CN107294372A - The high ferro low-frequency oscillation suppression method of Model Predictive Control based on disturbance estimation - Google Patents
The high ferro low-frequency oscillation suppression method of Model Predictive Control based on disturbance estimation Download PDFInfo
- Publication number
- CN107294372A CN107294372A CN201710493210.2A CN201710493210A CN107294372A CN 107294372 A CN107294372 A CN 107294372A CN 201710493210 A CN201710493210 A CN 201710493210A CN 107294372 A CN107294372 A CN 107294372A
- Authority
- CN
- China
- Prior art keywords
- mrow
- msub
- mtd
- mtr
- mfrac
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 27
- 230000010355 oscillation Effects 0.000 title claims abstract description 22
- 230000001629 suppression Effects 0.000 title claims abstract description 11
- 238000005070 sampling Methods 0.000 claims abstract description 61
- 239000011159 matrix material Substances 0.000 claims description 7
- 238000010276 construction Methods 0.000 claims description 5
- 230000010354 integration Effects 0.000 claims description 3
- 230000009466 transformation Effects 0.000 claims description 2
- 241000271559 Dromaiidae Species 0.000 abstract 2
- 238000010586 diagram Methods 0.000 description 8
- 230000001052 transient effect Effects 0.000 description 4
- 101100346179 Arabidopsis thaliana MORC7 gene Proteins 0.000 description 3
- 230000003137 locomotive effect Effects 0.000 description 3
- 238000004088 simulation Methods 0.000 description 3
- 238000004422 calculation algorithm Methods 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000000087 stabilizing effect Effects 0.000 description 2
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000033228 biological regulation Effects 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 238000011217 control strategy Methods 0.000 description 1
- 238000013016 damping Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M1/00—Details of apparatus for conversion
- H02M1/44—Circuits or arrangements for compensating for electromagnetic interference in converters or inverters
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02M—APPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
- H02M7/00—Conversion of AC power input into DC power output; Conversion of DC power input into AC power output
- H02M7/02—Conversion of AC power input into DC power output without possibility of reversal
- H02M7/04—Conversion of AC power input into DC power output without possibility of reversal by static converters
- H02M7/12—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
- H02M7/21—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
- H02M7/217—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
- H02M7/219—Conversion of AC power input into DC power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only in a bridge configuration
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Control Of Ac Motors In General (AREA)
- Other Investigation Or Analysis Of Materials By Electrical Means (AREA)
Abstract
The invention discloses a kind of high ferro low-frequency oscillation suppression method of the Model Predictive Control based on disturbance estimation, comprise the following steps:A, structured‑qThe EMUs net-side rectifier dynamic characteristic equation of meter and parameter error amount under rotating coordinate system;B, definition disturbance quantity, are obtained according to dynamic characteristic equationd‑qMeter and the EMUs net-side rectifier current forecasting model of disturbance quantity under rotating coordinate system;C, using electric current, disturbance quantity as state variable, obtain disturbing the state-space model of estimator, build disturbance estimator;D, the current forecasting model for substituting into disturbance quantity estimate in step B obtain current forecasting value, and obtained current forecasting value is substituted into cost function obtains next sampling period control voltage;E, control voltage obtained by coordinate transformα‑βCoordinate system component, by sinusoidal pulse width modulation output control pulse, completes high ferro low-frequency oscillation and suppresses;The present invention improves the antijamming capability and robust performance of control system, and voltage variety floats minimum within the cycle, insensitive to Parameters variation.
Description
Technical Field
The invention relates to a control method of a grid-side rectifier of a motor train unit, in particular to a high-speed rail low-frequency oscillation suppression method based on model predictive control of disturbance estimation.
Background
With the rapid development of high-speed railways, novel 'AC-DC-AC' electric locomotives are widely applied to electrified railway systems due to the advantages of high power factor, high power, high traction and the like; the traditional control method of the 'AC-DC-AC' locomotive is mainly divided into two types, namely indirect current control and direct current control; the indirect current control is represented by 'phase amplitude control', and the direct current control comprises hysteresis current control, prediction current control, transient current control and the like; the transient direct current control adopts more control strategies in the electric locomotive and the high-speed motor train unit at present; the control effect of the traditional linear control method is difficult to be improved, so that a nonlinear control method, such as predictive control, passive control and the like, is necessary to be introduced into the control of the converter; the predictive control is a control algorithm which is proposed along with a complex actual production process, and is widely applied due to good robustness and good control performance of a complex system; the conventional model prediction control includes prediction current control, prediction direct power control and the like, only the prediction current obtained by a prediction model is considered to track a set value to improve the control effect, but the problem that the parameters of a model parameter actually controlled object cannot be completely matched is not considered.
Disclosure of Invention
The invention provides a high-speed and low-frequency oscillation suppression method for model predictive control based on disturbance estimation, which can improve the robustness of the model predictive control.
The technical scheme adopted by the invention is as follows: a high-speed rail low-frequency oscillation suppression method based on model predictive control of disturbance estimation comprises the following steps:
A. constructing a dynamic characteristic equation of the motor train unit network side rectifier considering the parameter error amount under a d-q rotating coordinate system;
B. b, defining a disturbance amount, and obtaining a current prediction value of a motor train unit grid-side rectifier current prediction model considering the disturbance amount under a d-q rotating coordinate system according to the dynamic characteristic equation obtained in the step A;
C. taking the current and the disturbance quantity as state variables to obtain a state space model of a disturbance estimator, and constructing the disturbance estimator to obtain a disturbance quantity estimated value;
D. substituting the disturbance quantity estimation value into the current prediction model in the step B to obtain a current prediction value, and substituting the obtained current prediction value into a cost function to obtain the control voltage of the next sampling period;
E. and D, carrying out coordinate transformation on the control voltage of the next sampling period obtained in the step D to obtain an alpha-beta coordinate system component, and outputting a control pulse through sine pulse width modulation to finish the suppression of the low-frequency oscillation of the high-speed rail.
Further, the dynamic characteristic equation of the grid-side rectifier of the motor train unit, which takes the parameter error amount into account in the step a, is as follows:
defining a resistance rating parameter RNORated parameter L of inductorNOActual resistance parameter and rated parameter error amount delta RNAnd the error amount Delta R between the actual parameter and the rated parameter of the inductorNObtaining:
in the formula: rNActual parameter of resistance, LNActual parameters of the inductor are obtained;
according to an alternating-current side Hall voltage law equation, obtaining a dynamic characteristic equation of the motor train unit grid side rectifier considering parameter error under a d-q rotating coordinate system:
in the formula: u. ofNd、uNqFor an input voltage u on the AC sideNA dq direct current component on a two-phase rotating coordinate system; i.e. iNd、iNqRespectively, an input current i on the AC sideNA dq direct current component on a two-phase rotating coordinate system; u. ofabd、uabqAre respectively the rectifier input voltage uabA dq direct current component on a two-phase rotating coordinate system; ω is the angular velocity of rotation and t is a time variable.
Further, the motor train unit grid-side rectifier current prediction model for calculating the disturbance amount in the step B is as follows:
defining the disturbance quantity, obtaining:
in the formula: f. ofd、fqThe disturbance component on the two-phase rotating coordinate system;
then, the dynamic characteristic equation of the grid-side rectifier of the motor train unit can be changed into:
for the discretization of the above formula, a current prediction model considering the disturbance quantity can be obtained:
in the formula: k represents a discrete quantity corresponding to the time t and is the current sampling moment; k +1 is the next sampling moment; t issIs a sampling period; u. ofNd(k)、uNq(k) Are respectively an AC side input voltage uNDiscretizing dq direct current components at the current moment; i.e. iNd(k)、iNq(k) Respectively, an input current i on the AC sideNDiscretizing dq direct current components at the current moment; u. ofabd(k)、uabq(k) Are respectively the rectifier input voltage uabDiscretizing dq direct current components at the current moment; f. ofd(k)、fq(k) Respectively, the disturbance dq direct current components at the current sampling moment.
Further, the method also comprises the following steps:
defining a control output voltage value u at a current sampling instantabd(k)、uabq(k) Comprises the following steps:
in the formula: u. ofabd(k-1)、uabq(k-1) are respectively the rectifier input voltage uabDiscretizing a dq direct current component at the previous sampling moment; Δ uabd(k) And Δ uabq(k) Respectively representing the variation of the dq component of the control voltage from the moment k-1 to the moment k;
substituting the current prediction model can obtain:
in the formula iNd0(k+1)、iNq0(k +1) are respectively neglected control voltage variation amount Deltauabd(k) And Δ uabq(k) The current prediction value dq component at time k-1.
Further, the construction process of the estimation perturber is as follows:
disturbance amount fd(k) And fq(k) Equal in one sampling period, namely:
in the formula: f. ofd(k) And fq(k) Respectively representing disturbance components on the two-phase rotating coordinate system at the current sampling moment; f. ofd(k +1) and fq(k +1) are disturbance components on the two-phase rotating coordinate system at the next sampling moment respectively;
the state quantity and the input quantity are defined as follows:
in the formula:are respectively iNd0(k+1)、iNq0An estimated value of (k + 1); i.e. iNd0(k)、iNq0(k) To ignore the current prediction value dq component at the time k-1 of the control voltage variation,are respectively iNd0(k)、iNq0(k) An estimated value of (d);are respectively fd(k)、fq(k) Is determined by the estimated value of (c),are respectively fd(k+1)、fqAn estimated value of (k + 1); x (k +1) is a state component at the moment k +1, x (k) is a state component at the moment k, and u (k) is an input component at the moment k; u. ofNd(k)、uNq(k) Are respectively an AC side input voltage uNDiscretizing dq direct current components at the current moment;
obtaining a state space model of the disturbance estimator:
x(k+1)=Ax(k)+Bu(k)
in the formula:
in the formula: rNOTo define the rated resistance parameter, LNOIs a rated parameter of the inductor, omega is a rotation angular velocity, TsIs a sampling period;
constructing a disturbance estimator based on the state space model:
in the formula:are respectively iNd0(k+1)、iNq0An estimated value of (k + 1);are respectively fd(k +1) and fqAn estimated value of (k + 1);are respectively iNd0(k)、iNq0(k) An estimated value of (d); are respectively fd(k)、fq(k) In the following equation:
in the formula I1、l2Feedback coefficients of a state observer gain matrix L; from the above formula, one can obtain:
x(k+1)=(A-LC)x(k)+Bu(k)
and completing the construction of the disturbance estimator.
Further, the cost function in step D is:
in the formula: grIn order to be a function of the cost,setting a value for a q-axis component of the alternating-current side current of the rectifier;setting value i for d-axis component of AC side current of rectifierNd(k+1)、iNq(k +1) are input currents i on the AC sideNDiscretizing a dq direct current component in the next sampling period;
in the formula:is a DC side voltage reference value, UdAs a measured value of the DC side voltage, KpIs the ratio of PI controllersExample coefficient, TiIs the PI controller integration coefficient.
Substituting the disturbance quantity estimated value into the current prediction model to obtain
Substituting the obtained current predicted value into a cost function to obtain the control voltage of the next sampling period;
further, the method for calculating the control voltage in the next sampling period is as follows:
partial derivatives of the voltage variation are obtained from the cost function to obtain the voltage variation delta u which can make the cost function obtain minimum valueabd(k) And Δ uabq(k):
In the formula: i.e. iNd0(k+1)、iNq0(k +1) is the neglect of the control voltage variation Δ uabd(k) And Δ uabq(k) The current prediction value dq component at the k-1 moment; l isNOThe inductance rated parameter; t issIs a sampling period;
the next sampling period control voltage is:
in the formula: u. ofabd(k+1)、uabq(k +1) is the rectifier input voltage uabAn input value at a next sampling period; u. ofabd(k)、uabq(k) Is a rectifier input voltage uabDiscretizing dq direct current components at the current sampling moment; Δ uabd(k)、Δuabq(k) The voltage variation from the time k-1 to the time k-1 is controlled.
The invention has the beneficial effects that:
(1) according to the invention, the disturbance quantity is considered, the anti-interference capability and the robustness of the control system are improved, and the problem of electric quantity oscillation of the traction network-motor train unit can be damped;
(2) according to the invention, the control voltage variable which enables the cost function to obtain a minimum value is obtained by solving the partial derivative of the cost function, the predicted current value can track the current setting value by stepping, and the voltage variable is enabled to float minimum in a period;
(3) the invention needs less parameters to be set, the control system is insensitive to parameter change, and the control has better robustness and dynamic performance in an effective range.
Drawings
Fig. 1 is a control structure diagram of the present invention.
FIG. 2 is an equivalent circuit diagram of a rectifier according to the present invention.
FIG. 3 is a partial block diagram of a predictive model of the invention.
FIG. 4 is a diagram of a portion of the disturbance estimation of the present invention.
FIG. 5 is a diagram of a simulation model according to the present invention.
FIG. 6 is a graph showing the waveforms of the road side voltage, the AC side current and the AC side voltage according to the present invention.
Fig. 7 is a waveform diagram of the net side voltage and the net side current in the embodiment of the invention.
Detailed Description
The invention is further described with reference to the following figures and specific embodiments.
A high-speed rail low-frequency oscillation suppression method based on model predictive control of disturbance estimation comprises the following steps:
A. constructing a dynamic characteristic equation of the motor train unit network side rectifier considering the parameter error amount under a d-q rotating coordinate system;
assuming that a four-quadrant pulse rectifier is adopted by a motor train unit grid-side rectifier, the following model aims at a single-phase two-level topological structure; the pantograph is used for taking current from a contact network, the current is reduced by a vehicle-mounted transformer and then is used as the input of a rectifier, and the rectifier converts the input single-phase alternating-current voltage into stable direct-current voltage;
defining a resistance rated parameter R by considering the uncertainty of the circuit parameter at the AC sideNORated parameter L of inductorNOActual resistance parameter and rated parameter error amount delta RNAnd the error amount Delta R between the actual parameter and the rated parameter of the inductorNObtaining:
in the formula: rNActual parameter of resistance, LNActual parameters of the inductor are obtained;
according to an alternating-current side Hall voltage law equation, obtaining a dynamic characteristic equation of the motor train unit grid side rectifier considering parameter error under a d-q rotating coordinate system:
in the formula: u. ofNd、uNqFor an input voltage u on the AC sideNA dq direct current component on a two-phase rotating coordinate system; i.e. iNd、iNqRespectively, an input current i on the AC sideNA dq direct current component on a two-phase rotating coordinate system; u. ofabd、uabqAre respectively the rectifier input voltage uabA dq direct current component on a two-phase rotating coordinate system; ω is the angular velocity of rotation and t is a time variable.
B. B, defining a disturbance amount, and obtaining a current prediction value of a motor train unit grid-side rectifier current prediction model considering the disturbance amount under a d-q rotating coordinate system according to the dynamic characteristic equation obtained in the step A;
defining the disturbance quantity, obtaining:
in the formula: f. ofd、fqThe disturbance component on the two-phase rotating coordinate system;
then, the dynamic characteristic equation of the grid-side rectifier of the motor train unit can be changed into:
for the discretization of the above formula, a current prediction model considering the disturbance quantity can be obtained:
in the formula: k represents a discrete quantity corresponding to the time t and is the current sampling moment; k +1 is the next sampling moment; t issIs a sampling period; u. ofNd(k)、uNq(k) Are respectively an AC side input voltage uNDiscretizing dq direct current components at the current moment; i.e. iNd(k)、iNq(k) Respectively, an input current i on the AC sideNDiscretizing dq direct current components at the current moment; u. ofabd(k)、uabq(k) Are respectively the rectifier input voltage uabDiscretizing dq direct current components at the current moment; f. ofd(k)、fq(k) Respectively, the disturbance dq direct current components at the current sampling moment.
Defining a control output voltage value u at a current sampling instantabd(k)、uabq(k) Comprises the following steps:
in the formula: u. ofabd(k-1)、uabq(k-1) are respectively the rectifier input voltage uabDiscretizing a dq direct current component at the previous sampling moment; Δ uabd(k) And Δ uabq(k) Respectively representing the variation of the dq component of the control voltage from the moment k-1 to the moment k;
substituting the current prediction model can obtain:
in the formula iNd0(k+1)、iNq0(k +1) are respectively neglected control voltage variation amount Deltauabd(k) And Δ uabq(k) The current prediction value dq component at time k-1.
C. Taking the current and the disturbance quantity as state variables to obtain a state space model of a disturbance estimator, and constructing the disturbance estimator to obtain a disturbance quantity estimated value;
the construction process of the estimation perturber is as follows:
assuming disturbance quantity fd(k) And fq(k) Equal in one sampling period, namely:
in the formula: f. ofd(k) And fq(k) Respectively representing disturbance components on the two-phase rotating coordinate system at the current sampling moment; f. ofd(k +1) and fq(k +1) is the disturbance component on the two-phase rotating coordinate system at the next sampling momentAn amount;
the state quantity and the input quantity are defined as follows:
in the formula:are respectively iNd0(k+1)、iNq0An estimated value of (k + 1); i.e. iNd0(k)、iNq0(k) To ignore the current prediction value dq component at the time k-1 of the control voltage variation,are respectively iNd0(k)、iNq0(k) An estimated value of (d);are respectively fd(k)、fq(k) Is determined by the estimated value of (c),are respectively fd(k+1)、fqAn estimated value of (k + 1); x (k +1) is a state component at the moment k +1, x (k) is a state component at the moment k, and u (k) is an input component at the moment k; u. ofNd(k)、uNq(k) Are respectively an AC side input voltage uNThe dq dc component is discretized at the current time.
Obtaining a state space model of the disturbance estimator:
x(k+1)=Ax(k)+Bu(k)
in the formula:
in the formula: rNOTo define the rated resistance parameter, LNOIs a rated parameter of the inductor, and omega is a rotation angular velocityDegree, TsIs a sampling period;
constructing a disturbance estimator based on the state space model:
in the formula:are respectively iNd0(k+1)、iNq0An estimated value of (k + 1);are respectively fd(k +1) and fqAn estimated value of (k + 1);are respectively iNd0(k)、iNq0(k) An estimated value of (d); are respectively fd(k)、fq(k) An estimated value of (d);
in the formula: l1、l2Feedback coefficients of a state observer gain matrix L;
from the above formula, one can obtain:
x(k+1)=(A-LC)x(k)+Bu(k)
in the closed-loop discrete system, the dynamic characteristic of the state reconstruction error depends on a coefficient matrix A-LC; and determining a feedback coefficient of a gain matrix of the disturbance estimator for stabilizing the discrete system through a pole distribution diagram according to the principle that all closed-loop poles are required to be located in a unit circle with the origin as the origin to ensure the stability of the disturbance interference device, and completing the construction of the disturbance estimator.
D. Substituting the disturbance quantity estimation value into the current prediction model in the step B to obtain a current prediction value, substituting the obtained current prediction value into a cost function, solving the partial derivative about the voltage variation of the cost function to obtain the voltage variation which can enable the cost function to obtain a minimum value, and adding the voltage variation to the current time voltage to obtain the control voltage of the next sampling period;
the cost function is:
in the formula: grIn order to be a function of the cost,setting a value for a q-axis component of the alternating-current side current of the rectifier;setting value i for d-axis component of AC side current of rectifierNd(k+1)、iNq(k +1) are input currents i on the AC sideNDiscretizing a dq direct current component in the next sampling period;
in the formula:the reference value of the direct-current side voltage is different according to different motor train unit models, and for the CRH3 motor train unit,for the CRH 5-type vehicle,Udis a direct current side voltage measurement value; kpProportional coefficient of PI controller; t isiIs the PI controller integration coefficient.
Further, the method for calculating the control voltage in the next sampling period is as follows:
partial derivatives of the voltage variation are obtained from the cost function to obtain the voltage variation delta u which can make the cost function obtain minimum valueabd(k) And Δ uabq(k):
In the formula: i.e. iNd0(k+1)、iNq0(k +1) is the neglect of the control voltage variation Δ uabd(k) And Δ uabq(k) The current prediction value dq component at the k-1 moment; l isNOThe inductance rated parameter; t issIs a sampling period;
the next sampling period control voltage is:
in the formula: u. ofabd(k+1)、uabq(k +1) is the rectifier input voltage uabAn input value at a next sampling period; u. ofabd(k)、uabq(k) Is a rectifier input voltage uabDiscretizing dq direct current components at the current sampling moment; Δ uabd(k)、Δuabq(k) The voltage variation from the time k-1 to the time k-1 is controlled.
E. And D, converting the control voltage obtained in the step D through coordinates to obtain an alpha-beta coordinate system component, and outputting a control pulse through sine pulse width modulation to finish the suppression of the low-frequency oscillation of the high-speed rail.
Examples
Taking a CRH3 motor train unit as an example, the method comprises the following steps:
A. constructing a dynamic characteristic equation of the motor train unit network side rectifier considering the parameter error amount under a d-q rotating coordinate system;
as shown in fig. 2, a motor train unit grid-side rectifier dynamic characteristic equation considering parameter error amount under a d-q rotating coordinate system can be obtained by writing a KVL equation to an alternating-current side column;
in the motor train unit network rectifier, the values of the corresponding quantities are R respectivelyNO=0.06Ω,LNO=2.3mH,L2=0.603mH,C2=4.56mF,Cd=4mF,Rd=10Ω,uN=2192sin(ωt)V。
B. B, defining a disturbance amount, and obtaining a current prediction value of a motor train unit grid-side rectifier current prediction model considering the disturbance amount under a d-q rotating coordinate system according to the dynamic characteristic equation obtained in the step A;
the dynamic characteristic equation of the grid-side rectifier of the motor train unit is expressed as follows:
a discretized prediction model that accounts for disturbance variables can be obtained:
get TsFor controlling the sampling period of the system, set to Ts=5e-5s;
According to the current sampling timeTo control the output voltage value uabd(k)、uabq(k) The definition of (a) can be given as:
wherein,
C. taking the current and the disturbance quantity as state variables to obtain a state space model of a disturbance estimator, and constructing the disturbance estimator to obtain a disturbance quantity estimated value;
state space model of disturbance estimator:
x(k+1)=Ax(k)+Bu(k)
wherein,
constructing a disturbance estimator based on the state space model:
wherein,
can be obtained from the above formula
x(k+1)=(A-LC)x(k)+Bu(k)
In the closed-loop discrete system, the dynamic characteristic of the state reconstruction error depends on a coefficient matrix A-LC; determining a discrete system through a pole distribution diagram according to the principle that all closed-loop poles are required to be located in a unit circle with the origin as the origin if the stability of the disturbance interference device is required to be ensuredFeedback coefficient of gain matrix of disturbance estimator for system stabilization1=1.5,l2=-24。
D. B, substituting the disturbance quantity estimated value into a current prediction model, and substituting the current predicted value obtained in the step B into a cost function; obtaining the voltage variation which can make the cost function obtain the minimum value by calculating the partial derivative of the voltage variation on the cost function, adding the voltage variation to the current time voltage to obtain the control voltage of the next sampling period
Cost function grComprises the following steps:
in the formula:is generally set to 0;the calculation is as follows:wherein, Kp=9,Ti0.1, dc side voltage reference Ud *According to the different models of motor train units, for the CRH3 model,
calculating a partial derivative related to the voltage variation of the cost function to obtain the voltage variation which can enable the cost function to obtain a minimum value:
the control voltage amount at the next sampling time is:
E. and D, converting the control voltage obtained in the step D through coordinates to obtain an alpha-beta coordinate system component, and outputting a control pulse through sine pulse width modulation.
Finally, a simulation model is built in Matlab/Simulink as shown in FIG. 5, and the obtained voltage and current waveforms are shown in FIG. 6; 0-0.5s is a pre-charging stage; 0.5s-1s is a light load stage, and the equivalent resistance is 100 omega; 1s-1.5s is rated load, and the equivalent load resistance is 10 omega; the waveform shows that the overshoot of the direct-current side voltage under light load is 11.7%, the peak time is 0.08s, the adjusting time is 0.25s, and the voltage fluctuation is +/-5V; the overshoot of the direct-current side voltage under a rated load is 15.6%, the peak time is 0.035s, the regulation time is 0.135s, and the voltage fluctuation is +/-5V; compared with the common transient direct current control, the performance index is better improved, only one cycle is needed from starting to stabilizing of the alternating current, and the harmonic distortion THD is obviously reduced.
The control algorithm is applied to a traction network-motor train unit cascade simulation model, the number of motor train units connected into the traction network is sequentially increased, and under the traditional transient direct current control, when the number of the connected motor train units reaches 7, the voltage and the current of the motor train units and the traction network are obviously shifted, and the low-frequency oscillation phenomenon of the motor train network is generated; under the control of the robust model prediction control high-speed rail low-frequency oscillation overvoltage damping method based on disturbance estimation, when the number of connected motor train units reaches or exceeds 7, the electric quantity is basically stable, and as shown in fig. 7, the problem of low-frequency oscillation does not occur.
The invention controls the current voltage i except the alternating current sideN,uNAnd a DC side voltage udIn addition, disturbance quantity is also considered, the anti-interference capability and the robustness of a control system are improved, and the problem of electric quantity oscillation of a traction network-motor train unit can be damped; the control voltage variation quantity which enables the quality function to obtain a minimum value is obtained by solving the partial derivative of the cost function, so that the predicted current value can be ensured to track the current setting value, and the voltage variation quantity is enabled to beThe chemical quantity floats minimum in the period; the invention needs less parameters to be set, controls the system and is insensitive to parameter change, and the control has better robustness and dynamic performance in an effective range.
Claims (7)
1. A high-speed rail low-frequency oscillation suppression method based on model predictive control of disturbance estimation is characterized by comprising the following steps:
A. constructing a dynamic characteristic equation of the motor train unit network side rectifier considering the parameter error amount under a d-q rotating coordinate system;
B. b, defining a disturbance amount, and obtaining a current prediction value of a motor train unit grid-side rectifier current prediction model considering the disturbance amount under a d-q rotating coordinate system according to the dynamic characteristic equation obtained in the step A;
C. taking the current and the disturbance quantity as state variables to obtain a state space model of a disturbance estimator, and constructing the disturbance estimator to obtain a disturbance quantity estimated value;
D. substituting the disturbance quantity estimation value into the current prediction model in the step B to obtain a current prediction value, and substituting the obtained current prediction value into a cost function to obtain the control voltage of the next sampling period;
E. and D, carrying out coordinate transformation on the control voltage of the next sampling period obtained in the step D to obtain an alpha-beta coordinate system component, and outputting a control pulse through sine pulse width modulation to finish the suppression of the low-frequency oscillation of the high-speed rail.
2. The method for suppressing the high-speed and low-frequency oscillation of the motor train unit grid-side rectifier based on the model predictive control of the disturbance estimation as claimed in claim 1, wherein the motor train unit grid-side rectifier dynamic characteristic equation considering the parameter error amount in the step a is as follows:
defining a resistance rating parameter RNORated parameter L of inductorNOActual resistance parameter and rated parameter error amount delta RNAnd the error amount Delta R between the actual parameter and the rated parameter of the inductorNObtaining:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>R</mi> <mi>N</mi> </msub> <mo>=</mo> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;R</mi> <mi>N</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mi>N</mi> </msub> <mo>=</mo> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;L</mi> <mi>N</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
in the formula: rNActual parameter of resistance, LNActual parameters of the inductor are obtained;
according to an alternating-current side Hall voltage law equation, obtaining a dynamic characteristic equation of the motor train unit grid side rectifier considering parameter error under a d-q rotating coordinate system:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;L</mi> <mi>N</mi> </msub> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msub> <mi>di</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;R</mi> <mi>N</mi> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mo>+</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;L</mi> <mi>N</mi> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mrow> <mo>(</mo> <mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;L</mi> <mi>N</mi> </msub> </mrow> <mo>)</mo> </mrow> <mfrac> <mrow> <msub> <mi>di</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mo>-</mo> <mrow> <mo>(</mo> <mrow> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;R</mi> <mi>N</mi> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mo>-</mo> <mi>&omega;</mi> <mrow> <mo>(</mo> <mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;L</mi> <mi>N</mi> </msub> </mrow> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
in the formula: u. ofNd、uNqFor an input voltage u on the AC sideNA dq direct current component on a two-phase rotating coordinate system; i.e. iNd、iNqRespectively, an input current i on the AC sideNA dq direct current component on a two-phase rotating coordinate system; u. ofabd、uabqAre respectively integralInput voltage u of current transformerabA dq direct current component on a two-phase rotating coordinate system; ω is the angular velocity of rotation and t is a time variable.
3. The method for suppressing the high-speed rail low-frequency oscillation based on the disturbance estimation model predictive control of claim 2, wherein the motor train unit grid-side rectifier current predictive model for calculating the disturbance quantity in the step B is as follows:
defining the disturbance quantity, obtaining:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mi>d</mi> </msub> <mo>=</mo> <msub> <mi>&Delta;L</mi> <mi>N</mi> </msub> <mfrac> <mrow> <msub> <mi>di</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>-</mo> <msub> <mi>&omega;&Delta;L</mi> <mi>N</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;R</mi> <mi>N</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>f</mi> <mi>q</mi> </msub> <mo>=</mo> <msub> <mi>&Delta;L</mi> <mi>N</mi> </msub> <mfrac> <mrow> <msub> <mi>di</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>+</mo> <msub> <mi>&omega;&Delta;L</mi> <mi>N</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&Delta;R</mi> <mi>N</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
in the formula: f. ofd、fqThe disturbance component on the two-phase rotating coordinate system;
then, the dynamic characteristic equation of the grid-side rectifier of the motor train unit can be changed into:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <mfrac> <mrow> <msub> <mi>di</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&omega;L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>f</mi> <mi>d</mi> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <mfrac> <mrow> <msub> <mi>di</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> </mrow> <mrow> <mi>d</mi> <mi>t</mi> </mrow> </mfrac> <mo>=</mo> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>&omega;L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>f</mi> <mi>q</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced>
for the discretization of the above formula, a current prediction model considering the disturbance quantity can be obtained:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <mrow> <mo>(</mo> <mrow> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&omega;T</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>f</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <mrow> <mo>(</mo> <mrow> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>)</mo> </mrow> <mo>+</mo> <mrow> <mo>(</mo> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> </mrow> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&omega;T</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>f</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
in the formula: k represents a discrete quantity corresponding to the time t and is the current sampling moment; k +1 is the next sampling moment; t issIs a sampling period; u. ofNd(k)、uNq(k) Are respectively an AC side input voltage uNDiscretizing dq direct current components at the current moment; i.e. iNd(k)、iNq(k) Respectively, an input current i on the AC sideNDiscretizing dq direct current components at the current moment; u. ofabd(k)、uabq(k) Are respectively the rectifier input voltage uabDiscretizing dq direct current components at the current moment; f. ofd(k)、fq(k) Respectively, the disturbance dq direct current components at the current sampling moment.
4. The method for suppressing the low-frequency oscillation of the high-speed rail based on the model predictive control of the disturbance estimation as claimed in claim 3, characterized by further comprising the following steps:
defining a control output voltage value u at a current sampling instantabd(k)、uabq(k) Comprises the following steps:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>=</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>+</mo> <mi>&Delta;</mi> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>=</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> <mo>+</mo> <mi>&Delta;</mi> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced>
in the formula: u. ofabd(k-1)、uabq(k-1) are respectively the rectifier input voltage uabDiscretizing a dq direct current component at the previous sampling moment; Δ uabd(k) And Δ uabq(k) Respectively representing the variation of the dq component of the control voltage from the moment k-1 to the moment k;
substituting the current prediction model can obtain:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>&Delta;u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>&Delta;u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&omega;T</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>f</mi> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&omega;T</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>f</mi> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced>
in the formula iNd0(k+1)、iNq0(k +1) are respectively neglected control voltage variation amount Deltauabd(k) And Δ uabq(k) The current prediction value dq component at time k-1.
5. The method for suppressing the low-frequency oscillation of the high-speed rail based on the model predictive control of the disturbance estimation as claimed in claim 1, wherein the estimation disturber is constructed by the following process:
disturbance amount f at current sampling timed(k) And fq(k) Equal in one sampling period, namely:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>f</mi> <mi>d</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>=</mo> <msub> <mi>f</mi> <mi>d</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>f</mi> <mi>q</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>=</mo> <msub> <mi>f</mi> <mi>q</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced>
in the formula: f. ofd(k) And fq(k) Respectively representing disturbance components on the two-phase rotating coordinate system at the current sampling moment; f. ofd(k +1) and fq(k +1) are disturbance components on the two-phase rotating coordinate system at the next sampling moment respectively;
the state quantity and the input quantity are defined as follows:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&lsqb;</mo> <mrow> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mrow> <mi>N</mi> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mrow> <mi>N</mi> <mi>q</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> <mo>&rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>x</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&lsqb;</mo> <mrow> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mrow> <mi>N</mi> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mrow> <mi>N</mi> <mi>q</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> <mo>&rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>u</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mo>&lsqb;</mo> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>,</mo> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> <mi>T</mi> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced>
in the formula:are respectively iNd0(k+1)、iNq0An estimated value of (k + 1); i.e. iNd0(k)、iNq0(k) To ignore the current prediction value dq component at the time k-1 of the control voltage variation,are respectively iNd0(k)、iNq0(k) An estimated value of (d);are respectively fd(k)、fq(k) Is determined by the estimated value of (c),are respectively fd(k+1)、fqAn estimated value of (k + 1); x (k +1) is a state component at the moment k +1, x (k) is a state component at the moment k, and u (k) is an input component at the moment k; u. ofNd(k)、uNq(k) Are respectively an AC side input voltage uNDiscretizing dq direct current components at the current moment;
obtaining a state space model of the disturbance estimator:
x(k+1)=Ax(k)+Bu(k)
in the formula:
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>A</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> </mrow> </mtd> <mtd> <mrow> <msub> <mi>&omega;T</mi> <mi>s</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <msub> <mi>&omega;T</mi> <mi>s</mi> </msub> </mrow> </mtd> <mtd> <mrow> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> <mtd> <mrow> <mi>B</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
in the formula: rNOTo define the rated resistance parameter, LNOIs a rated parameter of the inductor, omega is a rotation angular velocity, TsIs a sampling period;
constructing a disturbance estimator based on the state space model:
<mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mrow> <mi>N</mi> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mrow> <mi>N</mi> <mi>q</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>+</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <mi>A</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mrow> <mi>N</mi> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mrow> <mi>N</mi> <mi>q</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mi>B</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>+</mo> <mi>L</mi> <mrow> <mo>(</mo> <mrow> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mi>C</mi> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mrow> <mi>N</mi> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>i</mi> <mo>^</mo> </mover> <mrow> <mi>N</mi> <mi>q</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> <mo>)</mo> </mrow> </mrow>
in the formula:are respectively iNd0(k+1)、iNq0An estimated value of (k + 1);are respectively fd(k +1) and fqAn estimated value of (k + 1);are respectively iNd0(k)、iNq0(k) An estimated value of (d); are respectively fd(k)、fq(k) An estimated value of (d);
<mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>L</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>l</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>l</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>l</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>l</mi> <mn>2</mn> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> <mtd> <mrow> <mi>C</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced>
in the formula I1、l2Feedback coefficients of a state observer gain matrix L; from the above formula, one can obtain:
x(k+1)=(A-LC)x(k)+Bu(k)
and completing the construction of the disturbance estimator.
6. The method for suppressing the low-frequency oscillation of the high-speed rail based on the model predictive control of the disturbance estimation as claimed in claim 1, wherein the cost function in the step D is:
<mrow> <msub> <mi>g</mi> <mi>r</mi> </msub> <mo>=</mo> <msup> <mrow> <mo>&lsqb;</mo> <msubsup> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> <mn>2</mn> </msup> <mo>+</mo> <msup> <mrow> <mo>&lsqb;</mo> <msubsup> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> <mn>2</mn> </msup> </mrow>
in the formula: grIn order to be a function of the cost,setting a value for a q-axis component of the alternating-current side current of the rectifier;setting value i for d-axis component of AC side current of rectifierNd(k+1)、iNq(k +1) are input currents i on the AC sideNDiscretizing a dq direct current component in the next sampling period;
<mrow> <msubsup> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> <mo>*</mo> </msubsup> <mo>=</mo> <msub> <mi>K</mi> <mi>P</mi> </msub> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <mi>d</mi> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>U</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>1</mn> <mo>/</mo> <msub> <mi>T</mi> <mi>i</mi> </msub> <mo>&Integral;</mo> <mrow> <mo>(</mo> <msubsup> <mi>U</mi> <mi>d</mi> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>U</mi> <mi>d</mi> </msub> <mo>)</mo> </mrow> <mi>d</mi> <mi>t</mi> </mrow>
in the formula:is a DC side voltage reference value, UdAs a measured value of the DC side voltage, KpProportional coefficient of PI controller, TiIs the PI controller integration coefficient.
7. The method as claimed in claim 6, wherein the disturbance estimation value is substituted into the current prediction model to obtain the disturbance estimation value
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&omega;T</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>d</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>=</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mfrac> <mrow> <msub> <mi>R</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mrow> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <mo>)</mo> </mrow> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mi>&omega;T</mi> <mi>s</mi> </msub> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>u</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>-</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mi>s</mi> </msub> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> </mfrac> <msub> <mover> <mi>f</mi> <mo>^</mo> </mover> <mi>q</mi> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
Substituting the obtained current predicted value into a cost function to obtain the control voltage of the next sampling period;
the method for calculating the control voltage in the next sampling period comprises the following steps:
partial derivatives of the voltage variation are obtained from the cost function to obtain the voltage variation delta u which can make the cost function obtain minimum valueabd(k) And Δ uabq(k):
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&Delta;u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mfrac> <mo>&lsqb;</mo> <msubsup> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>d</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&Delta;u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <msub> <mi>L</mi> <mrow> <mi>N</mi> <mi>O</mi> </mrow> </msub> <msub> <mi>T</mi> <mi>s</mi> </msub> </mfrac> <mo>&lsqb;</mo> <msubsup> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> </mrow> <mo>*</mo> </msubsup> <mo>-</mo> <msub> <mi>i</mi> <mrow> <mi>N</mi> <mi>q</mi> <mn>0</mn> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>&rsqb;</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
In the formula: i.e. iNd0(k+1)、iNq0(k +1) is the neglect of the control voltage variation Δ uabd(k) And Δ uabq(k) The current prediction value dq component at the k-1 moment; l isNOThe inductance rated parameter; t issIs a sampling period;
the next sampling period control voltage is:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>=</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>+</mo> <mi>&Delta;</mi> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>d</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mtd> </mtr> <mtr> <mtd> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> <mo>=</mo> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> <mo>+</mo> <mi>&Delta;</mi> <msub> <mi>u</mi> <mrow> <mi>a</mi> <mi>b</mi> <mi>q</mi> </mrow> </msub> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mtd> </mtr> </mtable> </mfenced>
in the formula: u. ofabd(k+1)、uabq(k +1) is the rectifier input voltage uabAn input value at a next sampling period; u. ofabd(k)、uabq(k) Is a rectifier input voltage uabDiscretizing dq direct current components at the current sampling moment; Δ uabd(k)、Δuabq(k) The voltage variation from the time k-1 to the time k-1 is controlled.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710493210.2A CN107294372B (en) | 2017-06-26 | 2017-06-26 | The high-speed rail low-frequency oscillation suppression method of Model Predictive Control based on disturbance estimation |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710493210.2A CN107294372B (en) | 2017-06-26 | 2017-06-26 | The high-speed rail low-frequency oscillation suppression method of Model Predictive Control based on disturbance estimation |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107294372A true CN107294372A (en) | 2017-10-24 |
CN107294372B CN107294372B (en) | 2019-04-16 |
Family
ID=60098332
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710493210.2A Expired - Fee Related CN107294372B (en) | 2017-06-26 | 2017-06-26 | The high-speed rail low-frequency oscillation suppression method of Model Predictive Control based on disturbance estimation |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107294372B (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108462191A (en) * | 2018-04-08 | 2018-08-28 | 福州大学 | One kind being based on O3The low-frequency oscillation of electric power system discrimination method of KID algorithms |
CN108717260A (en) * | 2018-03-07 | 2018-10-30 | 国网浙江省电力有限公司电力科学研究院 | Band based on dull integral coefficient disturbs Predictive function control design method |
CN109193697A (en) * | 2018-08-30 | 2019-01-11 | 西南交通大学 | High-speed rail low-frequency oscillation suppression method based on state observer Model Predictive Control |
CN111181176A (en) * | 2020-01-09 | 2020-05-19 | 西南交通大学 | Low-frequency damping self-adaptive compensation device of traction power supply system and control method thereof |
CN113162021A (en) * | 2021-05-08 | 2021-07-23 | 重庆大学 | VSC inner loop current control method based on uncertain interference estimation |
CN113315145A (en) * | 2021-06-02 | 2021-08-27 | 西南交通大学 | Method for establishing unified dq impedance model of high-speed train |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105552936A (en) * | 2016-03-01 | 2016-05-04 | 广东电网有限责任公司佛山供电局 | Low-frequency oscillation suppression method and system for high-speed railway traction network |
-
2017
- 2017-06-26 CN CN201710493210.2A patent/CN107294372B/en not_active Expired - Fee Related
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105552936A (en) * | 2016-03-01 | 2016-05-04 | 广东电网有限责任公司佛山供电局 | Low-frequency oscillation suppression method and system for high-speed railway traction network |
Non-Patent Citations (2)
Title |
---|
张明晖等: "基于扩张状态观测器的永磁电机电流预测控制", 《浙江大学学(工学版)》 * |
杨立永等: "单相PWM 整流器改进无差拍电流预测控制方法", 《中国电机工程学报》 * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108717260A (en) * | 2018-03-07 | 2018-10-30 | 国网浙江省电力有限公司电力科学研究院 | Band based on dull integral coefficient disturbs Predictive function control design method |
CN108462191A (en) * | 2018-04-08 | 2018-08-28 | 福州大学 | One kind being based on O3The low-frequency oscillation of electric power system discrimination method of KID algorithms |
CN109193697A (en) * | 2018-08-30 | 2019-01-11 | 西南交通大学 | High-speed rail low-frequency oscillation suppression method based on state observer Model Predictive Control |
CN109193697B (en) * | 2018-08-30 | 2021-08-03 | 西南交通大学 | High-speed rail low-frequency oscillation suppression method based on state observer model prediction control |
CN111181176A (en) * | 2020-01-09 | 2020-05-19 | 西南交通大学 | Low-frequency damping self-adaptive compensation device of traction power supply system and control method thereof |
CN111181176B (en) * | 2020-01-09 | 2022-03-25 | 西南交通大学 | Low-frequency damping self-adaptive compensation device of traction power supply system and control method thereof |
CN113162021A (en) * | 2021-05-08 | 2021-07-23 | 重庆大学 | VSC inner loop current control method based on uncertain interference estimation |
CN113315145A (en) * | 2021-06-02 | 2021-08-27 | 西南交通大学 | Method for establishing unified dq impedance model of high-speed train |
Also Published As
Publication number | Publication date |
---|---|
CN107294372B (en) | 2019-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107294372B (en) | The high-speed rail low-frequency oscillation suppression method of Model Predictive Control based on disturbance estimation | |
CN107317490B (en) | Dead-beat prediction direct power control method based on three-phase Vienna rectifier | |
Brenna et al. | New stability analysis for tuning PI controller of power converters in railway application | |
Liu et al. | An approach to suppress low-frequency oscillation by combining extended state observer with model predictive control of EMUs rectifier | |
CN104579083A (en) | permanent magnet synchronous motor vector control method and system | |
Benbouhenni | Direct power control of a DFIG fed by a seven-level inverter using SVM strategy | |
CN110034690B (en) | Vienna rectifier model prediction virtual flux linkage control method | |
Xiao et al. | Virtual flux direct power control for PWM rectifiers based on an adaptive sliding mode observer | |
CN109889061A (en) | A kind of high-speed rail low-frequency oscillation suppression method based on extended state observer sliding formwork control | |
CN109787491A (en) | Three-phase Vienna rectifier based on Virtual shipyard predicts direct Power Control method | |
CN104283481A (en) | Apparatus for modifying voltage command for detecting output current in inverter | |
CN105119307A (en) | Active-disturbance-rejection control-based high-speed railway traction network low-frequency oscillation suppression method | |
CN107154634A (en) | A kind of high ferro low-frequency oscillation suppression method based on model prediction current control | |
CN113285481B (en) | Grid-connected converter inductance parameter online estimation method, prediction control method and system | |
CN105720598A (en) | Calculation method for fixed DC voltage controller parameter of voltage source converter | |
CN109586596B (en) | Fuzzy passive control design method of motor train unit rectifier based on EL model | |
CN110768280A (en) | Grid-connected inverter current control method | |
Zhang et al. | A fast instantaneous power calculation algorithm for single-phase rectifiers based on arbitrary phase-delay method | |
CN112242796A (en) | Network voltage fluctuation composite detection control device of locomotive traction converter and control method thereof | |
CN109193697B (en) | High-speed rail low-frequency oscillation suppression method based on state observer model prediction control | |
CN104037766A (en) | Method for self-adaptive neural inversion control of three-phase parallel connection type active filter | |
CN111293942B (en) | Performance improvement method of vehicle network system under multiple working conditions | |
Yuen et al. | Modeling of electric railway vehicle for harmonic analysis of traction power-supply system using spline interpolation in frequency domain | |
CN106407612B (en) | Passive Shape Control device design method for EMU rectifier | |
CN107769594A (en) | A kind of optimization method of Pulse rectifier current inner loop controller |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
CF01 | Termination of patent right due to non-payment of annual fee | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20190416 Termination date: 20210626 |