CN107292007A - A kind of product Design Decision Making based on effectiveness supports system and method - Google Patents
A kind of product Design Decision Making based on effectiveness supports system and method Download PDFInfo
- Publication number
- CN107292007A CN107292007A CN201710429349.0A CN201710429349A CN107292007A CN 107292007 A CN107292007 A CN 107292007A CN 201710429349 A CN201710429349 A CN 201710429349A CN 107292007 A CN107292007 A CN 107292007A
- Authority
- CN
- China
- Prior art keywords
- utility
- alternatives
- value
- module
- utility function
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000013461 design Methods 0.000 title claims abstract description 94
- 238000000034 method Methods 0.000 title claims abstract description 41
- 238000011156 evaluation Methods 0.000 claims abstract description 97
- 230000008859 change Effects 0.000 claims abstract description 31
- 238000004458 analytical method Methods 0.000 claims description 14
- 238000012805 post-processing Methods 0.000 claims description 12
- 238000012360 testing method Methods 0.000 claims description 8
- 238000009827 uniform distribution Methods 0.000 claims description 4
- 238000012938 design process Methods 0.000 abstract description 10
- 230000008569 process Effects 0.000 description 14
- 239000000463 material Substances 0.000 description 12
- 239000002131 composite material Substances 0.000 description 9
- 238000004364 calculation method Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 229910000831 Steel Inorganic materials 0.000 description 4
- 238000012986 modification Methods 0.000 description 4
- 230000004048 modification Effects 0.000 description 4
- 238000012545 processing Methods 0.000 description 4
- 239000010959 steel Substances 0.000 description 4
- PXHVJJICTQNCMI-UHFFFAOYSA-N Nickel Chemical compound [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 2
- 238000002679 ablation Methods 0.000 description 2
- 229910052799 carbon Inorganic materials 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 238000009415 formwork Methods 0.000 description 2
- 239000003721 gunpowder Substances 0.000 description 2
- 238000005457 optimization Methods 0.000 description 2
- 229920000647 polyepoxide Polymers 0.000 description 2
- 238000011160 research Methods 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 1
- 229920000049 Carbon (fiber) Polymers 0.000 description 1
- 208000001613 Gambling Diseases 0.000 description 1
- 238000000342 Monte Carlo simulation Methods 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 230000000996 additive effect Effects 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 150000001721 carbon Chemical class 0.000 description 1
- 239000004917 carbon fiber Substances 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009826 distribution Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000013210 evaluation model Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 239000003733 fiber-reinforced composite Substances 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 238000003012 network analysis Methods 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 238000010791 quenching Methods 0.000 description 1
- 230000000171 quenching effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000010206 sensitivity analysis Methods 0.000 description 1
- 238000004088 simulation Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Classifications
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/20—Design optimisation, verification or simulation
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- Geometry (AREA)
- General Engineering & Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
本发明提供了一种基于效用的产品设计决策支持系统及方法,决策支持系统包括知识库模块、单效用函数模块、多效用函数模块及总体期望效用模块,每一个模块都具备独立的输入输出接口。本发明备选设计方案的评价指标为区间值,客观性强,能够适应产品设计过程中指标值的不确定性;采用该决策支持系统的方法能够适应产品设计需求的动态变化,当外部环境设计需求变化时,可以根据变化影响的参量通过输入输出接口在相应的模块中处理,避免了重新计算,提高了设计方案的有效性,且评价效率高。
The invention provides a utility-based product design decision support system and method. The decision support system includes a knowledge base module, a single utility function module, a multiple utility function module and an overall expected utility module, and each module has an independent input and output interface. . The evaluation index of the alternative design scheme of the present invention is an interval value, which has strong objectivity and can adapt to the uncertainty of the index value in the product design process; adopting the method of the decision support system can adapt to the dynamic change of product design requirements, when the external environment design When the demand changes, it can be processed in the corresponding module through the input and output interface according to the parameters affected by the change, which avoids recalculation, improves the effectiveness of the design scheme, and has high evaluation efficiency.
Description
技术领域technical field
本发明涉及一种产品设计的方案评价方法,具体涉及一种基于效用的产品设计决策支持系统及方法。The invention relates to a product design scheme evaluation method, in particular to a utility-based product design decision support system and method.
背景技术Background technique
智能设计系统为产品设计研发的自动化与智能化提供了可能,而产品设计方案的评价与优选是其重要的组成部分。设计人员为智能设计系统输入设计需求,系统经由其推理模块会产生多种备选方案。但设计人员往往只想得到唯一一种综合最优的方案用于后续的仿真分析和实际生产。因此,需要一种方案评价方法来实现多项备选方案的评价与排序以得出最优方案。The intelligent design system provides the possibility for the automation and intelligence of product design and development, and the evaluation and optimization of product design schemes are an important part of it. Designers input design requirements for the intelligent design system, and the system will generate multiple alternatives through its reasoning module. However, designers often only want to obtain the only comprehensive and optimal solution for subsequent simulation analysis and actual production. Therefore, a scheme evaluation method is needed to realize the evaluation and ranking of multiple alternative schemes to obtain the optimal scheme.
方案评价方法实际上是一种产品设计方案的决策过程。以往比较流行的设计决策方法,如基于模糊决策图(FDM)与灰色关联分析(GRA)的方案评价方法(FDM-GRA)、多粒度属性指标模糊测度和可加Choquet积分模型方法、网络分析法、多层次属性指标的设计决策方法、考虑评价指标权重以及灰色关联分析的设计方案优选决策方法。上述研究尝试将基于决策方法在选择产品设计最优方案上进行应用,侧重于结合已知各设计属性的权重的情况下,设计方案评价方法依靠专家经验打分评价,方案有效性低,也忽略了在设计方案中存在的不确定性的影响。The scheme evaluation method is actually a decision-making process of product design scheme. The more popular design decision-making methods in the past, such as the program evaluation method (FDM-GRA) based on fuzzy decision-making diagram (FDM) and gray relational analysis (GRA), multi-granularity attribute index fuzzy measurement and additive Choquet integral model method, network analysis method , the design decision-making method of multi-level attribute index, the optimal decision-making method of design scheme considering the evaluation index weight and gray relational analysis. The above research attempts to apply the decision-making method to select the optimal product design scheme, focusing on the combination of the weight of each design attribute. The evaluation method of the design scheme relies on expert experience to score and evaluate, the scheme effectiveness is low, and it also ignores the The influence of uncertainty in the design scheme.
目前为了解决枪械设计过程当中存在的不确定性,主要采用蒙特卡洛仿真和区间数等理论、基于渐近全局代理模型的稳健优化设计、产品方案的模糊分类综合评价模型。At present, in order to solve the uncertainties in the firearms design process, Monte Carlo simulation and interval number theory, robust optimization design based on asymptotic global agent model, and fuzzy classification comprehensive evaluation model of product schemes are mainly used.
现有的研究成果,从不同角度实现了对产品设计过程的决策支持和设计参数不确定性的表达,但仍缺少一种充分考虑产品设计过程当中设计参数不确定以及设计需求动态变化这两类设计不确定性的决策支持方法,影响了产品设计方案的有效性。The existing research results have achieved decision support for the product design process and the expression of design parameter uncertainty from different perspectives, but there is still a lack of a method that fully considers the uncertainty of design parameters and the dynamic changes in design requirements in the product design process. The decision support method of design uncertainty affects the validity of product design scheme.
发明内容Contents of the invention
有鉴于此,本发明提供了一种基于效用的产品设计决策支持系统及方法,能够适应产品设计过程中设计的不确定性,提高了设计方案的有效性,且评价效率高。In view of this, the present invention provides a utility-based product design decision support system and method, which can adapt to the design uncertainty in the product design process, improve the effectiveness of the design scheme, and have high evaluation efficiency.
