CN107292415A - A kind of Forecasting Methodology of intelligent meter rotation time - Google Patents

A kind of Forecasting Methodology of intelligent meter rotation time Download PDF

Info

Publication number
CN107292415A
CN107292415A CN201710302053.2A CN201710302053A CN107292415A CN 107292415 A CN107292415 A CN 107292415A CN 201710302053 A CN201710302053 A CN 201710302053A CN 107292415 A CN107292415 A CN 107292415A
Authority
CN
China
Prior art keywords
rate
humidity
temperature
value
fault rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710302053.2A
Other languages
Chinese (zh)
Other versions
CN107292415B (en
Inventor
夏洪涛
袁雪枫
牛东晓
杨扬
姚多朵
王亿
张旭东
王龙
戴波
王锋华
张文军
陈新
叶烨
项弋力
丁小
杨少杰
施婧
方刚毅
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
North China Electric Power University
Zhejiang Huayun Information Technology Co Ltd
Original Assignee
State Grid Corp of China SGCC
State Grid Zhejiang Electric Power Co Ltd
North China Electric Power University
Zhejiang Huayun Information Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by State Grid Corp of China SGCC, State Grid Zhejiang Electric Power Co Ltd, North China Electric Power University, Zhejiang Huayun Information Technology Co Ltd filed Critical State Grid Corp of China SGCC
Priority to CN201710302053.2A priority Critical patent/CN107292415B/en
Publication of CN107292415A publication Critical patent/CN107292415A/en
Application granted granted Critical
Publication of CN107292415B publication Critical patent/CN107292415B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q10/00Administration; Management
    • G06Q10/04Forecasting or optimisation specially adapted for administrative or management purposes, e.g. linear programming or "cutting stock problem"

Landscapes

  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Human Resources & Organizations (AREA)
  • Economics (AREA)
  • Strategic Management (AREA)
  • Marketing (AREA)
  • Game Theory and Decision Science (AREA)
  • Entrepreneurship & Innovation (AREA)
  • Development Economics (AREA)
  • Operations Research (AREA)
  • Quality & Reliability (AREA)
  • Tourism & Hospitality (AREA)
  • Physics & Mathematics (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Electric Clocks (AREA)

Abstract

本发明公开了一种智能表轮换时间的预测方法,属于设备寿命预测领域,解决了现有技术中智能表轮换时间预测不准的技术问题,本发明的智能表轮换时间的预测方法,包括:获取智能表的电压合格率以及当前工作环境下的温度值、湿度值和海拔值;获取智能表的综合故障率;将电压合格率、综合故障率、温度值、湿度值和海拔值归算到预设电压合格率基准、预设综合故障率基准、预设温度差基准、预设湿度基准和预设海拔基准,确定电压合格率、综合故障率、温度、湿度和海拔的标幺值;获取电压合格率、综合故障率、温度、湿度和海拔的权重参数,并根据电压合格率、综合故障率、温度、湿度和海拔的标幺值确定智能表轮换时间。

The invention discloses a method for predicting the rotation time of smart watches, which belongs to the field of equipment life prediction and solves the technical problem of inaccurate prediction of the rotation time of smart meters in the prior art. The method for predicting the rotation time of smart meters of the present invention includes: Obtain the voltage qualification rate of the smart meter and the temperature value, humidity value and altitude value in the current working environment; obtain the comprehensive failure rate of the smart meter; calculate the voltage qualification rate, comprehensive failure rate, temperature value, humidity value and altitude value to the Preset voltage qualification rate benchmark, preset comprehensive failure rate benchmark, preset temperature difference benchmark, preset humidity benchmark and preset altitude benchmark, determine the per unit value of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude; obtain The weight parameters of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude, and determine the smart meter rotation time according to the per unit value of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude.

Description

一种智能表轮换时间的预测方法A Prediction Method of Smart Watch Rotation Time

【技术领域】【Technical field】

本发明涉及设备寿命预测领域,具体涉及一种智能表轮换时间的预测方法。The invention relates to the field of equipment life prediction, in particular to a method for predicting the rotation time of a smart meter.

【背景技术】【Background technique】

设备的物理寿命的确定有两种方法:一是由设备制造商给出。对于常年生产某一设备的制造商来说,因为有多年的生产经验和大量的数据积累,以及用户的反馈信息,可以确定其设备寿命。对于新研制的设备,也可根据同型号的设备对寿命值做出正确的估计;二是利用德尔菲法对设备寿命进行预测,具体过程是由需求者把设备及其主要零部件的有关背景材料及预测的目的要求分别寄给相关专家,要求他们按时以自己的经验对设备寿命进行评估,然后将各位专家的意见进行归纳整理,并将整理结果再次寄给各位专家,请他们进行二次评估,然后再综合归纳。上述两种方法主观性较强,为综合考虑多种客观因素,对设备寿命预测的准确度较弱。There are two ways to determine the physical life of the equipment: one is given by the equipment manufacturer. For a manufacturer who produces a certain equipment all year round, because of years of production experience, a large amount of data accumulation, and user feedback, the life of its equipment can be determined. For newly developed equipment, it is also possible to make a correct estimate of the life value based on the equipment of the same type; the second is to use the Delphi method to predict the life of the equipment. The materials and the purpose of forecasting are sent to relevant experts respectively, and they are required to evaluate the life of the equipment with their own experience on time, and then summarize and sort out the opinions of the experts, and send the sorting results to the experts again, asking them to conduct a second Evaluate and then summarize. The above two methods are highly subjective. In order to comprehensively consider various objective factors, the accuracy of equipment life prediction is relatively weak.

【发明内容】【Content of invention】

本发明所要解决的技术问题在于克服现有技术的不足而提供一种智能表轮换时间的预测方法,能够充分考虑客观因素的影响,从而提高智能表的寿命预测精度。The technical problem to be solved by the present invention is to overcome the deficiencies of the prior art and provide a method for predicting the rotation time of smart watches, which can fully consider the influence of objective factors, thereby improving the life prediction accuracy of smart watches.

为解决上述技术问题,本发明采用如下技术方案:In order to solve the problems of the technologies described above, the present invention adopts the following technical solutions:

一种智能表轮换时间的预测方法,所述预测方法包括:A method for predicting the rotation time of a smart watch, the method for predicting comprising:

获取智能表的电压合格率以及当前工作环境下的温度值、湿度值和海拔值;Obtain the qualified voltage rate of the smart meter and the temperature, humidity and altitude values in the current working environment;

获取智能表的综合故障率;Obtain the comprehensive failure rate of the smart meter;

将电压合格率、综合故障率、温度值、湿度值和海拔值归算到预设电压合格率基准、预设综合故障率基准、预设温度差基准、预设湿度基准和预设海拔基准,确定电压合格率、综合故障率、温度、湿度和海拔的标幺值;Calculate the voltage qualification rate, comprehensive failure rate, temperature value, humidity value and altitude value to the preset voltage qualification rate benchmark, preset comprehensive failure rate benchmark, preset temperature difference benchmark, preset humidity benchmark and preset altitude benchmark, Determine the per unit value of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude;

获取电压合格率、综合故障率、温度、湿度和海拔的权重参数,并根据电压合格率、综合故障率、温度、湿度和海拔的标幺值确定智能表轮换时间。Obtain the weight parameters of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude, and determine the smart meter rotation time according to the per unit value of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude.

进一步的,所述获取智能表的综合故障率包括:Further, said acquisition of the comprehensive failure rate of the smart meter includes:

获取所述智能表的时钟故障率α1、烧表故障率α2、通讯故障率α3、表壳损坏或接线柱损坏故障率α4和液晶屏故障及显示错误故障率α5Obtain the clock failure rate α 1 , meter burning failure rate α 2 , communication failure rate α 3 , case damage or terminal damage failure rate α 4 , and LCD screen failure and display error failure rate α 5 of the smart watch;

根据时钟故障率α1、烧表故障率α2、通讯故障率α3、表壳损坏或接线柱损坏故障率α4、液晶屏故障及显示错误故障率α5,以及预设的时钟故障率的权重系数的h1、烧表故障率的权重系数h2、通讯故障率的权重系数h3、表壳损坏或接线柱损坏故障率的权重系数h4、液晶屏故障及显示错误故障率的权重系数h5,满足h1+h2+h3+h4+h5=1,由公式一确定综合故障率α,According to clock failure rate α 1 , meter burning failure rate α 2 , communication failure rate α 3 , case damage or terminal damage failure rate α 4 , LCD screen failure and display error failure rate α 5 , and preset clock failure rate The weight coefficient h 1 of the failure rate of burning meter, the weight coefficient h 2 of the failure rate of burning meter, the weight coefficient h 3 of the failure rate of communication, the weight coefficient h 4 of the failure rate of case damage or terminal damage, the failure rate of LCD screen failure and display error The weight coefficient h 5 satisfies h 1 +h 2 +h 3 +h 4 +h 5 =1, and the comprehensive failure rate α is determined by formula 1,

α=h11+h22+h33+h44+h55 公式一。α=h 11 +h 22 +h 33 +h 44 +h 55 Formula 1.

