下,更佳为0.004%以下),让在各视角的对比度得以提升。For example, at least one of the sum R1+R3 of the first thickness direction retardation value and the third thickness direction retardation value and the sum R2+R4 of the second thickness direction retardation value and the fourth thickness direction retardation value is 10 nm to 110 nm, preferably 40 to 80 nm. It should be noted that the sum R1+R3 of the first thickness direction retardation value and the third thickness direction retardation value and the sum R2+R4 of the second thickness direction retardation value and the fourth thickness direction retardation value may be the same or different. Thereby, the light leakage amount of the flexible
请参照图6A及图6B,其各自绘示出使用玻璃基板的IPS/FFS液晶显示器、以及本实施例使用聚亚酰胺基板及光学补偿膜(例如:R1+R3=60nm,R2+R4=60nm)的IPS/FFS液晶显示器两者的各视角的漏光量,其中区块R代表漏光量较大的部分(漏光量大于0.006%),LV表示整个区域的最大漏光量。由图6A及图6B可以清楚地看出,第一可挠式基板102的第一厚度方向位相差值R1、第二可挠式基板104的第二厚度方向位相差值R2、光学补偿膜200的第三厚度方向位相差值R3以及光学补偿膜300的第四厚度方向位相差值R4的总和R1+R2+R3+R4在120nm时,相较于玻璃基板的液晶显示器,各视角的漏光量都有明显地减少,其中整个区域的最大漏光量从0.0071%降低至0.0057%。Please refer to FIG. 6A and FIG. 6B , which respectively illustrate an IPS/FFS liquid crystal display using a glass substrate, and a polyimide substrate and an optical compensation film in this embodiment (for example: R1+R3=60nm, R2+R4=60nm) ) of the IPS/FFS liquid crystal display at each viewing angle, where the block R represents the larger part of the light leakage (light leakage is greater than 0.006%), and LV represents the maximum light leakage of the entire area. It can be clearly seen from FIG. 6A and FIG. 6B , the first thickness direction retardation value R1 of the first
在一些实施例中,第二光学补偿膜300可与第二可挠式基板104及/或第二偏光板108直接接触而无其他膜层介于其间。另外,虽然于本实施例中,第二光学补偿膜300为单一膜层,然而若可满足上述位相差值的相关条件,在一些其他的实施例中,第二光学补偿膜300亦可包括多个子层。In some embodiments, the second optical compensation film 300 may be in direct contact with the second
综上所述,本发明实施例的液晶显示器是使可挠式基板与光学补偿膜具有适当的厚度方向位相差值,而可降低液晶显示器的漏光并改善其光学表现。此外,具有适当厚度方向位相差值的可挠式基板在改善液晶显示器的光学表现的同时,亦可满足其可挠曲的需求。To sum up, the liquid crystal display of the embodiments of the present invention makes the flexible substrate and the optical compensation film have an appropriate thickness direction retardation value, so as to reduce the light leakage of the liquid crystal display and improve its optical performance. In addition, a flexible substrate with an appropriate thickness-direction retardation value can improve the optical performance of the liquid crystal display, and at the same time, it can also meet the requirements of flexibility.
虽然本发明已以数个较佳实施例揭露如上,然其并非用以限定本发明,任何所属技术领域中具有通常知识者,在不脱离本发明的精神和范围内,当可作任意的更动与润饰,因此本发明的保护范围当视所附的权利要求书所界定的范围为准。Although the present invention has been disclosed above with several preferred embodiments, it is not intended to limit the present invention. Anyone with ordinary knowledge in the technical field can make any modifications without departing from the spirit and scope of the present invention. Therefore, the protection scope of the present invention should be determined by the scope defined by the appended claims.
Claims (18)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
TW105143836 | 2016-12-29 | ||
TW105143836A TWI592721B (en) | 2016-12-29 | 2016-12-29 | Flexible liquid crystal display |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107300809A CN107300809A (en) | 2017-10-27 |
CN107300809B true CN107300809B (en) | 2020-09-18 |
Family
ID=60048507
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710541529.8A Active CN107300809B (en) | 2016-12-29 | 2017-07-05 | Flexible LCD |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107300809B (en) |
TW (1) | TWI592721B (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112394574A (en) * | 2019-08-19 | 2021-02-23 | 群创光电股份有限公司 | Electronic device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1658035A (en) * | 2004-02-18 | 2005-08-24 | 力特光电科技股份有限公司 | Wide viewing angle LCD panel |
JP2006195205A (en) * | 2005-01-14 | 2006-07-27 | Fuji Photo Film Co Ltd | Liquid crystal display device and polarizing plate |
JP2007016137A (en) * | 2005-07-08 | 2007-01-25 | Konica Minolta Opto Inc | Optical film polarizing plate liquid crystal display device |
CN105629582B (en) * | 2016-03-30 | 2019-08-02 | 京东方科技集团股份有限公司 | Display base plate, liquid crystal display panel and display device |
-
2016
- 2016-12-29 TW TW105143836A patent/TWI592721B/en active
-
2017
- 2017-07-05 CN CN201710541529.8A patent/CN107300809B/en active Active
Also Published As
Publication number | Publication date |
---|---|
TWI592721B (en) | 2017-07-21 |
TW201823818A (en) | 2018-07-01 |
CN107300809A (en) | 2017-10-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101030538B1 (en) | IPS mode liquid crystal display device | |
US8547510B2 (en) | Liquid crystal display panel and liquid crystal display device using the same | |
TWI521270B (en) | Display apparatus | |
WO2013168566A1 (en) | Liquid crystal display device | |
US9829741B2 (en) | Wire grid polarizer and liquid crystal display device having the same | |
JP2007034308A (en) | Liquid crystal display device and manufacturing method therefor | |
CN111033370B (en) | Liquid crystal display device and method for manufacturing the same | |
CN100585470C (en) | Liquid crystal display device and its improvement and manufacturing method | |
WO2016090751A1 (en) | Liquid crystal display panel | |
CN107621666A (en) | Ultra-thin wide-wave-range phase retardation film | |
CN102768436A (en) | Liquid crystal display | |
CN111190305B (en) | Liquid crystal display device having a plurality of pixel electrodes | |
CN105093767B (en) | Liquid crystal display | |
CN107300809B (en) | Flexible LCD | |
KR102280078B1 (en) | Liquid crystal display device | |
US20050213013A1 (en) | In-plane switching liquid crystal display with bent electrodes | |
US20140240649A1 (en) | Display device | |
JP4734533B2 (en) | LCD display | |
CN104635373B (en) | Liquid crystal display panel and liquid crystal display device | |
KR20160085970A (en) | Liquid crystal display | |
CN103207478A (en) | Liquid crystal panel with electric field controlled birefringence mode and liquid crystal display device thereof | |
US20050190320A1 (en) | In-plane switching liquid crystal display device having extraordinary polarizers | |
JP2006500633A (en) | OCB mode liquid crystal display device and driving method thereof | |
CN105589257A (en) | Liquid crystal display device | |
CN107340650A (en) | Liquid crystal display device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |