CN107286367A - PMMA包裹NaHCO3乙醇溶液的热膨胀微球及其制备方法 - Google Patents

PMMA包裹NaHCO3乙醇溶液的热膨胀微球及其制备方法 Download PDF

Info

Publication number
CN107286367A
CN107286367A CN201710608909.9A CN201710608909A CN107286367A CN 107286367 A CN107286367 A CN 107286367A CN 201710608909 A CN201710608909 A CN 201710608909A CN 107286367 A CN107286367 A CN 107286367A
Authority
CN
China
Prior art keywords
microspheres
ethanol solution
pmma
nahco
preparation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710608909.9A
Other languages
English (en)
Other versions
CN107286367B (zh
Inventor
徐卫兵
周淑千
周正发
李政
王俊豪
任凤梅
马海红
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Intelligent Manufacturing Institute of Hefei University Technology
Original Assignee
Intelligent Manufacturing Institute of Hefei University Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Intelligent Manufacturing Institute of Hefei University Technology filed Critical Intelligent Manufacturing Institute of Hefei University Technology
Priority to CN201710608909.9A priority Critical patent/CN107286367B/zh
Publication of CN107286367A publication Critical patent/CN107286367A/zh
Application granted granted Critical
Publication of CN107286367B publication Critical patent/CN107286367B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/16Making expandable particles
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/06Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent
    • C08J9/08Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a chemical blowing agent developing carbon dioxide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/04Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent
    • C08J9/12Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent
    • C08J9/14Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof using blowing gases generated by a previously added blowing agent by a physical blowing agent organic
    • C08J9/142Compounds containing oxygen but no halogen atom
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/02CO2-releasing, e.g. NaHCO3 and citric acid
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/12Organic compounds only containing carbon, hydrogen and oxygen atoms, e.g. ketone or alcohol
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/18Binary blends of expanding agents
    • C08J2203/184Binary blends of expanding agents of chemical foaming agent and physical blowing agent, e.g. azodicarbonamide and fluorocarbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2333/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2333/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2333/06Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing only carbon, hydrogen, and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C08J2333/10Homopolymers or copolymers of methacrylic acid esters
    • C08J2333/12Homopolymers or copolymers of methyl methacrylate

Abstract

本发明公开了一种环保热膨胀微球及其制备方法。热膨胀微球由聚甲基丙烯酸甲酯外壳包裹碳酸氢钠的乙醇溶液组成,利用简单易操作的方法-热诱导相分离方法制备热膨胀微球。热诱导相分离方法制备的聚甲基丙烯酸甲酯包裹碳酸氢钠乙醇溶液的热膨胀微直径在1‑6μm左右,起始发泡温度为90‑130℃,发泡体积倍率可控,发泡孔均匀细腻,且操作简单,成本低。

Description

PMMA包裹NaHCO3乙醇溶液的热膨胀微球及其制备方法
技术领域
本发明属于高分子材料技术领域,具体涉及一种PMMA包裹NaHCO3乙醇溶液的热膨胀微球及其制备方法。
背景技术
热膨胀微球具有良好的物理化学性能。热膨胀微球制备的发泡材料其强度、力学等性能比单纯的气体发泡有很大的优势,发泡材料泡孔均匀、细腻,力学性能良好,热膨胀微球不仅增加了材料的比体积,而且还有质轻、绝缘性、消除噪音等优点以及改善材料折光性和透明度等光学性能的特性。被广泛应用于建筑、汽车、飞机材料和特种材料等行业。
目前,现有技术中,如专利CN104140549.A的发明专利,涉及低温热膨胀微球。该发明由不饱和烯属类单体聚合得到的外壳包裹惰性碳氢化合物,所述不饱和烯属类单体由丙烯腈、丙烯酸酯类和乙酸乙烯酯单体组成,但是芯材选用烷烃类,芯材为低沸点、易挥发且分子量大于26的低分子烷烃,目前应用最多的是石油醚、异辛烷、异戊烷。制备方法为悬浮聚合法。由于低沸点的烷烃在聚合反应过程中需要高压以减少其挥发,这不仅增加了实验成本,污染环境,也存在很大的安全隐患。且悬浮聚合方法试验周期长,操作复杂。
发明内容
本发明的目的是提供一种PMMA包裹NaHCO3乙醇溶液的热膨胀微球及其制备方法,热膨胀微球由聚甲基丙烯酸甲酯(PMMA)外壳包裹碳酸氢钠的乙醇溶液组成,利用简单易操作的方法-热诱导相分离方法制备热膨胀微球,制备的热膨胀微球直径在1-6μm左右,起始发泡温度为90-130℃,发泡体积可控,发泡孔均匀细腻,制备的热膨胀微球操作简单、成本低。
本发明的一种PMMA包裹NaHCO3乙醇溶液的热膨胀微球,由外壳包裹芯材组成,微球直径在1-6μm,所述外壳为聚甲基丙烯酸甲酯,所述芯材为碳酸氢钠的乙醇溶液。
上述所述的PMMA包裹NaHCO3乙醇溶液的热膨胀微球,所述聚甲基丙烯酸甲酯质均分子量优选介于5000与20万之间。聚甲基丙烯酸甲酯质均分子小于5000,壁材强度较小;大于20万在乙醇中溶解度很小。
上述所述的PMMA包裹NaHCO3乙醇溶液的热膨胀微球,所述碳酸氢钠的乙醇溶液,碳酸氢钠与乙醇质量比为0.1–10:100。
本发明还提供了一种PMMA包裹NaHCO3乙醇溶液的热膨胀微球的制备方法,其包括以下步骤:
(1)称取100质量份的乙醇,加入0.1–10质量份碳酸氢钠,得到碳酸氢钠的乙醇溶液;
(2)称取0.1-2质量份聚甲基丙烯酸甲酯,加入到碳酸氢钠的乙醇溶液中,升温至60-70℃,搅拌得到透明的均相液体;
(3)搅拌作用下,将均相液体5分钟内降至0-10℃;时间过长或温度过低均不能发生相分离形成微球;
(4)随温度降低,均相液体分成两相,过滤、洗涤、干燥后得到热膨胀微球。
本发明还公开了另一种PMMA包裹NaHCO3乙醇溶液的热膨胀微球的制备方法,包括以下步骤:
(1)称取100质量份的乙醇,0.1–10质量份碳酸氢钠,0.1-2质量份聚甲基丙烯酸甲酯,60-70℃搅拌溶解得到均相液体;
(2)均相液体迅速降温,过滤后洗涤干燥得到热膨胀微球。
上述所述PMMA包裹NaHCO3乙醇溶液的热膨胀微球的制备方法中,所述迅速降温是为5分钟内降至0-10℃。
上述所述PMMA包裹NaHCO3乙醇溶液的热膨胀微球的两种制备方法中,所述过滤采用0.1-0.5μm网(滤膜)过滤。
上述所述PMMA包裹NaHCO3乙醇溶液的热膨胀微球的两种制备方法中,所述干燥是在25-35℃干燥1-3h。
本发明公开了一种热诱导相分离法制备聚甲基丙烯酸甲酯包裹碳酸氢钠乙醇溶液的热膨胀微球,由外壳包裹芯材后获得。
上述任一方案优选的是,壳材为聚甲基丙烯酸甲酯,且质均分子量介于5000与20万之间,更优选质均分子量介于5万与20万之间。
上述任一方案优选的是,所述芯材为浓度小于10%的碳酸氢钠的乙醇溶液。
上述任一方案优选的是壳材与芯材的质量比小于2%。
本发明公开了一种热膨胀微球及其制备方法,热膨胀微球采用热诱导相分离法制备,热诱导相分离方法简单易操作,制备的热膨胀微球直径在1-6μm左右,起始发泡温度为90-130℃,发泡体积可控,发泡孔均匀细腻,制备的热膨胀微球环保,成本低。
热诱导相分离法制备聚甲基丙烯酸甲酯包裹碳酸氢钠乙醇溶液的热膨胀微球,乙醇低温汽化,属于汽化发泡;碳酸氢钠在较高温度分解出二氧化碳,属于气体发泡,且碳酸氢钠的量可以调节泡孔大小;乙醇和碳酸氢钠两者的共同作用达到发泡温度宽,满足不同材料的发泡要求。
具体实施方式
下述实施例是对于本发明内容的进一步说明以作为对本发明技术内容的阐释,但本发明的实质内容并不仅限于下述实施例所述,本领域的普通技术人员可以且应当知晓任何基于本发明实质精神的简单变化或替换均应属于本发明所要求的保护范围。
实施例1
在三口烧瓶中加入乙醇100g,0.5g碳酸氢钠,0.5g质均分子量为5万的聚甲基丙烯酸甲酯,65℃水浴搅拌溶解30min,得到均相液体,均相液体迅速转移到5℃的水浴中,搅拌5min降温至8℃,0.1μm网过滤后,蒸馏水和乙醇分别洗涤一次,30℃干燥2h,即得聚甲基丙烯酸甲酯包裹碳酸氢钠乙醇溶液的热膨胀微球。热膨胀微球直径在3μm左右,发泡温度为90℃,聚甲基丙烯酸甲酯包裹碳酸氢钠乙醇溶液的热膨胀微球发泡体积倍率为4倍。
实施例2
在三口烧瓶中加入乙醇100g,2g碳酸氢钠,1g质均分子量为10万的聚甲基丙烯酸甲酯,65℃水浴搅拌溶解30min,得到均相液体,均相液体迅速转移到5℃的水浴中,搅拌5min降温至6℃,0.1μm网过滤后,蒸馏水和乙醇分别洗涤一次,30℃干燥2h,即得聚甲基丙烯酸甲酯包裹碳酸氢钠乙醇溶液的热膨胀微球。热膨胀微球直径在3μm左右,发泡温度110℃,聚甲基丙烯酸甲酯包裹碳酸氢钠乙醇溶液的热膨胀微球发泡体积倍率为5倍。
实施例3
在三口烧瓶中加入乙醇100g,3g碳酸氢钠,0.5g质均分子量为18万的聚甲基丙烯酸甲酯,65℃水浴搅拌溶解30min,得到均相液体,均相液体迅速转移到5℃的水浴中,搅拌5min降温至6℃,0.1μm网过滤后,蒸馏水和乙醇分别洗涤一次,30℃干燥2h,即得聚甲基丙烯酸甲酯包裹碳酸氢钠乙醇溶液的热膨胀微球。热膨胀微球直径在5μm左右,发泡温度130℃,聚甲基丙烯酸甲酯包裹碳酸氢钠乙醇溶液的热膨胀微球发泡体积倍率为7倍。
实施例4
(1)称取100g乙醇,加入0.1g碳酸氢钠,得到碳酸氢钠的乙醇溶液;
(2)称取1.5g聚甲基丙烯酸甲酯,加入到碳酸氢钠的乙醇溶液中,升温至65℃,搅拌得到透明的均相液体;
(3)搅拌作用下,将均相液体5分钟内降至6℃;
(4)随温度降低,均相液体分成两相,0.1μm网过滤,蒸馏水和乙醇分别洗涤一次、30℃干燥2h得到热膨胀微球。热膨胀微球直径在3μm左右,发泡温度100℃,聚甲基丙烯酸甲酯包裹碳酸氢钠乙醇溶液的热膨胀微球发泡体积倍率为5倍。
实施例5
(1)称取100g乙醇,加入5g碳酸氢钠,得到碳酸氢钠的乙醇溶液;
(2)称取0.1g聚甲基丙烯酸甲酯,加入到碳酸氢钠的乙醇溶液中,升温至65℃,搅拌得到透明的均相液体;
(3)搅拌作用下,将均相液体5分钟内降至6℃;
(4)随温度降低,均相液体分成两相,0.1μm网过滤,蒸馏水和乙醇分别洗涤一次、28℃干燥2h得到热膨胀微球。热膨胀微球直径在4μm左右,发泡温度120℃,聚甲基丙烯酸甲酯包裹碳酸氢钠乙醇溶液的热膨胀微球发泡体积倍率为5倍。
实施例6
(1)称取100g乙醇,加入10g碳酸氢钠,得到碳酸氢钠的乙醇溶液;
(2)称取2g聚甲基丙烯酸甲酯,加入到碳酸氢钠的乙醇溶液中,升温至65℃,搅拌得到透明的均相液体;
(3)搅拌作用下,将均相液体5分钟内降至8℃;
(4)随温度降低,均相液体分成两相,0.1μm网过滤,蒸馏水和乙醇分别洗涤一次,32℃干燥2h得到热膨胀微球。热膨胀微球直径在5μm左右,发泡温度110℃,聚甲基丙烯酸甲酯包裹碳酸氢钠乙醇溶液的热膨胀微球发泡体积倍率为5倍。

Claims (10)

1.一种PMMA包裹NaHCO3乙醇溶液的热膨胀微球,由外壳包裹芯材组成,微球直径在1-6μm,所述外壳为聚甲基丙烯酸甲酯,所述芯材为碳酸氢钠的乙醇溶液。
2.如权利要求1所述的PMMA包裹NaHCO3乙醇溶液的热膨胀微球,其特征在于,所述聚甲基丙烯酸甲酯质均分子量介于5000与20万之间。
3.如权利要求1所述的PMMA包裹NaHCO3乙醇溶液的热膨胀微球,其特征在于,所述碳酸氢钠的乙醇溶液,碳酸氢钠与乙醇质量比为0.1–10:100。
4.权利要求1-3任一项所述的一种PMMA包裹NaHCO3乙醇溶液的热膨胀微球的制备方法,包括以下步骤:
(1)称取100质量份的乙醇,加入0.1–10质量份碳酸氢钠,得到碳酸氢钠的乙醇溶液;
(2)称取0.1-2质量份聚甲基丙烯酸甲酯,加入到碳酸氢钠的乙醇溶液中,升温至60-70℃,搅拌得到透明的均相液体;
(3)搅拌作用下,将均相液体5分钟内降至0-10℃;
(4)随温度降低,均相液体分成两相,过滤、洗涤、干燥后得到热膨胀微球。
5.如权利要求4所述PMMA包裹NaHCO3乙醇溶液的热膨胀微球的制备方法,其特征在于,所述过滤采用0.1-0.5μm网过滤。
6.如权利要求4所述PMMA包裹NaHCO3乙醇溶液的热膨胀微球的制备方法,其特征在于,所述干燥是在25-35℃干燥1-3h。
7.权利要求1-3任一项所述的一种PMMA包裹NaHCO3乙醇溶液的热膨胀微球的制备方法,包括以下步骤:
(1)称取100质量份的乙醇,0.1–10质量份碳酸氢钠,0.1-2质量份聚甲基丙烯酸甲酯,60-70℃搅拌溶解得到均相液体;
(2)均相液体迅速降温,过滤后洗涤干燥得到热膨胀微球。
8.如权利要求7所述PMMA包裹NaHCO3乙醇溶液的热膨胀微球的制备方法,其特征在于,所述迅速降温是为5分钟内降至0-10℃。
9.如权利要求7所述PMMA包裹NaHCO3乙醇溶液的热膨胀微球的制备方法,其特征在于,所述过滤采用0.1-0.5μm网过滤。
10.如权利要求7所述PMMA包裹NaHCO3乙醇溶液的热膨胀微球的制备方法,其特征在于,所述干燥是在25-35℃干燥1-3h。
CN201710608909.9A 2017-07-21 2017-07-21 PMMA包裹NaHCO3乙醇溶液的热膨胀微球及其制备方法 Active CN107286367B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710608909.9A CN107286367B (zh) 2017-07-21 2017-07-21 PMMA包裹NaHCO3乙醇溶液的热膨胀微球及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710608909.9A CN107286367B (zh) 2017-07-21 2017-07-21 PMMA包裹NaHCO3乙醇溶液的热膨胀微球及其制备方法

Publications (2)

Publication Number Publication Date
CN107286367A true CN107286367A (zh) 2017-10-24
CN107286367B CN107286367B (zh) 2020-09-25

Family

ID=60102196

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710608909.9A Active CN107286367B (zh) 2017-07-21 2017-07-21 PMMA包裹NaHCO3乙醇溶液的热膨胀微球及其制备方法

Country Status (1)

Country Link
CN (1) CN107286367B (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109627573A (zh) * 2018-11-21 2019-04-16 金旸(厦门)新材料科技有限公司 一种低比重v0级阻燃聚丙烯复合材料及其制备方法
CN112852004A (zh) * 2019-11-28 2021-05-28 浙江海虹控股集团有限公司 一种包裹二氧化碳的热膨胀微球及其制备方法
CN112961400A (zh) * 2019-12-12 2021-06-15 陈海贤 一种包水型热膨胀发泡微球及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088482B2 (en) * 2001-05-25 2012-01-03 Ip Rights, Llc Expandable microspheres for foam insulation and methods
CN106866250A (zh) * 2017-03-10 2017-06-20 江苏大唐博创再生资源开发有限公司 一种由油包水微乳液法制备控释尿素肥料的方法
CN106925193A (zh) * 2017-05-03 2017-07-07 昆山胜益食品科技有限公司 一种水溶小分子高效微胶囊包埋方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8088482B2 (en) * 2001-05-25 2012-01-03 Ip Rights, Llc Expandable microspheres for foam insulation and methods
CN106866250A (zh) * 2017-03-10 2017-06-20 江苏大唐博创再生资源开发有限公司 一种由油包水微乳液法制备控释尿素肥料的方法
CN106925193A (zh) * 2017-05-03 2017-07-07 昆山胜益食品科技有限公司 一种水溶小分子高效微胶囊包埋方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
H.OGAWA ET AL.: ""A New Technique for Foaming Submicron Size Poly(methyl methacrylate) Particles"", 《JOURNAL OF APPLIED POLYMER SCIENCE》 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109627573A (zh) * 2018-11-21 2019-04-16 金旸(厦门)新材料科技有限公司 一种低比重v0级阻燃聚丙烯复合材料及其制备方法
CN112852004A (zh) * 2019-11-28 2021-05-28 浙江海虹控股集团有限公司 一种包裹二氧化碳的热膨胀微球及其制备方法
WO2021103330A1 (zh) * 2019-11-28 2021-06-03 浙江海虹控股集团有限公司 一种包裹二氧化碳的热膨胀微球及其制备方法
CN112852004B (zh) * 2019-11-28 2022-03-29 浙江海虹控股集团有限公司 一种包裹二氧化碳的热膨胀微球及其制备方法
CN112961400A (zh) * 2019-12-12 2021-06-15 陈海贤 一种包水型热膨胀发泡微球及其制备方法
CN112961400B (zh) * 2019-12-12 2022-09-13 陈海贤 一种包水型热膨胀发泡微球及其制备方法