一种基于效用的产品设计决策支持系统,所述决策支持系统包括知识库模块、单效用函数模块、多效用函数模块及总体期望效用模块,每一个模块都具备独立的输入输出接口;A utility-based product design decision support system, the decision support system includes a knowledge base module, a single utility function module, a multi-utility function module and an overall expected utility module, and each module has an independent input and output interface;
所述知识库模块用于存储以往的设计方案及评价指标,根据与产品需求相关的n个评价指标选择备选方案;The knowledge base module is used to store previous design schemes and evaluation indicators, and select alternatives according to n evaluation indicators related to product requirements;
所述单效用函数模块通过输入输出接口接收设计人员基于效用理论输入的对n个评价指标的偏好属性值,根据偏好属性值拟合出n个单效用函数,通过输入输出接口输出相应的函数系数值到控制面板上,从知识库模块中提取备选方案,以备选方案的评价指标区间作为积分区间,并利用单效用函数计算每个备选方案的n个单效用函数值,输出给总体期望效用模块,n为正整数;The single utility function module receives the designer's preference attribute value for n evaluation indicators based on the utility theory input through the input and output interface, fits n single utility functions according to the preference attribute value, and outputs the corresponding function coefficient through the input and output interface value to the control panel, extract the alternatives from the knowledge base module, use the evaluation index interval of the alternatives as the integral interval, and use the single utility function to calculate n single utility function values of each alternative, and output them to the overall Expected utility module, n is a positive integer;
所述多效用函数模块,利用输入输出接口输入的n-1个评价指标的属性值构建无偏好属性组合方程组,输出每一个评价指标的权重ki到控制面板上,i=1~n;The multi-utility function module uses the attribute values of n-1 evaluation indicators input by the input and output interface to construct a non-preference attribute combination equation group, and outputs the weight ki of each evaluation index to the control panel, i =1~n;
所述总体期望效用模块基于权重ki和单效用函数值输出每个备选方案的总体期望效用值及排名到控制面板上;The overall expected utility value and ranking of each alternative are output on the control panel based on the weight k i and the single utility function value by the overall expected utility module;
所述决策支持系统进一步包括后处理分析模块,用于测试总体期望效用值排名前两位的备选方案的鲁棒性,通过输入输出接口改变所述备选方案的Δk以及Δx、ΔL重新求解所述前两位的备选设计方案的总体期望效用值,来判断排名是否改变,Δk指权重的变化,将Δk分别叠加到多效用函数模块中的ki,再次计算输出新的权重;Δx指单效用函数曲率的变化,改变单效用函数模块中拟合的函数系数值,相应的再次计算单效用函数值;ΔL指备选方案的评价指标区间的长度变化,改变单效用函数模块中备选方案的评价指标区间,相应的再次计算单效用函数值;The decision support system further includes a post-processing analysis module, which is used to test the robustness of the top two alternatives in the overall expected utility value, and change the Δk, Δx, and ΔL of the alternatives through the input and output interfaces to solve again The overall expected utility value of the first two alternative design schemes is used to determine whether the ranking has changed. Δk refers to the change in weight, and Δk is added to ki in the multi-utility function module, and the new weight is calculated and output again; Δx Refers to the change of the curvature of the single utility function, changing the fitting function coefficient value in the single utility function module, and recalculating the value of the single utility function correspondingly; The evaluation index range of the selected scheme, and the value of the single utility function is calculated again accordingly;
通过输入输出接口增加知识库模块中的备选方案,改变所有的备选方案的排名;通过输入输出接口增加知识库模块中的评价指标,在单效用函数模块中增加一个单效用函数,改变每一个评价指标的权重ki及所有的备选方案的排名;通过输入输出接口改变备选方案的评价指标区间,改变所述备选方案在单效用函数模块中的单效用函数值。Increase the alternatives in the knowledge base module through the input and output interfaces, and change the ranking of all alternatives; increase the evaluation indicators in the knowledge base module through the input and output interfaces, add a single utility function in the single utility function module, and change each The weight ki of an evaluation index and the ranking of all alternatives; changing the evaluation index interval of the alternatives through the input and output interface, and changing the single utility function value of the alternatives in the single utility function module.
进一步地,采用如权利要求1所述的基于效用的产品设计决策支持系统,所述决策支持方法为:Further, using the utility-based product design decision support system as claimed in claim 1, the decision support method is:
步骤一,在知识库模块中根据与产品需求相关的n个评价指标选择备选方案;Step 1, select alternatives in the knowledge base module according to n evaluation indicators related to product requirements;
步骤二,设计人员基于效用理论在单效用函数模块中通过输入输出接口输入对n个评价指标的偏好属性值,根据偏好属性值拟合出n个单效用函数,输出相应的函数系数值到控制面板上;Step 2: Based on the utility theory, the designer inputs the preference attribute values of n evaluation indicators through the input and output interfaces in the single utility function module, fits n single utility functions according to the preference attribute values, and outputs the corresponding function coefficient values to the controller on the panel;
步骤三,从知识库模块中提取备选方案,以备选方案的评价指标区间作为积分区间,利用单效用函数计算并输出每个备选方案的n个单效用函数值,n为正整数;并且通过输入输出接口输入n-1个评价指标的属性值构建无偏好属性组合方程组,输出每一个评价指标的权重ki到控制面板上,i=1~n;Step 3, extract the alternatives from the knowledge base module, use the evaluation index interval of the alternatives as the integral interval, use the single utility function to calculate and output n single utility function values of each alternative, where n is a positive integer; And input the attribute values of n-1 evaluation indicators through the input and output interface to construct a non-preference attribute combination equation group, and output the weight k i of each evaluation index to the control panel, i=1~n;
步骤四,基于权重ki和单效用函数值输出每个备选方案的总体期望效用值及排名到控制面板上;Step 4, output the overall expected utility value and ranking of each alternative to the control panel based on the weight k i and the single utility function value;
步骤五,改变排名前两位备选方案的Δk、Δx或ΔL,重新求解所述备选方案的总体期望效用值及排名,来判断所述前两位备选方案的排名是否改变。Step 5: Change Δk, Δx or ΔL of the top two alternatives, and recalculate the overall expected utility value and ranking of the alternatives to determine whether the rankings of the top two alternatives have changed.
进一步地,需要引入新的备选方案时,步骤四后进一步包括在步骤一所述的知识库模块中添加新的备选方案及相应的评价指标,决策支持系统计算出新的备选方案的总体期望效用值并将所有的备选方案重新排名。Further, when it is necessary to introduce new alternatives, after step four, it further includes adding new alternatives and corresponding evaluation indicators in the knowledge base module described in step one, and the decision support system calculates the value of the new alternatives. Overall expected utility value and rerank all alternatives.
进一步地,需要引入新的评价指标时,步骤四后进一步包括在步骤一所述的知识库模块中添加新的评价指标,设计人员基于效用理论在单效用函数模块中输入对新的评价指标的属性偏好值,根据属性偏好值拟合出对应的单效用函数,输出相应的函数系数值;分别输入综合所有备选方案的新的评价指标区间的上下边界,利用知识库模块中每个备选方案的评价指标区间和单效用函数,输出所有的单效用函数值;重新计算权重并基于权重和单效用函数值输出每个备选方案的总体期望效用值及排名。Further, when a new evaluation index needs to be introduced, after step four, it further includes adding a new evaluation index in the knowledge base module described in step one, and the designer inputs the value of the new evaluation index in the single utility function module based on the utility theory. Attribute preference value, fit the corresponding single utility function according to the attribute preference value, and output the corresponding function coefficient value; respectively input the upper and lower boundaries of the new evaluation index interval that synthesizes all alternatives, and use each alternative in the knowledge base module The evaluation index interval and single utility function of the scheme, and output all the single utility function values; recalculate the weight and output the overall expected utility value and ranking of each alternative based on the weight and single utility function value.