更进一步的,所述预设温度差基准为4,所述温度的标幺值为所述预设湿度基准为40%,所述湿度的标幺值为所述预设海拔基准为300米,所述海拔的标幺值为所述预设电压合格率基准为70%,所述电压合格率的标幺值为所述预设综合故障率基准为10%,所述综合故障率的标幺值为 Furthermore, the preset temperature difference benchmark is 4, and the per unit value of the temperature is The preset humidity reference is 40%, and the per unit value of the humidity is The preset altitude reference is 300 meters, and the per unit value of the altitude is The preset voltage qualification rate benchmark is 70%, and the per unit value of the voltage qualification rate is The preset comprehensive failure rate benchmark is 10%, and the per unit value of the comprehensive failure rate is

更进一步的,所述获取电压合格率、综合故障率、温度、湿度和海拔的权重参数,并根据电压合格率、综合故障率、温度、湿度和海拔的标幺值确定智能表轮换时间,包括Furthermore, the acquisition of the weight parameters of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude, and determining the smart meter rotation time according to the per unit value of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude include

根据公式二确定智能表轮换时间y,Determine the smart watch rotation time y according to formula 2,

其中,k1为温度的权重参数,k2为湿度的权重参数,k3为海拔的权重参数,k4为电压合格率的权重参数,k5为综合故障率的权重参数,y为智能表轮换时间;Among them, k 1 is the weight parameter of temperature, k 2 is the weight parameter of humidity, k 3 is the weight parameter of altitude, k 4 is the weight parameter of voltage pass rate, k 5 is the weight parameter of comprehensive failure rate, y is the smart meter rotation time;

所述温度的权重参数k1、湿度的权重参数k2、海拔的权重参数k3、电压合格率的权重参数k4以及综合故障率的权重参数k5满足:k1+k2+k3+k4+k5=1。The weight parameter k 1 of the temperature, the weight parameter k 2 of the humidity, the weight parameter k 3 of the altitude, the weight parameter k 4 of the voltage qualification rate and the weight parameter k 5 of the comprehensive failure rate satisfy: k 1 +k 2 +k 3 +k 4 +k 5 =1.

本发明的有益效果:Beneficial effects of the present invention:

本发明的技术方案是在综合考虑了智能表实际所处工作环境的温度值、湿度值、海拔值以及智能表本身的电压合格率及综合故障率客观因素基础上进行的轮换时间预测,降低了人员主观性的干扰,预测精度更高,为智能表的轮换提供有效准备,降低由于更换智能表而造成的损失。The technical solution of the present invention is based on the comprehensive consideration of the temperature value, humidity value, altitude value of the actual working environment of the smart meter, and the objective factors of the voltage pass rate and comprehensive failure rate of the smart meter itself. Interference of personnel subjectivity, higher prediction accuracy, provide effective preparation for the rotation of smart meters, and reduce losses caused by replacing smart meters.

本发明的这些特点和优点将会在下面的具体实施方式、附图中详细的揭露。These characteristics and advantages of the present invention will be disclosed in detail in the following specific embodiments and drawings.

【附图说明】【Description of drawings】

下面结合附图对本发明做进一步的说明:Below in conjunction with accompanying drawing, the present invention will be further described:

图1为本发明的流程图。Fig. 1 is a flowchart of the present invention.

【具体实施方式】【detailed description】

下面结合本发明实施例的附图对本发明实施例的技术方案进行解释和说明,但下述实施例仅仅为本发明的优选实施例,并非全部。基于实施方式中的实施例,本领域技术人员在没有做出创造性劳动的前提下所获得其它实施例,都属于本发明的保护范围。The technical solutions of the embodiments of the present invention will be explained and described below in conjunction with the accompanying drawings of the embodiments of the present invention, but the following embodiments are only preferred embodiments of the present invention, not all of them. Based on the examples in the implementation manners, other examples obtained by those skilled in the art without making creative efforts all belong to the protection scope of the present invention.

如图1所示,本发明公开了一种智能表轮换时间的预测方法,所述预测方法包括:As shown in Figure 1, the present invention discloses a method for predicting the rotation time of a smart watch, and the method for predicting includes:

11、获取智能表的电压合格率β以及当前工作环境下的温度值T、湿度值P和海拔值H;11. Obtain the voltage qualification rate β of the smart meter and the temperature value T, humidity value P and altitude value H in the current working environment;

12、获取智能表的综合故障率;12. Obtain the comprehensive failure rate of the smart meter;

13、将电压合格率、综合故障率、温度值、湿度值和海拔值归算到预设电压合格率基准、预设综合故障率基准、预设温度差基准、预设湿度基准和预设海拔基准,确定电压合格率、综合故障率、温度、湿度和海拔的标幺值;13. Calculate the voltage qualification rate, comprehensive failure rate, temperature value, humidity value and altitude value to the preset voltage qualification rate benchmark, preset comprehensive failure rate benchmark, preset temperature difference benchmark, preset humidity benchmark and preset altitude Benchmark, to determine the per unit value of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude;

14、获取电压合格率、综合故障率、温度、湿度和海拔的权重参数,并根据电压合格率、综合故障率、温度、湿度和海拔的标幺值确定智能表轮换时间。14. Obtain the weight parameters of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude, and determine the smart meter rotation time according to the per unit value of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude.

其中步骤12中获取智能表的综合故障率包括:The comprehensive failure rate obtained in step 12 of the smart meter includes:

获取智能表的时钟故障率α1、烧表故障率α2、通讯故障率α3、表壳损坏或接线柱损坏故障率α4和液晶屏故障及显示错误故障率α5Obtain the clock failure rate α 1 , meter burning failure rate α 2 , communication failure rate α 3 , case damage or terminal damage failure rate α 4 , and LCD screen failure and display error failure rate α 5 of the smart watch;

根据时钟故障率α1、烧表故障率α2、通讯故障率α3、表壳损坏或接线柱损坏故障率α4、液晶屏故障及显示错误故障率α5,以及预设的时钟故障率的权重系数的h1、烧表故障率的权重系数h2、通讯故障率的权重系数h3、表壳损坏或接线柱损坏故障率的权重系数h4、液晶屏故障及显示错误故障率的权重系数h5,满足h1+h2+h3+h4+h5=1,由公式一确定综合故障率α,According to clock failure rate α 1 , meter burning failure rate α 2 , communication failure rate α 3 , case damage or terminal damage failure rate α 4 , LCD screen failure and display error failure rate α 5 , and preset clock failure rate The weight factor h 1 of the weight factor, the weight factor h 2 of the failure rate of burning meter, the weight factor h 3 of the communication failure rate, the weight factor h 4 of the failure rate of the case damage or terminal damage, the failure rate of LCD screen failure and display error The weight coefficient h 5 satisfies h 1 +h 2 +h 3 +h 4 +h 5 =1, and the comprehensive failure rate α is determined by formula 1,

α=h11+h22+h33+h44+h55 公式一。α=h 11 +h 22 +h 33 +h 44 +h 55 Formula 1.

所述预设温度差基准为4,所述温度的标幺值为所述预设湿度基准为40%,所述湿度的标幺值为所述预设海拔基准为300米,所述海拔的标幺值为所述预设电压合格率基准为70%,所述电压合格率的标幺值为所述预设综合故障率基准为10%,所述综合故障率的标幺值为 The preset temperature difference benchmark is 4, and the per unit value of the temperature is The preset humidity reference is 40%, and the per unit value of the humidity is The preset altitude reference is 300 meters, and the per unit value of the altitude is The preset voltage qualification rate benchmark is 70%, and the per unit value of the voltage qualification rate is The preset comprehensive failure rate benchmark is 10%, and the per unit value of the comprehensive failure rate is

步骤14中获取电压合格率、综合故障率、温度、湿度和海拔的权重参数,并根据电压合格率、综合故障率、温度、湿度和海拔的标幺值确定智能表轮换时间,包括In step 14, the weight parameters of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude are obtained, and the smart meter rotation time is determined according to the per unit value of voltage qualification rate, comprehensive failure rate, temperature, humidity and altitude, including

根据公式二确定智能表轮换时间y,Determine the smart watch rotation time y according to formula 2,

其中,k1为温度的权重参数,k2为湿度的权重参数,k3为海拔的权重参数,k4为电压合格率的权重参数,k5为综合故障率的权重参数,y为智能表轮换时间;Among them, k 1 is the weight parameter of temperature, k 2 is the weight parameter of humidity, k 3 is the weight parameter of altitude, k 4 is the weight parameter of voltage pass rate, k 5 is the weight parameter of comprehensive failure rate, y is the smart meter rotation time;

所述温度的权重参数k1、湿度的权重参数k2、海拔的权重参数k3、电压合格率的权重参数k4以及综合故障率的权重参数k5满足:k1+k2+k3+k4+k5=1。The weight parameter k 1 of the temperature, the weight parameter k 2 of the humidity, the weight parameter k 3 of the altitude, the weight parameter k 4 of the voltage qualification rate and the weight parameter k 5 of the comprehensive failure rate satisfy: k 1 +k 2 +k 3 +k 4 +k 5 =1.

为了验证本发明的预测方法,下面将结合具体实例进行进一步说明。In order to verify the prediction method of the present invention, further description will be given below in conjunction with specific examples.

例如该批次的智能表安装在环境温度值T为18摄氏度,一般取平均值,湿度值P为50%,海拔值H为10米的地方,根据历史情况,该批电能表的电压合格率β为80%。For example, this batch of smart meters is installed in a place where the ambient temperature T is 18 degrees Celsius, the average value is generally taken, the humidity value P is 50%, and the altitude value H is 10 meters. According to historical conditions, the voltage qualification rate of this batch of electric energy meters β is 80%.

其中权重系数hi的数值采用熵权法确定,i为1,2,3,4,5。采集n组智能表,每组智能表的故障类别为m类,本实施例中的为n为6,m为5,Among them, the value of weight coefficient h i is determined by entropy weight method, and i is 1, 2, 3, 4, 5. Collect n groups of smart meters, the fault category of each group of smart meters is m class, in this embodiment, n is 6, m is 5,

设由n个方案m项指标构成的评价矩阵为X=(xji)n×m,j=1,2,…,n;i=1,2,…,m。指标标准化方法如下:Assume that the evaluation matrix composed of n schemes and m indicators is X=(x ji ) n×m , j=1,2,...,n; i=1,2,...,m. The index standardization method is as follows:

式中Pji为标准化的指标数据。标准化处理有效地消除了指标间的不可公度。各指标的熵为:In the formula, P ji is the standardized index data. Standardization effectively eliminates incommensurability among indicators. The entropy of each index is:

特别地,当Pji=0时,令PjilnPji=0。wi为各指标无偏好权重。In particular, when P ji =0, set P ji lnP ji =0. w i is the non-preference weight of each indicator.

以θi表示电网企业对第i个故障指标或影响因素的偏好度,则评估样本第i个故障指标或影响因素的偏好熵权重(以hi表示),则偏好熵权重系数为:Let θ i represent the preference degree of the power grid enterprise to the i-th fault index or influencing factor, then evaluate the preference entropy weight of the i-th fault index or influencing factor in the sample (expressed by h i ), then the preference entropy weight coefficient is:

本实施例中计算得出的时钟故障率的权重系数的h1为0.4、烧表故障率的权重系数h2为0.1、通讯故障率的权重系数h3为0.2、表壳损坏或接线柱损坏故障率的权重系数h4为0.1、液晶屏故障及显示错误故障率的权重系数h5为0.2。The weight factor h1 of the clock failure rate calculated in this embodiment is 0.4, the weight factor h2 of the meter burning failure rate is 0.1, the weight factor h3 of the communication failure rate is 0.2, and the case is damaged or the terminal is damaged The weight coefficient h 4 of the failure rate is 0.1, and the weight coefficient h 5 of the LCD screen failure and display error failure rate is 0.2.

根据对设备以往故障情况分析,各主要故障发生的频率及权重设置如表1所示:According to the analysis of the past failures of the equipment, the frequency and weight of each major failure are set as shown in Table 1:

表1各类别故障率统计及权重系数设置表Table 1 The failure rate statistics and weight coefficient setting table of each category

将上表的数据α1、、α2、、α3α4α5和h1、h2、h、3h4h5代入公式一可得,综合故障率α为0.2638。Substituting the data α 1 , α 2 , α 3 α 4 α 5 and h 1 , h 2 , h, 3 h 4 h 5 in the above table into formula 1, the comprehensive failure rate α is 0.2638.

温度的标幺值x1、湿度的标幺值x2、海拔的标幺值x3、电压合格率的标幺值x4、综合故障率的标幺值x5及温度的权重参数k1、湿度的权重参数k2、海拔的权重参数k3、电压合格率的权重参数k4和综合故障率的权重参数k5如表2所示,其中ki的计算方式参照hi的计算方式,The per unit value of temperature x 1 , the per unit value of humidity x 2 , the per unit value of altitude x 3 , the per unit value of voltage qualification rate x 4 , the per unit value of comprehensive failure rate x 5 and the weight parameter k 1 of temperature , the weight parameter k 2 of humidity, the weight parameter k 3 of altitude, the weight parameter k 4 of voltage qualification rate and the weight parameter k 5 of comprehensive failure rate are shown in Table 2 , where the calculation method of ki refers to the calculation method of h i ,

表2各标幺值及权重参数设置表Table 2 Each per unit value and weight parameter setting table

将上述各个数据代入公式二中,得到该批次智能表轮换时间为4.3年。Substituting the above data into formula 2, the rotation time of this batch of smart watches is 4.3 years.

由公式二可知,温度实际温度与最佳温度差值的绝对值越大,温度的标幺值越大,表计轮换时间越短;实际湿度越大,湿度的标幺值也越大,表计轮换时间越短;实际海拔越高,海拔的标幺值越大,表计轮换时间越短;电压合格率越高,电压合格率的标幺值越大,表计轮换时间越长;综合故障率越高,综合故障率的标幺值越大,表计轮换时间越短。It can be seen from formula 2 that the greater the absolute value of the difference between the actual temperature and the optimal temperature, the greater the per unit value of the temperature, and the shorter the meter rotation time; the greater the actual humidity, the greater the per unit value of the humidity, and the greater the per unit value of the meter The shorter the meter rotation time; the higher the actual altitude, the greater the per unit value of the altitude, and the shorter the meter rotation time; the higher the voltage qualification rate, the larger the per unit value of the voltage qualification rate, and the longer the meter rotation time; The higher the failure rate, the greater the per unit value of the comprehensive failure rate, and the shorter the meter rotation time.

由此可知,本发明的技术方案是在综合考虑了智能表实际所处工作环境的温度值、湿度值、海拔值以及智能表本身的电压合格率及综合故障率客观因素基础上进行的轮换时间预测,降低了人员主观性的干扰,预测精度更高,为智能表的轮换提供有效准备,降低由于更换智能表而造成的损失。It can be seen from this that the technical solution of the present invention is based on the comprehensive consideration of the temperature value, humidity value, altitude value of the actual working environment of the smart meter, and the objective factors of the voltage pass rate and comprehensive failure rate of the smart meter itself. Prediction, which reduces the interference of personnel subjectivity, has higher prediction accuracy, provides effective preparation for the rotation of smart meters, and reduces the loss caused by replacing smart meters.

以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,熟悉该本领域的技术人员应该明白本发明包括但不限于附图和上面具体实施方式中描述的内容。任何不偏离本发明的功能和结构原理的修改都将包括在权利要求书的范围中。The above is only a specific embodiment of the present invention, but the scope of protection of the present invention is not limited thereto, those skilled in the art should understand that the present invention includes but is not limited to the accompanying drawings and described in the above specific embodiments content. Any modifications that do not depart from the functional and structural principles of the present invention will be included in the scope of the claims.

Claims (4)

1. a kind of Forecasting Methodology of intelligent meter rotation time, it is characterised in that the Forecasting Methodology includes:
Obtain the rate of qualified voltage and temperature value, humidity value and altitude value under current operating environment of intelligent meter;
Obtain the resultant fault rate of intelligent meter;
By rate of qualified voltage, resultant fault rate, temperature value, humidity value and altitude value reduction to predeterminated voltage qualification rate benchmark, in advance If resultant fault rate benchmark, preset temperature difference benchmark, default humidity benchmark and default height above sea level benchmark, rate of qualified voltage is determined, comprehensive Close the perunit value of fault rate, temperature, humidity and height above sea level;
The weight parameter of rate of qualified voltage, resultant fault rate, temperature, humidity and height above sea level is obtained, and according to rate of qualified voltage, synthesis Fault rate, temperature, the perunit value of humidity and height above sea level determine intelligent meter rotation time.
2. the Forecasting Methodology of intelligent meter rotation time according to claim 1, it is characterised in that the acquisition intelligent meter Resultant fault rate includes:
Obtain the clock failure rate α of the intelligent meter1, burn table fault rate α2, communication failure rate α3, watchcase damage or binding post damage Bad fault rate α4With liquid crystal display failure and display fault rate α5
According to clock failure rate α1, burn table fault rate α2, communication failure rate α3, watchcase is damaged or binding post damages fault rate α4, liquid Crystalline substance screen failure and display fault rate α5, and the weight coefficient of default clock failure rate h1, burn table fault rate weight Coefficient h2, communication failure rate weight coefficient h3, watchcase damage or binding post damage fault rate weight coefficient h4, liquid crystal display therefore The weight coefficient h of barrier and display fault rate5, meet h1+h2+h3+h4+h5=1, resultant fault rate α is determined by formula one,
α=h11+h22+h33+h44+h55Formula one.
3. the Forecasting Methodology of intelligent meter rotation time according to claim 2, it is characterised in that the poor base of the preset temperature Standard is 4, and the perunit value of the temperature isThe default humidity benchmark is 40%, and the perunit value of the humidity isThe default height above sea level benchmark is 300 meters, and the perunit value of the height above sea level isThe predeterminated voltage qualification rate Benchmark is 70%, and the perunit value of the rate of qualified voltage isThe preset comprehensive fault rate benchmark is 10%, described The perunit value of resultant fault rate is
4. the Forecasting Methodology of intelligent meter rotation time according to claim 3, it is characterised in that the acquisition voltage is qualified Rate, resultant fault rate, temperature, the weight parameter of humidity and height above sea level, and according to rate of qualified voltage, resultant fault rate, temperature, humidity Intelligent meter rotation time is determined with the perunit value of height above sea level, including
Intelligent meter rotation time y is determined according to formula two,
Wherein, k1For the weight parameter of temperature, k2For the weight parameter of humidity, k3For the weight parameter of height above sea level, k4It is qualified for voltage The weight parameter of rate, k5For the weight parameter of resultant fault rate, y is intelligent meter rotation time;
The weight parameter k of the temperature1, humidity weight parameter k2, height above sea level weight parameter k3, rate of qualified voltage weight ginseng Number k4And the weight parameter k of resultant fault rate5Meet:k1+k2+k3+k4+k5=1.
CN201710302053.2A 2017-05-02 2017-05-02 A method for predicting the rotation time of smart watches Active CN107292415B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710302053.2A CN107292415B (en) 2017-05-02 2017-05-02 A method for predicting the rotation time of smart watches

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710302053.2A CN107292415B (en) 2017-05-02 2017-05-02 A method for predicting the rotation time of smart watches

Publications (2)

Publication Number Publication Date
CN107292415A true CN107292415A (en) 2017-10-24
CN107292415B CN107292415B (en) 2021-07-30

Family

ID=60094404

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710302053.2A Active CN107292415B (en) 2017-05-02 2017-05-02 A method for predicting the rotation time of smart watches

Country Status (1)

Country Link
CN (1) CN107292415B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108268076A (en) * 2018-01-23 2018-07-10 余绍志 A kind of computer room operational safety assessment system based on big data
CN109359896A (en) * 2018-12-10 2019-02-19 国网福建省电力有限公司 An early warning method for power grid line fault risk based on SVM
CN109583697A (en) * 2018-10-29 2019-04-05 中国电力科学研究院有限公司 A kind of electric energy metering device intelligent rotation method and system based on big data cluster analysis
CN110927654A (en) * 2019-08-23 2020-03-27 国网天津市电力公司电力科学研究院 A method for evaluating the batch operation status of smart energy meters
CN113607413A (en) * 2021-08-26 2021-11-05 上海航数智能科技有限公司 Bearing component fault monitoring and predicting method based on controllable temperature and humidity

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103218752A (en) * 2013-03-13 2013-07-24 云南电力试验研究院(集团)有限公司电力研究院 Current and short-term reliability assessment method of high-voltage transformer
CN103310051A (en) * 2013-06-05 2013-09-18 天泽信息产业股份有限公司 Method for predicting failure rate of vehicle-mounted information terminal in entire life cycle
CN103426030A (en) * 2013-04-24 2013-12-04 华北电力大学 Power equipment fault rate prediction method considering aging factors
CN103714493A (en) * 2014-01-10 2014-04-09 中国南方电网有限责任公司超高压输电公司检修试验中心 Evaluation method of remaining life of SF6 circuit breaker
CN104914327A (en) * 2015-05-06 2015-09-16 北京航空航天大学 Transformer fault maintenance prediction method based on real-time monitoring information
US20160154061A1 (en) * 2014-11-28 2016-06-02 State Grid Corporation Of China Method of assessing risk of power system with high penetration of wind power
CN105740582A (en) * 2016-03-16 2016-07-06 华北电力大学 Prediction method for ageing state of composite insulator

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103218752A (en) * 2013-03-13 2013-07-24 云南电力试验研究院(集团)有限公司电力研究院 Current and short-term reliability assessment method of high-voltage transformer
CN103426030A (en) * 2013-04-24 2013-12-04 华北电力大学 Power equipment fault rate prediction method considering aging factors
CN103310051A (en) * 2013-06-05 2013-09-18 天泽信息产业股份有限公司 Method for predicting failure rate of vehicle-mounted information terminal in entire life cycle
CN103714493A (en) * 2014-01-10 2014-04-09 中国南方电网有限责任公司超高压输电公司检修试验中心 Evaluation method of remaining life of SF6 circuit breaker
US20160154061A1 (en) * 2014-11-28 2016-06-02 State Grid Corporation Of China Method of assessing risk of power system with high penetration of wind power
CN104914327A (en) * 2015-05-06 2015-09-16 北京航空航天大学 Transformer fault maintenance prediction method based on real-time monitoring information
CN105740582A (en) * 2016-03-16 2016-07-06 华北电力大学 Prediction method for ageing state of composite insulator

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ZHOU YANG等: "Smart electricity meter reliability prediction based on accelerated degradation testing and modeling", 《INTERNATIONAL JOURNAL OF ELECTRICAL POWER&ENERGY SYSTEMS》 *
梁博渊等: "变压器健康状况评估与剩余寿命预测", 《电网与清洁能源》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108268076A (en) * 2018-01-23 2018-07-10 余绍志 A kind of computer room operational safety assessment system based on big data
CN109583697A (en) * 2018-10-29 2019-04-05 中国电力科学研究院有限公司 A kind of electric energy metering device intelligent rotation method and system based on big data cluster analysis
CN109359896A (en) * 2018-12-10 2019-02-19 国网福建省电力有限公司 An early warning method for power grid line fault risk based on SVM
CN109359896B (en) * 2018-12-10 2021-11-12 国网福建省电力有限公司 SVM-based power grid line fault risk early warning method
CN110927654A (en) * 2019-08-23 2020-03-27 国网天津市电力公司电力科学研究院 A method for evaluating the batch operation status of smart energy meters
CN113607413A (en) * 2021-08-26 2021-11-05 上海航数智能科技有限公司 Bearing component fault monitoring and predicting method based on controllable temperature and humidity

Also Published As

Publication number Publication date
CN107292415B (en) 2021-07-30

Similar Documents

Publication Publication Date Title
CN107292415A (en) A kind of Forecasting Methodology of intelligent meter rotation time
CN110375787B (en) An online evaluation method for the running state of a metering instrument
CN105022019B (en) The method of single-phase intelligent electric energy meter Reliability Synthesis evaluation
CN103197138B (en) A kind of intelligent electric meter and monitoring method with power supply reliability and rate of qualified voltage monitoring function
CN103646358B (en) Meter and the electrical network scheduled overhaul cycle determination method of power equipment time-varying fault rate
CN105894133B (en) Wind turbine component maintenance and spare part demand forecasting method
CN113792939B (en) Electric energy meter reliability prediction method and device based on mixed Weibull distribution
CN110927654B (en) Batch running state evaluation method for intelligent electric energy meters
CN105761001B (en) Distribution network equipment state evaluation method fusing multi-source information
CN109190957A (en) A kind of intelligent electric energy meter O&M replacing options and device based on online overall merit
CN105631539A (en) Intelligent building energy consumption prediction method based on support vector machine
CN106229969A (en) Electric network element based on cumulative statistics line loss per unit loss abnormality judgment method
CN110146840A (en) A Short-Term Life Prediction Method for Batch Energy Meters Based on Multiple Stress Effects
CN104915894A (en) Metering automatic terminal operation risk early warning system
CN104898084A (en) Electric energy metering device operation state monitoring method
CN203069670U (en) Intelligent electric meter having function of monitoring power supply reliability and voltage qualified rate
CN114254839A (en) A Demand Prediction Method for Electric Energy Measuring Instruments Based on Adaptive Algorithm
CN104991218A (en) System monitoring operation state of electric energy metering device
CN104880690B (en) A kind of evaluation method of electric energy meter operation
CN104880691A (en) Method for evaluating operation state of gateway electrical energy metering device
CN111242411B (en) Wind turbine generator power characteristic evaluation method and system
CN112001551A (en) Method for predicting electricity sales amount of power grid in city based on electricity information of large users
CN205643673U (en) Metering device scraps alarm device based on measurement instrument follow -up of quality evaluation system
CN104715289B (en) Preferably generating progress indicator determines method and device for power plant
CN115526351A (en) Equipment inspection method and device applied to transformer substation and electronic equipment

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information
CB02 Change of applicant information

Address after: 310007 Huanglong Road, Zhejiang, Hangzhou, No. 8

Applicant after: Zhejiang Electric Power Co., Ltd.

Applicant after: State Grid Corporation of China

Applicant after: North China Electric Power University

Applicant after: Zhejiang Huayun Information Technology Co., Ltd.

Address before: 310000 Huanglong Road, Zhejiang, Hangzhou, No. 8

Applicant before: State Grid Zhejiang Electric Power Company

Applicant before: State Grid Corporation of China

Applicant before: North China Electric Power University

Applicant before: Zhejiang Huayun Information Technology Co., Ltd.

GR01 Patent grant
GR01 Patent grant