CN107297512B - 一种石墨烯/Mg纳米颗粒复合材料及其制备方法 - Google Patents

一种石墨烯/Mg纳米颗粒复合材料及其制备方法 Download PDF

Info

Publication number
CN107297512B
CN107297512B CN201710516108.XA CN201710516108A CN107297512B CN 107297512 B CN107297512 B CN 107297512B CN 201710516108 A CN201710516108 A CN 201710516108A CN 107297512 B CN107297512 B CN 107297512B
Authority
CN
China
Prior art keywords
graphene
nano particle
composite material
particle composite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710516108.XA
Other languages
English (en)
Other versions
CN107297512A (zh
Inventor
汪永辉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xiamen friend Technology Co.,Ltd.
Original Assignee
NANLING COUNTY PRODUCTION FORCE PROMOTION CENTER
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NANLING COUNTY PRODUCTION FORCE PROMOTION CENTER filed Critical NANLING COUNTY PRODUCTION FORCE PROMOTION CENTER
Priority to CN201710516108.XA priority Critical patent/CN107297512B/zh
Publication of CN107297512A publication Critical patent/CN107297512A/zh
Application granted granted Critical
Publication of CN107297512B publication Critical patent/CN107297512B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/16Making metallic powder or suspensions thereof using chemical processes
    • B22F9/18Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds
    • B22F9/24Making metallic powder or suspensions thereof using chemical processes with reduction of metal compounds starting from liquid metal compounds, e.g. solutions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • B22F1/05Metallic powder characterised by the size or surface area of the particles
    • B22F1/054Nanosized particles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Manufacturing & Machinery (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)

Abstract

本发明公开了一种石墨烯/Mg纳米颗粒复合材料及其制备方法,包括如下步骤:1)将氧化石墨烯的氯化镁溶解在0.2 mol/L的磷酸缓冲盐溶液中,调节pH值为10,搅拌获得均匀的悬浮液;2)将悬浮液转移到反应釜中,在100‑120℃的温度下反应得到沉淀物;3)将沉淀物热处理,通入Ar‑H2混合气体,升温至600‑700℃,保温3小时,然后自然冷却到室温。根据上述制备方法制得的石墨烯/Mg纳米颗粒复合材料,其中石墨烯为二维层状结构,层层堆叠,每层厚度约5‑20nm;Mg纳米颗粒的尺寸为10‑30nm,Mg纳米颗粒附着在石墨烯层之上或插入在石墨烯层之间,Mg纳米颗粒分布均匀。本发明制备的石墨烯/Mg纳米颗粒复合材料,价格便宜,可望在催化、锂离子电池、超级电容器、传感等领域获得广泛应用。

Description

一种石墨烯/Mg纳米颗粒复合材料及其制备方法
技术领域
本发明涉及石墨烯材料领域,尤其是石墨烯与单质纳米颗粒的复合材料领域。
背景技术
石墨烯是一种新型碳材料,石墨烯中的碳原子以sp2 键合并呈六边形周期排列,其独特的单原子层结构和新奇的物理、化学性质引发了对石墨烯基材料研究的一个热潮。在过去的几年中,石墨烯及石墨烯基材料的研究开发更多集中于电学、力学等方面,在锂离子电池、超级电容器、催化、传感、光电等领域应用广泛。而石墨烯与单质材料比如无机纳米粒子的复合材料在催化领域表现出很大的应用潜力。
石墨烯由于其大的比表面积、优异的导热、导电以及机械特性,与无机纳米粒子复合能产生性质优异的复合材料。在石墨烯上负载的纳米粒子同时也削弱了其片层之间的π‐π 作用,从而能够制备高度分散的复合材料。石墨烯与金属粒子的复合较为常见,在大多数复合材料的文献中,与石墨烯常复合的贵金属纳米粒子包括Au 、Pt 、Pd 、Ag 、Ru 、Rh 和Lr。
目前石墨烯‐金属复合材料多基于液相合成。氧化石墨烯分散在液体中,通过调控溶剂、金属前驱体、还原剂以及反应时间和温度等因素来制备不同粒径复合材料。液相合成方法由于还原速度不易控制,存在纳米粒子形貌大小不一、分布不均匀等缺点,该制备方法的不足直接影响催化活性等性能。其它合成石墨烯‐金属复合材料的技术还有热蒸发、光化学、无溶剂合成等方法。这些方法某些方面优于液相合成技术,但其制备能源消耗较大,制备比较昂贵。
本发明提供一种石墨烯/Mg纳米颗粒的复合材料,这是一种新的复合材料,本发明还提供了一种简单易行的全新的制备方法。
发明内容
针对现有技术中石墨烯与金属纳米颗粒复合的问题,本发明旨在提供一种新的石墨烯/Mg纳米颗粒的复合材料及其制备方法。
本发明提供了一种石墨烯/Mg纳米颗粒复合材料及其制备方法,包括如下步骤:
1)将1.5 mg/L的氧化石墨烯(GO)、450 μmol/L的氯化镁(MgCl2)溶解在0.2 mol/L的磷酸缓冲盐溶液(PBS)中,调节pH值为10,然后超声搅拌20 min,获得均匀的悬浮液;
2)将上述悬浮液转移到反应釜中,在100-120℃的温度下反应12小时,冷却到室温,取出,用去离子水反复清洗,得到沉淀物;
3)将上述沉淀物置于管式电阻炉中进行热处理,通入Ar-H2混合气体,气体压强为常压,Ar:H2分压比为30:70,升温至600-700℃,在此温度下保温3小时,然后关闭加热电源,自然冷却到室温,得到所需的产物石墨烯/Mg纳米颗粒复合材料。
本发明还提供了根据上述制备方法制得的一种石墨烯/Mg纳米颗粒复合材料,其中石墨烯为二维层状结构,层层堆叠,每层厚度约5-20nm;Mg纳米颗粒的尺寸为10-30nm,Mg纳米颗粒附着在石墨烯层之上或插入在石墨烯层之间,Mg纳米颗粒分布均匀。
本发明的有益成果在于:
1)本发明制备的石墨烯/Mg纳米颗粒复合材料,Mg纳米颗粒均匀附着在二维层状石墨烯之上或在石墨烯层之间,无其它结构形态出现,复合材料结构均一。
2)本发明的石墨烯/Mg纳米颗粒复合材料及其制备方法,成品率高,操作简单,易于推广,可实现大规模产业化生产。
3)本发明制备的石墨烯/Mg纳米颗粒复合材料,价格便宜,可望在催化、锂离子电池、超级电容器、传感等领域获得广泛应用。
附图说明
图1为实施例1得到的石墨烯/Mg纳米颗粒复合材料的扫描电子显微镜(SEM)图。
具体实施方式
下面结合具体的实施例和附图对本发明做进一步的说明。
实施例1
1)将1.5 mg/L的氧化石墨烯(GO)、450 μmol/L的氯化镁(MgCl2)溶解在0.2 mol/L的磷酸缓冲盐溶液(PBS)中,调节pH值为10,然后超声搅拌20 min,获得均匀的悬浮液;
2)将上述悬浮液转移到反应釜中,在110℃的温度下反应12小时,冷却到室温,取出,用去离子水反复清洗,得到沉淀物;
3)将上述沉淀物置于管式电阻炉中进行热处理,通入Ar-H2混合气体,气体压强为常压,Ar:H2分压比为30:70,升温至650℃,在此温度下保温3小时,然后关闭加热电源,自然冷却到室温,得到所需的产物石墨烯/Mg纳米颗粒复合材料。
实施例2
1)将1.5 mg/L的氧化石墨烯(GO)、450 μmol/L的氯化镁(MgCl2)溶解在0.2 mol/L的磷酸缓冲盐溶液(PBS)中,调节pH值为10,然后超声搅拌20 min,获得均匀的悬浮液;
2)将上述悬浮液转移到反应釜中,在100℃的温度下反应12小时,冷却到室温,取出,用去离子水反复清洗,得到沉淀物;
3)将上述沉淀物置于管式电阻炉中进行热处理,通入Ar-H2混合气体,气体压强为常压,Ar:H2分压比为30:70,升温至600℃,在此温度下保温3小时,然后关闭加热电源,自然冷却到室温,得到所需的产物石墨烯/Mg纳米颗粒复合材料。
实施例3
1)将1.5 mg/L的氧化石墨烯(GO)、450 μmol/L的氯化镁(MgCl2)溶解在0.2 mol/L的磷酸缓冲盐溶液(PBS)中,调节pH值为10,然后超声搅拌20 min,获得均匀的悬浮液;
2)将上述悬浮液转移到反应釜中,在120℃的温度下反应12小时,冷却到室温,取出,用去离子水反复清洗,得到沉淀物;
3)将上述沉淀物置于管式电阻炉中进行热处理,通入Ar-H2混合气体,气体压强为常压,Ar:H2分压比为30:70,升温至700℃,在此温度下保温3小时,然后关闭加热电源,自然冷却到室温,得到所需的产物石墨烯/Mg纳米颗粒复合材料。
通过扫描电子显微镜(SEM),对各实施例制得的石墨烯/Mg纳米颗粒复合材料进行微观形貌观察。图1为实施例1得到的石墨烯/Mg纳米颗粒复合材料的扫描电子显微镜(SEM)图。图中可以看到:石墨烯为二维层状结构,层层堆叠,每层厚度约5-20nm;Mg纳米颗粒的尺寸为10-30nm,Mg纳米颗粒附着在石墨烯层之上或插入在石墨烯层之间,Mg纳米颗粒分布均匀。实施例2和实施例3制得的石墨烯/Mg纳米颗粒复合材料的微观形貌与实施例1的类同。
采用本发明方法制得的石墨烯/Mg纳米颗粒复合材料,Mg纳米颗粒均匀附着在二维层状石墨烯之上或在石墨烯层之间,无其它结构形态出现,复合材料结构均一。
以上所述,将仅是本发明的较佳实施例而已,并非对本发明作任何形式上的限制。任何熟悉本领域的技术人员,在不脱离本发明技术方案范围情况下,都可利用上述揭示的方法和技术内容对本发明技术方案作出许多可能的变动和修饰,或修改为等同变化的等效实施例。因此,凡是未脱离本发明的技术方案的内容,依据本发明的技术实质对以上实施例所做的任何简单修改、等同变化及修饰,均仍属于本发明技术方案保护的范围内。

Claims (4)

1.一种石墨烯/Mg纳米颗粒复合材料的制备方法,其特征在于包括如下步骤:
1)将1.5 mg/L的氧化石墨烯、450 μmol/L的氯化镁溶解在0.2 mol/L的磷酸缓冲盐溶液中,调节pH值为10,然后超声搅拌20 min,获得均匀的悬浮液;
2)将上述悬浮液转移到反应釜中,在100-120℃的温度下反应12小时,冷却到室温,取出,用去离子水反复清洗,得到沉淀物;
3)将上述沉淀物置于管式电阻炉中进行热处理,通入Ar-H2混合气体,气体压强为常压,升温至600-700℃,在此温度下保温3小时,然后关闭加热电源,自然冷却到室温,得到所需的产物石墨烯/Mg纳米颗粒复合材料。
2.根据权利要求1所述的一种石墨烯/Mg纳米颗粒复合材料的制备方法,其特征在于:通入的Ar-H2混合气体,Ar:H2分压比为30:70。
3.根据权利要求1或2 所述的制备方法制得的一种石墨烯/Mg纳米颗粒复合材料,其特征在于:石墨烯为二维层状结构,层层堆叠;Mg纳米颗粒附着在石墨烯层之上或插入在石墨烯层之间,Mg纳米颗粒分布均匀。
4.根据权利要求3所述的一种石墨烯/Mg纳米颗粒复合材料,其特征在于:石墨烯每层厚度为5-20nm ,Mg纳米颗粒的尺寸为10-30nm。
CN201710516108.XA 2017-06-29 2017-06-29 一种石墨烯/Mg纳米颗粒复合材料及其制备方法 Active CN107297512B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710516108.XA CN107297512B (zh) 2017-06-29 2017-06-29 一种石墨烯/Mg纳米颗粒复合材料及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710516108.XA CN107297512B (zh) 2017-06-29 2017-06-29 一种石墨烯/Mg纳米颗粒复合材料及其制备方法

Publications (2)

Publication Number Publication Date
CN107297512A CN107297512A (zh) 2017-10-27
CN107297512B true CN107297512B (zh) 2019-04-09

Family

ID=60135127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710516108.XA Active CN107297512B (zh) 2017-06-29 2017-06-29 一种石墨烯/Mg纳米颗粒复合材料及其制备方法

Country Status (1)

Country Link
CN (1) CN107297512B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109112329A (zh) * 2018-08-10 2019-01-01 中南大学 一种具有优良界面特性的石墨烯/镁合金及其制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102921376A (zh) * 2012-11-27 2013-02-13 武汉工程大学 用于含磷废水处理的氢氧化镁/石墨烯复合吸附材料及其制备方法与应用
CN104085881A (zh) * 2014-06-10 2014-10-08 南京邮电大学 一种制备三维石墨烯的方法
CN104894419A (zh) * 2015-02-26 2015-09-09 南昌大学 一种用包覆氧化镁石墨烯增强镁基复合材料的方法
CN105839078A (zh) * 2016-04-13 2016-08-10 西安近代化学研究所 一种采用原子层沉积技术制备石墨烯纳米复合含能材料的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101337994B1 (ko) * 2010-04-14 2013-12-06 한국과학기술원 그래핀/금속 나노 복합 분말 및 이의 제조 방법

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102921376A (zh) * 2012-11-27 2013-02-13 武汉工程大学 用于含磷废水处理的氢氧化镁/石墨烯复合吸附材料及其制备方法与应用
CN104085881A (zh) * 2014-06-10 2014-10-08 南京邮电大学 一种制备三维石墨烯的方法
CN104894419A (zh) * 2015-02-26 2015-09-09 南昌大学 一种用包覆氧化镁石墨烯增强镁基复合材料的方法
CN105839078A (zh) * 2016-04-13 2016-08-10 西安近代化学研究所 一种采用原子层沉积技术制备石墨烯纳米复合含能材料的方法

Also Published As

Publication number Publication date
CN107297512A (zh) 2017-10-27

Similar Documents

Publication Publication Date Title
Yin et al. Optimized metal chalcogenides for boosting water splitting
Zhou et al. Semiconductor/boron nitride composites: synthesis, properties, and photocatalysis applications
Zhao et al. Solid-diffusion synthesis of single-atom catalysts directly from bulk metal for efficient CO2 reduction
Du et al. Selective synthesis of Fe 2 O 3 and Fe 3 O 4 nanowires via a single precursor: a general method for metal oxide nanowires
Luo et al. Facile synthesis of flowerlike Cu2O nanoarchitectures by a solution phase route
Zhou et al. Ni/Ni3C core–shell nanochains and its magnetic properties: one-step synthesis at low temperature
Yang et al. Shape control and characterization of transition metal diselenides MSe2 (M= Ni, Co, Fe) prepared by a solvothermal-reduction process
Yang et al. Synthesis of nickel hydroxide nanoribbons with a new phase: a solution chemistry approach
Wu et al. Complex concaved cuboctahedrons of copper sulfide crystals with highly geometrical symmetry created by a solution process
Liu et al. Mesocrystals of rutile TiO2: Mesoscale transformation, crystallization, and growth by a biologic molecules-assisted hydrothermal process
Wang et al. Facile electrochemical approach to fabricate hierarchical flowerlike gold microstructures: Electrodeposited superhydrophobic surface
Zang et al. Graphene growth on nanodiamond as a support for a Pt electrocatalyst in methanol electro-oxidation
CN108264037B (zh) 三维多孔氮掺杂石墨烯复材及氮掺杂石墨烯的制备方法
Guo et al. Shape-controlled synthesis of self-assembly cubic CuO nanostructures by microwave
Qiu et al. Synthesis of tin nanorods via a sonochemical method combined with a polyol process
Xu et al. Size-and surface-determined transformations: from ultrathin InOOH nanowires to uniform c-In2O3 Nanocubes and rh-In2O3 nanowires
Zhao et al. A general strategy for synthesis of metal oxide nanoparticles attached on carbon nanomaterials
Du et al. Ligand-assisted hydrothermal synthesis of hollow Fe2O3 urchin-like microstructures and their magnetic properties
CN105293479A (zh) 一种三维有序方形孔介孔石墨烯骨架材料的制备方法
Kumar et al. Synthesis and characterization of CuO–NiO nanocomposite: highly active electrocatalyst for oxygen evolution reaction application
Zhu et al. Self-assembled 3D microflowery In (OH) 3 architecture and its conversion to In2O3
Tong et al. Microwave-assisted synthesis of hierarchical ZnO nanostructures
Cheng et al. Synthesis of flower-like and dendritic platinum nanostructures with excellent catalytic activities on thermal decomposition of ammonium perchlorate
Wang et al. Interfacial engineering of 3D hollow Mo-based carbide/nitride nanostructures
Lin et al. Laser direct writing of crystalline Fe2O3 atomic sheets on steel surface in aqueous medium

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20190404

Address after: 350000 Four 308 Blocks in No.1 District, Erhua New Village, Jinan District, Fuzhou City, Fujian Province

Patentee after: Miao Qiang

Address before: 241300, 3 layers of 17 Lanting, Nanling, Wuhu, Anhui.

Patentee before: NANLING COUNTY PRODUCTION FORCE PROMOTION CENTER

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20200819

Address after: 361000 Xiamen Torch High-tech Zone (Xiangan) Industrial Zone, Xiamen City, Fujian Province

Patentee after: Xiamen friend Technology Co.,Ltd.

Address before: 350000 Four 308 Blocks in No.1 District, Erhua New Village, Jinan District, Fuzhou City, Fujian Province

Patentee before: Miao Qiang

TR01 Transfer of patent right