Also Published As

Publication number Publication date
CN107286367B (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
Wang et al. Stearic acid/polymethylmethacrylate composite as form-stable phase change materials for latent heat thermal energy storage
Jiesheng et al. Research on the preparation and properties of lauric acid/expanded perlite phase change materials
CN107286367A (zh) PMMA包裹NaHCO3乙醇溶液的热膨胀微球及其制备方法
Sarı et al. Preparation, thermal properties and thermal reliability of palmitic acid/expanded graphite composite as form-stable PCM for thermal energy storage
Wang et al. Effects of fabricated technology on particle size distribution and thermal properties of stearic–eicosanoic acid/polymethylmethacrylate nanocapsules
Kumar et al. Characterizations of surfactant synthesized from Jatropha oil and its application in enhanced oil recovery
Wang et al. Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage
Zhang et al. Experiment on heat storage characteristic of microencapsulated phase change material slurry
Karaipekli et al. Capric–myristic acid/expanded perlite composite as form-stable phase change material for latent heat thermal energy storage
You et al. Polyurethane foam containing microencapsulated phase-change materials with styrene–divinybenzene co-polymer shells
Shi et al. Application of the shrinking-core model to the kinetics of repeated formation of methane hydrates in a system of mixed dry-water and porous hydrogel particulates
Jingchen et al. Form-stable phase change material based on fatty acid/wood flour composite and PVC used for thermal energy storage
CN108097182B (zh) 一种超细环保热膨胀微胶囊及其制备方法
CN102120900A (zh) 一种紫外光固化的纳米透明隔热复合涂料
Hou et al. Preparation and properties of thermoexpandable polymeric microspheres
Wang et al. Preparation and thermal properties of shape-stabilized 1, 8-octanediol/SiO2 composites via sol gel methods
CN104233802B (zh) 一种具有光子晶体结构色的蚕丝织物的制备方法
Feng et al. Delignified bamboo as skeleton matrix for shape-stable phase change heat storage material with excellent reversible thermochromic response property
CN103523789A (zh) 一种二氧化硅气凝胶微球的制备方法
Duan et al. Facile fabrication of porous oil‐absorbent microspheres with high oil absorbency and fast oil absorption speed
Heo et al. Smart shell membrane prepared by microfluidics with reactive nematic liquid crystal mixture
CN104667888B (zh) 一种光敏聚合物修饰的吸附材料及其制备方法和用途
Niu et al. The preparation and characterization of phase change material microcapsules with multifunctional carbon nanotubes for controlling temperature
Kang et al. The thermal behavior and flame retardant performance of phase change material microcapsules with halloysite nanotube
CN104130444B (zh) 一种三醋酸纤维素气凝胶的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CP02 Change in the address of a patent holder

Address after: 236000 No.8 Huayuan Avenue, Baohe District, Hefei City, Anhui Province

Patentee after: INTELLIGENT MANUFACTURING INSTITUTE OF HFUT

Address before: 230009 12 / F, block B, innovation building, 860 Wangjiang West Road, Shushan District, Hefei City, Anhui Province

Patentee before: INTELLIGENT MANUFACTURING INSTITUTE OF HFUT

CP02 Change in the address of a patent holder