进一步地,当备选方案的评价指标区间改变时,在步骤三的多效用函数模块中改变评价指标的区间并重新计算单效用函数值。Further, when the interval of the evaluation index of the alternative is changed, the interval of the evaluation index is changed in the multi-utility function module of step three and the value of the single utility function is recalculated.
进一步地,所述步骤二中n个评价指标的属性偏好数据服从均匀分布。Further, in the second step, the attribute preference data of the n evaluation indicators obey the uniform distribution.
有益效果:Beneficial effect:
1、本发明的决策支持系统及方法,基于效用理论得到每个设计方案的总体期望效用值,设计方案的有效性高;备选设计方案的评价指标为区间值,客观性强,能够适应产品设计过程中指标值的不确定性;本发明将求解流程模块化处理,当外部环境设计需求变化时,可以根据变化影响的参量通过输入输出接口在相应的模块中处理,避免了重新计算,提高的评价效率。1. The decision support system and method of the present invention obtain the overall expected utility value of each design scheme based on the utility theory, and the effectiveness of the design scheme is high; the evaluation index of the alternative design scheme is an interval value, which has strong objectivity and can adapt to product Uncertainty of index values in the design process; the present invention modularizes the solution process, and when the design requirements of the external environment change, it can be processed in the corresponding module through the input and output interfaces according to the parameters affected by the change, avoiding recalculation and improving evaluation efficiency.
2、本发明的后处理分析模块,通过改变设计需求重新求解来测试设计方案的鲁棒性,进一步提高了设计方案的有效性。2. The post-processing analysis module of the present invention tests the robustness of the design scheme by changing the design requirements and solving it again, which further improves the effectiveness of the design scheme.
3、本发明决策支持系统中包括的每一个模块在控制面板上都具备独立的输入输出接口,使其能够在类似设计或新设计中被快速重用,适应性能力强,提高设计效率。3. Each module included in the decision support system of the present invention has an independent input and output interface on the control panel, so that it can be quickly reused in similar designs or new designs, has strong adaptability, and improves design efficiency.
附图说明Description of drawings
图1为本发明决策支持的流程图;Fig. 1 is the flowchart of decision support of the present invention;
图2为本发明的模块化柔性模板设计框图;Fig. 2 is a block diagram of modularized flexible formwork design of the present invention;
图3为本发明的方案知识库面板图;Fig. 3 is the scheme knowledge base panel figure of the present invention;
图4为本发明的属性知识库和单效用函数模块面板图;Fig. 4 is attribute knowledge base of the present invention and single utility function module panel figure;
图5为本发明的总体期望效用模块面板图;Fig. 5 is overall expected utility module panel diagram of the present invention;
图6是本发明后处理分析模块图。Fig. 6 is a diagram of the post-processing analysis module of the present invention.
具体实施方式detailed description
下面结合附图并举实施例,对本发明进行详细描述。The present invention will be described in detail below with reference to the accompanying drawings and examples.
本发明提供了一种基于效用的产品设计决策支持系统,决策支持系统包括知识库模块、单效用函数模块、多效用函数模块及总体期望效用模块,每一个模块都具备独立的输入输出接口,在控制面板上相应地以模块化呈现。如图2所示,模块化柔性模板的设计过程主要由五个步骤组成,包括:模板创建、模板定制、单个模块的设计、整体模板设计、实例验证。先对整个设计决策过程各个部分的设计需求和功能进行分析,将决策过程拆分成若干个完整独立的具备标准化输入输出接口的模块,整个基于效用理论的选择决策过程拆分成方案知识库、属性知识库、单效用函数模块、多效用函数模块、总体期望效用模块、后处理分析模块,在模块设计过程当中,需要对参数进行提取,并进行数据处理,最后实现模块的实例化。The invention provides a utility-based product design decision support system. The decision support system includes a knowledge base module, a single utility function module, a multi-utility function module and an overall expected utility module. Each module has an independent input and output interface. The control panel is presented accordingly in a modular manner. As shown in Figure 2, the design process of modular flexible formwork mainly consists of five steps, including: template creation, template customization, design of a single module, overall template design, and example verification. First analyze the design requirements and functions of each part of the entire design decision-making process, split the decision-making process into several complete and independent modules with standardized input and output interfaces, and split the entire decision-making process based on utility theory into scheme knowledge base, Attribute knowledge base, single utility function module, multi-utility function module, overall expected utility module, post-processing analysis module, in the process of module design, parameters need to be extracted, and data processing is performed, and finally the module is instantiated.
知识库模块包括方案知识库和属性知识库,方案知识库用于存储产品的设计方案,属性知识库用于存储相应的评价指标,方案知识库和属性知识库中的内容相互关联。根据与产品需求相关的n个评价指标选择备选方案。The knowledge base module includes a scheme knowledge base and an attribute knowledge base. The scheme knowledge base is used to store the design scheme of the product, and the attribute knowledge base is used to store the corresponding evaluation indicators. The contents of the scheme knowledge base and the attribute knowledge base are related to each other. Alternatives are selected according to n evaluation indicators related to product demand.
单效用函数模块通过输入输出接口接收设计人员基于效用理论输入的对n个评价指标的属性偏好值,根据属性偏好值拟合出n个单效用函数,通过输入输出接口输出相应的函数系数值到控制面板上,从知识库模块中提取备选方案,以备选方案的评价指标区间作为积分区间,并利用单效用函数计算每个备选方案的n个单效用函数值,输出给总体期望效用模块,n为正整数。The single utility function module receives the attribute preference values of n evaluation indicators input by the designer based on the utility theory through the input and output interface, and fits n single utility functions according to the attribute preference values, and outputs the corresponding function coefficient values to On the control panel, extract the alternatives from the knowledge base module, use the evaluation index interval of the alternatives as the integral interval, and use the single utility function to calculate n single utility function values for each alternative, and output them to the overall expected utility module, n is a positive integer.
多效用函数模块,利用输入输出接口输入的n-1个评价指标的属性值构建无偏好组合方程组,输出每一个评价指标的权重ki到控制面板上,i=1~n。The multi-utility function module uses the attribute values of n-1 evaluation indicators input through the input and output interface to construct a non-preference combination equation group, and outputs the weight k i of each evaluation index to the control panel, where i=1~n.
总体期望效用模块基于权重ki和单效用函数值输出每个备选方案的总体期望效用值及排名到控制面板上。The overall expected utility module outputs the overall expected utility value and ranking of each alternative to the control panel based on the weight ki and the single utility function value.
决策支持系统进一步包括后处理分析模块,用于测试总体期望效用值排名前两位的备选方案的鲁棒性,通过输入输出接口改变所述备选方案的Δk以及Δx、ΔL重新求解所述前两位的备选设计方案的总体期望效用值,来判断排名是否改变,Δk指权重的变化,将Δk分别叠加到多效用函数模块中的ki,再次计算输出新的权重;Δx指单效用函数曲率的变化,改变单效用函数模块中拟合的函数系数值,相应的再次计算单效用函数值;ΔL指备选方案的评价指标区间的长度变化,改变单效用函数模块中备选方案的评价指标区间,相应的再次计算单效用函数值。The decision support system further includes a post-processing analysis module, which is used to test the robustness of the top two alternatives in the overall expected utility value, and change the Δk, Δx, and ΔL of the alternatives through the input and output interfaces to re-solve the The overall expected utility value of the first two alternative design schemes is used to judge whether the ranking has changed. Δk refers to the change of weight, and Δk is added to ki in the multi-utility function module, and the new weight is calculated again; Δx refers to the single The change of the curvature of the utility function changes the fitting function coefficient value in the single utility function module, and recalculates the value of the single utility function correspondingly; The interval of the evaluation index, correspondingly recalculate the value of the single utility function.
通过输入输出接口增加知识库模块中的备选方案,改变所有的备选方案的排名;通过输入输出接口增加知识库模块中的评价指标,在单效用函数模块中增加一个单效用函数,改变每一个评价指标的权重ki及所有的备选方案的排名;通过输入输出接口改变备选方案的评价指标区间,改变所述备选方案在单效用函数模块中的单效用函数值。Increase the alternatives in the knowledge base module through the input and output interfaces, and change the ranking of all alternatives; increase the evaluation indicators in the knowledge base module through the input and output interfaces, add a single utility function in the single utility function module, and change each The weight ki of an evaluation index and the ranking of all alternatives; changing the evaluation index interval of the alternatives through the input and output interface, and changing the single utility function value of the alternatives in the single utility function module.
具体方法如图1所示:The specific method is shown in Figure 1:
步骤A,STEP A1:预先构建产品设计的方案知识库,方案知识库中存储了以往的设计方案;Step A, STEP A1: Pre-construct the product design scheme knowledge base, which stores previous design schemes;
STEP A2:构建属性知识库,存储评价指标,为设计方案设计决策提供知识支撑,其来源包括实验数据、设计手册等资料以及实际设计过程当中体现的属性特征。STEP A2: Build an attribute knowledge base, store evaluation indicators, and provide knowledge support for design decision-making. The sources include experimental data, design manuals and other materials, as well as attribute characteristics reflected in the actual design process.
STEP A3:根据与产品需求相关的n个评价指标选择备选方案。STEP A3: Select alternatives according to n evaluation indicators related to product demand.
步骤B,Step B,
STEP B1:设计人员通过回答博彩问题(lottery questions)在单效用函数模块中输入对备选方案确定5个不同层次的偏好属性值,分别是效用U=(0,0.25,0.5,0.75,1)时的属性值。STEP B1: Designers answer the lottery questions (lottery questions) and enter them into the single utility function module to determine the five different levels of preference attribute values for the alternatives, which are utility U=(0, 0.25, 0.5, 0.75, 1) attribute value at time.
STEP B2:根据偏好属性值拟合出n个单效用函数,输出相应的函数系数值;将产品备选方案的属性分为望小属性、望大属性和望目属性,分别给出单效用函数的拟合过程:STEP B2: Fit n single utility functions according to the preference attribute values, and output the corresponding function coefficient values; divide the attributes of product alternatives into small-looking attributes, big-looking attributes, and big-looking attributes, and give single-utility functions respectively The fitting process:
1)望大属性。望大属性表征了设计方案中某属性的效用随着属性值的增大单调递增的属性。对于望大属性而言,首先确定5个不同层次偏好的属性值 以及x1,通过曲线拟合成指数型效用函数,本文默认的效用函数类型为u(x):1) Look at the big attributes. The expected large attribute represents the attribute that the utility of an attribute in the design scheme increases monotonically with the increase of the attribute value. For the Wangda attribute, first determine the attribute values of five different levels of preference And x 1 , through curve fitting into an exponential utility function, the default utility function type in this paper is u(x):
式中:aL,bL,cL和dL的取值分别对应着曲线拟合后的指数型效用的系数。2)望小属性。望小属性表征了枪械设计方案中某属性的效用随着属性值的增大单调递减的属性。对于望小属性而言,首先确定5个不同层次偏好的属性值 以及x1,如图3所示,通过曲线拟合成指数型效用函数u(x):In the formula: the values of a L , b L , c L and d L respectively correspond to the coefficients of the exponential utility after curve fitting. 2) Looking at small attributes. The expected small attribute represents the attribute that the utility of an attribute in the firearm design scheme decreases monotonically with the increase of the attribute value. For the Wangxiao attribute, first determine the attribute values of five different levels of preference As well as x 1 , as shown in Figure 3, an exponential utility function u(x) is formed by curve fitting:
式中:aR,bR,cR和dR的取值分别对应着曲线拟合后的指数型效用的系数。In the formula: the values of a R , b R , c R and d R respectively correspond to the coefficients of the exponential utility after curve fitting.
3)望目性属性。望目性属性是指某属性的效用达到或接近目标属性值越好的属性。对于基于特定目标值的望目属性而言,曲线拟合的输入包含左右两边的属性值。对于以属性最大化为目标的属性而言,需要目标值左侧的属性作为输入,而对于以属性最小化为目标的属性而言,则需要有右侧的属性作为输入。首先确定9个不同层次偏好的属性值以及x1,通过曲线拟合成指数型效用函数u(x):3) Look at the property of the eye. The objective attribute refers to the attribute whose utility is at or close to the target attribute value, the better it is. For wangmu attributes based on specific target values, the input to the curve fit includes the left and right attribute values. For attributes with the goal of attribute maximization, the attributes to the left of the target value are required as input, while for attributes with the goal of attribute minimization, the attributes to the right are required as input. First determine the attribute values of 9 different levels of preference And x 1 , through curve fitting into an exponential utility function u(x):
式中:a,b,c和d的取值分别对应着曲线拟合后的指数型效用函数u(x)=a+bx+cedx中的系数,下标表示处于目标值的左侧或右侧,L表示左,R表示右。In the formula: the values of a, b, c and d respectively correspond to the coefficients in the exponential utility function u(x)=a+bx+ce dx after the curve fitting, and the subscript indicates that it is on the left side of the target value or Right side, L means left, R means right.
STEP B3:通过输入输出接口分别输入综合所有备选方案的同一个评价指标区间的上下边界,利用知识库模块中每个备选方案的评价指标区间和单效用函数,输出每个备选方案的n个单效用函数值,n为正整数。STEP B3: Input the upper and lower bounds of the same evaluation index range of all alternatives through the input and output interface, and use the evaluation index interval and single utility function of each alternative in the knowledge base module to output the value of each alternative n single utility function values, n is a positive integer.
使用“望目”性的单属性效用函数,并假设具体选项属性值服从均匀分布,概率密度函数为:Using the "Wangmu" single-attribute utility function, and assuming that the value of the specific option attribute obeys a uniform distribution, the probability density function is:
f(x)=1/(xu-xl) (4)f(x)=1/(x u -x l ) (4)
式中:xl,xu是综合所有备选方案的同一个评价指标区间的上下边界。In the formula: x l , x u are the upper and lower boundaries of the same evaluation index interval for all alternatives.
根据拟合的单效用函数(1)(2)(3)和式(4)求解单属性的期望效用值,单属性期望效用值计算式如下:According to the fitted single utility function (1) (2) (3) and formula (4) to solve the expected utility value of a single attribute, the calculation formula of the expected utility value of a single attribute is as follows:
E(u)=∫u(x)·f(x)dx (5)E(u)=∫u(x)·f(x)dx (5)
式中:u(x)表示单效用函数式,f(x)表示属性值概率密度函数。代入每个备选方案的评价指标区间分别输出n个单效用函数值。In the formula: u(x) represents the single utility function formula, and f(x) represents the attribute value probability density function. Substituting the evaluation index interval of each alternative to output n single utility function values respectively.
步骤C:通过输入n-1个评价指标的属性值构建无偏好属性组合方程组输出评价指标的权重到控制面板上;Step C: Construct the non-preference attribute combination equations by inputting the attribute values of n-1 evaluation indexes, and output the weights of the evaluation indexes to the control panel;
STEP C1:权重ki通过求解由n个线性方程组成的方程组进行确定。基于叠加的效用函数形式以及无偏好属性组合方程组,建立多个有相同效用的线性方程,这些方程组成的方程组用于求解权重ki。STEP C1: The weight k i is determined by solving a system of n linear equations. Based on the superimposed utility function form and the non-preference attribute combination equations, multiple linear equations with the same utility are established, and the equations composed of these equations are used to solve the weight k i .
STEP C2:以多效用组合无偏好属性构成方程组。方程组中有n-1个方程是由设计人员通过无偏好属性值组合建立,剩下的一个表示比例常数之和为1,STEP C2: Combining multi-utility non-preference attributes to form a system of equations. There are n-1 equations in the equation system established by the designer through the combination of non-preferred attribute values, and the remaining one represents that the sum of proportional constants is 1,
具体的多效用函数构建过程如式(6)所示。The specific multi-utility function construction process is shown in formula (6).
式中:以及表示属性i不同层次的取值。代表最差的层次(其效用为0);代表除以外的两个不同层次,他们满足(例如对应的效用为0.55而的效用为0.45);则是由决策者指定的属性值,该属性值必须使两个不同的多属性值组合的效用相等,从而使得决策者对这两个组合无偏好,即 In the formula: as well as Indicates the value of attribute i at different levels. Represents the worst level (its utility is 0); Represents except other than two different levels, they satisfy (E.g The corresponding utility is 0.55 and has a utility of 0.45); is the attribute value specified by the decision maker, which must make the utility of two different multi-attribute value combinations equal, so that the decision maker has no preference for these two combinations, that is,
STEP C3:输入n-1个属性输出权重ki。STEP C3: Enter n-1 attributes Output weight k i .
步骤D:基于权重ki和单效用函数值输出每个备选方案的总体期望效用值及排名并存储在多效用函数模块中。Step D: Output the overall expected utility value and ranking of each alternative based on the weight k i and the single utility function value and store them in the multi-utility function module.
STEP D1:利用单属性期望效用值式(5),计算总体期望效用值,使得设计人员在给定某些效用函数参数以及选项属性参数后能够快速转化为选项的总体期望效用。STEP D1: Using the single-attribute expected utility value formula (5) to calculate the overall expected utility value, so that the designer can quickly convert it into the overall expected utility of the option after certain utility function parameters and option attribute parameters are given.
式中:ki表示属性i比例常数,E(ui(Ai))表示属性i的期望效用值。In the formula: k i represents the proportional constant of attribute i, and E(u i (A i )) represents the expected utility value of attribute i.
利用公式(8)计算每个方案的总体期望效用值并对每个方案的总体期望效用值进行排序为方案的设计决策提供依据。总体期望效用值最高的方案称为“最有价值”方案,总体期望效用值排名第二的方案称为“第二”方案。Use the formula (8) to calculate the overall expected utility value of each scheme and sort the overall expected utility value of each scheme to provide a basis for the design decision of the scheme. The option with the highest overall expected utility value is called the "most valuable" option, and the option with the second highest overall expected utility value is called the "second" option.
决策支持系统进一步包括后处理分析模块,用于测试总体期望效用值排名前两位的设计方案的鲁棒性。选取排名前两位的选项:“最有价值”方案和“第二”方案,然后测试这两个选项的总体期望效用对于某些设计需求变化或者方案革新而导致的方案、属性和设计参数等发生动态变化的响应是否足以影响其原始排名。从期望效用计算过程可看出,可能的参数变化只能发生在两个公式中,即式(5)和式(8)。将这两个公式中的参数变化分别用Δk以及Δx、ΔL表示。其中Δk指权重的变化,将Δk分别叠加到多效用函数模块中的ki,再次计算输出新的权重;Δx指单效用函数曲率的变化,改变单效用函数模块中拟合的函数系数值,相应的再次计算单效用函数值;ΔL指备选方案的评价指标区间的长度变化,改变单效用函数模块中备选方案的评价指标区间,相应的再次计算单效用函数值。The decision support system further includes a post-processing analysis module, which is used to test the robustness of the top two design schemes with overall expected utility values. Select the top two options: the "most valuable" solution and the "second" solution, and then test the overall expected utility of these two options for the solutions, attributes and design parameters caused by changes in certain design requirements or program innovations, etc. Whether the dynamically changing response is enough to affect its raw ranking. It can be seen from the calculation process of expected utility that possible parameter changes can only occur in two formulas, namely formula (5) and formula (8). The parameter changes in these two formulas are represented by Δk, Δx, and ΔL, respectively. Among them, Δk refers to the change of weight, and Δk is added to ki in the multi-utility function module respectively, and the new weight is calculated and output again; Δx refers to the change of the curvature of the single-utility function, and the value of the function coefficient fitted in the single-utility function module is changed. Correspondingly recalculate the value of the single utility function; ΔL refers to the length change of the evaluation index interval of the alternative, change the evaluation index interval of the alternative in the single utility function module, and recalculate the value of the single utility function accordingly.
后处理分析的具体实施方法是增加或减少Δk,Δx和ΔL。本文默认Δk,Δx和ΔL的变化值为5%,然后重新计算排名前两位选项的E(u)和E(U),并将这两个选项E(U)的变化情况在后处理分析模块的控制面板中进行展示。The specific implementation method of post-processing analysis is to increase or decrease Δk, Δx and ΔL. In this paper, the default change values of Δk, Δx and ΔL are 5%, and then recalculate the E(u) and E(U) of the top two options, and analyze the changes of these two options E(U) in post-processing Displayed in the control panel of the module.
进一步地,当外部环境设计需求变化时,可以根据变化影响的参量在相应的模块中处理,Furthermore, when the design requirements of the external environment change, it can be processed in the corresponding module according to the parameters affected by the change,
(1)方案数量的变化(1) Changes in the number of programs
步骤D后进一步包括在步骤A的知识库模块中添加新的备选方案及相应的评价指标,决策支持系统计算出新的备选方案的总体期望效用值并将所有的备选方案重新排名。After step D, it further includes adding new alternatives and corresponding evaluation indicators in the knowledge base module of step A, and the decision support system calculates the overall expected utility value of the new alternatives and re-ranks all alternatives.
(2)方案评价指标的变化(2) Changes in program evaluation indicators
步骤D后进一步包括在步骤A的知识库模块中添加新的评价指标,设计人员基于效用理论在单效用函数模块中输入对新的评价指标的属性偏好数据,根据属性偏好数据拟合出对应的单效用函数,输出相应的函数系数值;分别输入综合所有备选方案的新的评价指标区间的上下边界,利用知识库模块中每个备选方案的评价指标区间和单效用函数,输出所有的单效用函数值;重新计算权重并基于权重和单效用函数值输出每个备选方案的总体期望效用值及排名。After step D, it further includes adding a new evaluation index in the knowledge base module of step A. Based on the utility theory, the designer inputs the attribute preference data for the new evaluation index in the single utility function module, and fits the corresponding Single utility function, output the corresponding function coefficient value; respectively input the upper and lower boundaries of the new evaluation index interval of all alternatives, use the evaluation index interval and single utility function of each alternative in the knowledge base module, output all Single utility function value; recalculates weights and outputs the overall expected utility value and rank for each alternative based on weights and single utility function value.
(3)固定参数的变化(3) Changes in fixed parameters
固定参数的变化指的是在新的决策当中某些参数(这些参数在原决策中属于固定参数)的取值发生了变化。例如在新的决策中,由于进一步的实验使得某个方案属性值(如材料的强度)的上下界发生了变化,变得更为精确;或某一属性(如耐磨性)的重要度发生了变化,需要优先考虑。此时在步骤C的多效用函数模块中改变评价指标的区间并重新计算单效用函数值。The change of fixed parameters means that the value of some parameters (these parameters are fixed parameters in the original decision) has changed in the new decision. For example, in a new decision-making, due to further experiments, the upper and lower bounds of a certain scheme attribute value (such as the strength of the material) have changed and become more accurate; or the importance of a certain attribute (such as wear resistance) has changed. Changes need to be prioritized. At this time, in the multi-utility function module of step C, the interval of the evaluation index is changed and the value of the single utility function is recalculated.
下面结合实例进行说明,依据上述基于效用的选择决策理论,以枪管为例对上述方法进行验证,设计了考虑不确定性的枪械设计方案决策支持系统。The following examples are used to illustrate, according to the above-mentioned utility-based selection decision-making theory, the above-mentioned method is verified by taking the gun barrel as an example, and a decision-making support system for firearm design considering uncertainty is designed.
枪管是枪械产品最基本的零件之一,其主要作用是赋予弹头一定的方向和初速度。枪管设计处于枪身方案的设计阶段,在此之前的内外弹道设计和枪弹设计过程已经确定了大部分的设计参量。The barrel is one of the most basic parts of firearms products, and its main function is to give the bullet a certain direction and initial velocity. The barrel design is in the design stage of the gun body plan, and most of the design parameters have been determined in the previous internal and external ballistic design and bullet design process.
表1所示为输入的战术技术需求指标。由于枪管在射击时,由于火药高温、高压火药气体的作用,以及和弹头发生机械摩擦,为了实现以上目标,故要求枪管材料有较高的抗拉强度(不低于50公斤/毫米2)、足够的冲击韧性(不小于5公斤-米/厘米2)、较高的屈服点(不小于50公斤/毫米2),良好的可加工性和足够的耐磨损、耐烧蚀性。目前从重机枪到手枪的枪管一般常用50BA或50AE钢,高射机枪以及有的重机枪则用30SiMnMoVA或30CrNi2MoVA钢,也有用其他材料作枪管的,然而关于枪管材料的选择大多取决于设计人员的经验设计。根据这些设计需求目标,从属性知识库中筛选出六个评价指标,并根据评价指标从方案知识库中筛选出四个备选方案可供考虑,如表2所示。六个评价指标的属性中有三个是定量属性,即抗拉强度、屈服点和冲击值,另外三个是定性属性,即加工性能、耐磨性和耐烧蚀性。设计人员对这些属性的期望既包含了“望目”性如抗拉强度期望达到目标值是95公斤/毫米2,也包含了非“望目”性,如加工性能希望取值越高越好。每一个选项的所有属性取值均是不确定的,是一个由上下界确定的范围,例如选项50BA的抗拉强度取值范围是44-69公斤/毫米2。假设所有的属性取值均服从均匀分布。设计人员需要从备选方案中选出最能满足前述目标的选项。Table 1 shows the input tactical technical requirements indicators. Due to the high temperature of the gunpowder, the effect of high-pressure gunpowder gas, and the mechanical friction with the warhead when the gun barrel is shooting, in order to achieve the above goals, the barrel material is required to have a higher tensile strength (not less than 50 kg/ mm2 ), sufficient impact toughness (not less than 5 kg-m/ cm2 ), high yield point (not less than 50 kg/ mm2 ), good machinability and sufficient wear resistance and ablation resistance. At present, the barrels from heavy machine guns to pistols generally use 50BA or 50AE steel. Anti-aircraft machine guns and some heavy machine guns use 30SiMnMoVA or 30CrNi 2 MoVA steel, and other materials are also used as barrels. However, the choice of barrel materials mostly depends on Designer experience design. According to these design requirements, six evaluation indicators are selected from the attribute knowledge base, and four alternatives are selected from the program knowledge base according to the evaluation indicators, as shown in Table 2. Among the attributes of the six evaluation indexes, three are quantitative attributes, namely, tensile strength, yield point, and impact value, and the other three are qualitative attributes, namely, processability, wear resistance, and ablation resistance. The designer's expectations for these properties include both "looking at" properties, such as the expected target value of tensile strength is 95 kg/ mm2 , and non-"looking at" properties, such as processing performance, the higher the value, the better . The value of all attributes of each option is uncertain, and it is a range determined by the upper and lower bounds. For example, the value range of tensile strength of option 50BA is 44-69 kg/ mm2 . Assume that all attribute values are subject to uniform distribution. Designers need to choose from the alternatives the option that best meets the aforementioned goals.
表1输入的战术技术需求指标Table 1 Input Tactical Technical Requirements Indicators
表2枪管材料备选方案Table 2 Barrel Material Alternatives
如图3所示,展示了计算机支持系统中的方案知识库。当有新材料或者新的处理工艺需要进行比较以辅助决策者进行选择时,可以在该控制面板上进行快速的配置。As shown in Figure 3, it shows the program knowledge base in the computer support system. When there are new materials or new processing techniques that need to be compared to assist decision makers in their selection, they can be quickly configured on the control panel.
图4所示的控制面板是各备选方案的属性知识库以及单效用函数计算模块图,有效地支持该面板上各属性单效用函数的求解。图5所示的控制面板是由多属性效用值计算模块,方案总体期望效用计算模块以及敏感性分析模块等一系列模块组合而成。The control panel shown in Figure 4 is the attribute knowledge base of each alternative scheme and the calculation module diagram of the single utility function, which effectively supports the solution of the single utility function of each attribute on the panel. The control panel shown in Figure 5 is composed of a series of modules such as multi-attribute utility value calculation module, scheme overall expected utility calculation module and sensitivity analysis module.
整体的枪械设计方案决策支持系统操作步骤和流程如下:The operation steps and process of the decision support system for the overall firearms design scheme are as follows:
步骤1:根据枪管快速设计的设计需求选择评价指标并筛选出备选方案。表2中是基于上述战术技术需求指标而选择的方案,候选方案数量为n=4。Step 1: Select evaluation indicators and screen out alternatives according to the design requirements of rapid barrel design. Table 2 shows the schemes selected based on the above tactical and technical demand indicators, and the number of candidate schemes is n=4.
步骤3:确定决策者偏好。表3中是决策者通过回答博彩问题而得到的枪械设计方案的不同层次的偏好属性值。Step 3: Identify decision maker preferences. Table 3 shows the preference attribute values of different levels of firearm design schemes obtained by decision makers by answering the gambling questions.
步骤4:拟合单效用函数。表4是基于表3的各属性值拟合成属性的指数型效用函数后输出得到的a,b,c,d系数值。Step 4: Fit a single utility function. Table 4 is the coefficient values of a, b, c, and d obtained after fitting the attribute values in Table 3 into the exponential utility function of the attribute.
步骤5:求解单效用函数的期望效用值。表5是结合表4得到的指数型效用函数和备选方案的各评价指标区间计算得到的枪械设计备选方案的各单效用函数值。Step 5: Find the expected utility value of the single utility function. Table 5 is the value of each single utility function of the firearm design alternatives calculated by combining the exponential utility function obtained in Table 4 and the evaluation index intervals of the alternatives.
步骤6:确定权重。表6是通过叠加的效用函数和无偏好组合式求得的单效用函数值的权重即评价指标的权重。Step 6: Determine the weights. Table 6 shows the weight of the single utility function value obtained through the superimposed utility function and the non-preference combination formula, that is, the weight of the evaluation index.
步骤7:求解总体期望效用。表7是结合表5的单属性期望效用值和表6的权重,依据公式求得的各枪械设计方案的总体期望效用值。从而得到“最有价值”的枪械设计方案为30SiMnMoVA,其热处理工艺为:870℃高温淬火/650℃高温回火。Step 7: Solve for the overall expected utility. Table 7 combines the expected utility values of single attributes in Table 5 and the weights in Table 6, according to the formula The obtained overall expected utility value of each firearm design scheme. Thus, the "most valuable" firearm design scheme is 30SiMnMoVA, and its heat treatment process is: 870°C high temperature quenching/650°C high temperature tempering.
表3不同层次效用的属性值Table 3 Attribute values of utility at different levels
表4各属性单效用函数系数表Table 4 Coefficient table of single utility function of each attribute
表5各评价指标期望效用值Table 5 Expected utility value of each evaluation index
表6权重Table 6 Weight
表7各方案总体期望效用Table 7 The overall expected utility of each program
进一步地,需要引入新的备选方案时,如这是一种采用新型的复合材料制造而成的高导热轻量化枪管,其中对于钢内管,在其外部缠绕碳纤维增强的环氧树脂,这种碳纤维增强的环氧树脂表面镀一层金属镍;而钢外管采用具有高比强度、高比模量力学性能的碳纤维增强的复合材料,可以保证轻量化的同时有效提高枪管射击精度,但是它的加工性能相对较差。这个新的备选方案六个属性的详细信息如表8所示。由于新方案的引入,原来的四个备选方案选择问题转变成了五个备选方案选择问题,设计人员需要重新进行问题建模并作出选择。由于诸如属性描述、单属性效用函数以及多属性效用函数等大部分的决策过程均以在原始的可配置模块化模板实例中存档,新的决策只需要在原始实例的基础上做一些必要的修改即可。需要将表8中描述的新备选方案添加到原始模板实例中,然后更新方案排名,具体的步骤如下:Further, when it is necessary to introduce new alternatives, such as this is a high thermal conductivity lightweight barrel made of a new type of composite material, where for the steel inner tube, carbon fiber reinforced epoxy resin is wound on the outside, The surface of this carbon fiber-reinforced epoxy resin is coated with a layer of metal nickel; while the steel outer tube is made of carbon fiber-reinforced composite material with high specific strength and high specific modulus mechanical properties, which can effectively improve the shooting accuracy of the barrel while ensuring light weight , but its processing performance is relatively poor. The details of the six attributes of this new alternative are shown in Table 8. Due to the introduction of the new scheme, the original four-alternative-plan selection problem has been transformed into five-alternative-plan selection problem, and the designer needs to re-model the problem and make a choice. Since most of the decision-making processes such as attribute description, single-attribute utility function, and multi-attribute utility function are archived in the original configurable modular template instance, new decisions only need to make some necessary modifications on the basis of the original instance That's it. It is necessary to add the new alternatives described in Table 8 to the original template instance, and then update the ranking of the alternatives, the specific steps are as follows:
1)指定方案的基本信息:在知识库模块中录入信息以实例化一个新的备选方案;1) Basic information of the specified scheme: input information in the knowledge base module to instantiate a new alternative scheme;
2)指定方案的属性范围:通过输入输出接口输入新增备选方案的n个评价指标区间以及服从的分布。2) Specify the attribute range of the scheme: input the n evaluation index intervals of the new alternative scheme and the distribution obeyed through the input and output interface.
3)更新方案排名:当所有必要的输入信息都设置好后,所有方案的排名将自动更新。新的排名显示方案“新型复合材料”的期望效用为1.635387,排名第一。3) Updating proposal rankings: When all necessary input information is set, the rankings of all proposals will be updated automatically. The new ranking shows that the program "New Composite Materials" has an expected utility of 1.635387, ranking first.
表8新型复合材料的属性信息Table 8 Property information of new composite materials
进一步地,需要引入新的评价指标时,假设一个新的属性—伸长率,需要在前述五方案选择决策问题中进行考虑。伸长率被引入的原因是其表征了枪械材料在受拉力折断时,拉伸长度同原有长度的比,对于枪管材料的质量十分重要。与该属性配置相关的信息分为四个方面,如表9所示:Furthermore, when a new evaluation index needs to be introduced, assuming a new attribute—elongation rate, it needs to be considered in the decision-making problems of the aforementioned five alternatives. The reason why elongation is introduced is that it characterizes the ratio of the stretched length to the original length of the gun material when it is broken under tension, which is very important for the quality of the barrel material. The information related to this attribute configuration is divided into four aspects, as shown in Table 9:
(1)在知识库模块中添加新的评价指标;(1) Add new evaluation indicators in the knowledge base module;
(2)建立伸长率效用函数需要的不同层次的属性偏好值,包括目标值左侧和右侧的偏好;(2) To establish the different levels of attribute preference values required by the elongation utility function, including the preferences on the left and right sides of the target value;
(3)确定多属性效用函数权重ki需要的输入信息,即在无偏好多属性值组合中n-1个评价指标的取值;(3) Determine the input information required for the multi-attribute utility function weight ki , that is, the values of n-1 evaluation indicators in the non-preferred multi-attribute value combination;
(4)五个备选方案伸长率的取值范围。引入新的属性后,六属性选择决策问题转变成了七属性选择决策问题,设计人员需要考虑表9中伸长率的信息并重新对问题进行建模以做出新的决策。以往实例中大部分知识可以重用,做一些必要的修改即可。需要做的修改是实例化一个新的属性并对五个备选方案进行重新排名,具体步骤如下:(4) The value range of the elongation of the five alternatives. After introducing new attributes, the six-attribute selection decision problem is transformed into a seven-attribute selection decision problem, and designers need to consider the elongation information in Table 9 and remodel the problem to make new decisions. Most of the knowledge in previous examples can be reused, just make some necessary modifications. The modification required is to instantiate a new attribute and re-rank the five alternatives, as follows:
1)指定属性基本信息:在知识库模块的属性知识库中录入伸长率的相关信息以实例化一个新的属性;1) specify the basic information of the attribute: enter the relevant information of the elongation rate in the attribute knowledge base of the knowledge base module to instantiate a new attribute;
2)输入对伸长率的不同层次的属性偏好值;2) Input the attribute preference values of different levels of elongation;
3)配置多属性效用函数权重评估相关信息:指定无偏好属性组合方程组中各属性的属性值。3) Configure multi-attribute utility function weight evaluation related information: specify the attribute value of each attribute in the non-preference attribute combination equation group.
4)配置各方案伸长率的取值范围:综合所有备选方案伸长率的上下界作为求解概率密度函数的边界。4) Configure the value range of the elongation of each scheme: the upper and lower bounds of the elongation of all alternative schemes are combined as the boundary for solving the probability density function.
5)重新计算权重并基于权重和单效用函数值输出每个备选方案的总体期望效用值及排名:新的排名显示排在前两位的方案分别为“新型复合材料”和30SiMnMoVA,对应的期望效用分别为1.87532和1.78562。5) Recalculate the weight and output the overall expected utility value and ranking of each alternative based on the weight and single utility function value: the new ranking shows that the top two schemes are "new composite material" and 30SiMnMoVA respectively, corresponding to The expected utilities are 1.87532 and 1.78562, respectively.
表9属性伸长率的配置信息Table 9 Configuration information of attribute elongation
决策支持系统进一步包括后处理分析模块,考虑一些可能的参数变化并测试排名第一的方案“新型复合材料”在参数变化情况下的鲁棒性,以增强设计人员选择它进行枪械设计的信心。排名第一的方案“新型复合材料”和“第二”方案30SiMnMoVA的期望效用非常接近,分别为1.87532和1.78562,两者仅差0.0897。将在后处理分析模块中测试两者的排名是否会因为某些参数的变化而变化,即排名对参数变化是否敏感。The decision support system further includes a post-processing analysis module, which considers some possible parameter changes and tests the robustness of the No. 1 solution "New Composite Material" in the case of parameter changes, so as to enhance the confidence of designers in choosing it for firearm design. The expected utilities of the first-ranked scheme "new composite material" and the "second" scheme 30SiMnMoVA are very close, being 1.87532 and 1.78562 respectively, with a difference of only 0.0897. It will be tested in the post-processing analysis module whether the ranking of the two will change due to changes in some parameters, that is, whether the ranking is sensitive to parameter changes.
本发明将以ΔL为例说明后处理分析的过程。方案“新型复合材料”的抗拉强度原始的取值范围是90-100公斤/毫米2,通过逐步缩小此范围(即逐步减小设计参数模糊性)来测试该方案总体期望效用的响应以及该方案与方案30SiMnMoVA的排名对比情况,如图6所示。图中变化程度被设置为5%,变化次数被设置为7次。从自动生成的图像可知:当抗拉强度的取值范围缩小到原来的80%时,方案30SiMnMoVA的期望效用值由原来的1.78562上升到1.82782;此后即使抗拉强度的取值范围继续缩小,方案30SiMnMoVA的期望效用值依然维持在1.82782的水平如图6所示。由此可以得出结论:方案排名对抗拉强度取值范围减小并不敏感,选择排名第一的方案“新型复合材料”是安全的。The present invention will take ΔL as an example to illustrate the post-processing analysis process. The original value range of the tensile strength of the scheme "new composite material" is 90-100 kg/mm 2 , by gradually narrowing this range (that is, gradually reducing the ambiguity of the design parameters) to test the response of the overall expected utility of the scheme and the The ranking comparison between the scheme and the scheme 30SiMnMoVA is shown in Figure 6. In the figure, the degree of change is set to 5%, and the number of changes is set to 7 times. From the automatically generated image, it can be seen that when the value range of tensile strength is reduced to 80% of the original value, the expected utility value of the scheme 30SiMnMoVA rises from the original 1.78562 to 1.82782; The expected utility value of 30SiMnMoVA is still maintained at the level of 1.82782 as shown in Figure 6. From this, it can be concluded that the scheme ranking is not sensitive to the reduction of the range of tensile strength values, and it is safe to choose the first-ranked scheme "new composite material".
综上所述,从图6中可以获得,在基于本次战术技术需求的情况下对材料提出的要求,“最有价值”的方案是“新型复合材料”。基于上述的事实可知,设计人员在选择该材料的基础上进行后续的设计工作,可以减少参考大量知识的时间,节约大量的设计迭代过程,并增强决策的有效性。总而言之,考虑不确定性的枪械设计方案决策支持系统给设计者提供了一种相对灵活的方案设计方法。设计者可以根据战术技术需求以及设计者自身偏好,选择“最有价值”的设计方案。针对枪械设计过程的特点,引入可配置模块化模板使得模块更易于修改,同时也降低了数据冗余。To sum up, it can be obtained from Figure 6 that the "most valuable" solution for the material requirements based on this tactical technical requirement is "new composite materials". Based on the above facts, it can be seen that the designer can reduce the time for referring to a large amount of knowledge, save a lot of design iteration process, and enhance the effectiveness of decision-making when the designer conducts subsequent design work on the basis of selecting the material. All in all, the decision support system for firearms design scheme considering uncertainty provides a relatively flexible scheme design method for designers. Designers can choose the "most valuable" design scheme based on tactical and technical requirements and the designer's own preferences. According to the characteristics of the firearms design process, the introduction of configurable modular templates makes the modules easier to modify and reduces data redundancy.
综上所述,以上仅为本发明的较佳实施例而已,并非用于限定本发明的保护范围。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。To sum up, the above are only preferred embodiments of the present invention, and are not intended to limit the protection scope of the present invention. Any modifications, equivalent replacements, improvements, etc. made within the spirit and principles of the present invention shall be included within the protection scope of the present invention.
Claims (6)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710429349.0A CN107292007A (en) | 2017-06-08 | 2017-06-08 | A kind of product Design Decision Making based on effectiveness supports system and method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710429349.0A CN107292007A (en) | 2017-06-08 | 2017-06-08 | A kind of product Design Decision Making based on effectiveness supports system and method |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107292007A true CN107292007A (en) | 2017-10-24 |
Family
ID=60096280
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710429349.0A Pending CN107292007A (en) | 2017-06-08 | 2017-06-08 | A kind of product Design Decision Making based on effectiveness supports system and method |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107292007A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111126761A (en) * | 2019-11-20 | 2020-05-08 | 中国辐射防护研究院 | Method and system for estimating capacity of regional radiation environment |
CN111680337A (en) * | 2020-06-04 | 2020-09-18 | 宁波浙大联科科技有限公司 | PDM system product design requirement information acquisition method and system |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5734890A (en) * | 1994-09-12 | 1998-03-31 | Gartner Group | System and method for analyzing procurement decisions and customer satisfaction |
CN104112035A (en) * | 2014-05-08 | 2014-10-22 | 浙江理工大学 | Effectiveness and fuzzy theory based collaborative decision-making method for product design |
-
2017
- 2017-06-08 CN CN201710429349.0A patent/CN107292007A/en active Pending
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5734890A (en) * | 1994-09-12 | 1998-03-31 | Gartner Group | System and method for analyzing procurement decisions and customer satisfaction |
CN104112035A (en) * | 2014-05-08 | 2014-10-22 | 浙江理工大学 | Effectiveness and fuzzy theory based collaborative decision-making method for product design |
Non-Patent Citations (1)
Title |
---|
张芳燕 等: "基于效用理论的产品设计决策方法及实例研究", 《机械设计》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN111126761A (en) * | 2019-11-20 | 2020-05-08 | 中国辐射防护研究院 | Method and system for estimating capacity of regional radiation environment |
CN111680337A (en) * | 2020-06-04 | 2020-09-18 | 宁波浙大联科科技有限公司 | PDM system product design requirement information acquisition method and system |
CN111680337B (en) * | 2020-06-04 | 2021-07-06 | 宁波智讯联科科技有限公司 | PDM system product design requirement information acquisition method and system |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Rychlewski et al. | LiveBench‐6: Large‐scale automated evaluation of protein structure prediction servers | |
CN116402002B (en) | A multi-objective hierarchical reinforcement learning method for chip layout problems | |
CN105740984A (en) | Product concept performance evaluation method based on performance prediction | |
CN110598923A (en) | Air conditioner load prediction method based on support vector regression optimization and error correction | |
CN102831177A (en) | Statement error correction method and system | |
CN115456264A (en) | Method for predicting end point carbon content and end point temperature of small and medium-sized converters | |
KR102701504B1 (en) | Design aid method and design aid device for metallic material | |
CN107292007A (en) | A kind of product Design Decision Making based on effectiveness supports system and method | |
CN111915080A (en) | Raw fuel cost optimal proportioning method based on molten iron quality constraint | |
CN110070258B (en) | Coke oven heating combustion process performance evaluation method | |
CN107748808A (en) | Reliability index distribution optimization method, system and medium based on Operations of Interva Constraint | |
Henriques et al. | Coupling distinct MOLP interactive approaches with a novel DEA hybrid model | |
Sun et al. | BERT and Pareto dominance applied to biological strategy decision for bio-inspired design | |
Golubev et al. | Decision making in multicriteria problems at the image design stage of aviation rocket technique | |
Ali et al. | A military fleet mix problem for high-valued defense assets: A simulation-based optimization approach | |
CN116050285B (en) | Method and system for predicting grease consumption of shield tail seal of mud-water balance shield machine | |
CN110728011B (en) | Optimized generation method of composite material layering warehouse | |
CN112307358A (en) | Improved collaborative filtering algorithm based on user interest diffusion and time correlation | |
CN110070184A (en) | Merge the data sampling method of sample losses and optimal speed constraint | |
CN116467281A (en) | Database management system parameter tuning and model training method, system and equipment | |
CN106934007A (en) | The method for pushing and device of related information | |
CN114036262A (en) | Graph-based search result diversification method | |
Zhang et al. | The application of genetic grey neural network in equipment demand forecasting | |
CN118070480B (en) | A Sequential Experimental Design Method Based on Maximum Entropy Search Criterion | |
CN119444299A (en) | Product design element popularity trend prediction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171024 |
|
RJ01 | Rejection of invention patent application after publication |