CN107286127A - The preparation method of low acid content 1,4- dioxane -2,5- acetyl butyryls - Google Patents

The preparation method of low acid content 1,4- dioxane -2,5- acetyl butyryls Download PDF

Info

Publication number
CN107286127A
CN107286127A CN201610227806.3A CN201610227806A CN107286127A CN 107286127 A CN107286127 A CN 107286127A CN 201610227806 A CN201610227806 A CN 201610227806A CN 107286127 A CN107286127 A CN 107286127A
Authority
CN
China
Prior art keywords
reaction
isosorbide
dioxane
acetyl butyryl
nitrae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201610227806.3A
Other languages
Chinese (zh)
Inventor
肖田鹏飞
王睿
朱煜
熊金根
章瑛虹
周文乐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Original Assignee
China Petroleum and Chemical Corp
Sinopec Shanghai Research Institute of Petrochemical Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by China Petroleum and Chemical Corp, Sinopec Shanghai Research Institute of Petrochemical Technology filed Critical China Petroleum and Chemical Corp
Priority to CN201610227806.3A priority Critical patent/CN107286127A/en
Publication of CN107286127A publication Critical patent/CN107286127A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D319/00Heterocyclic compounds containing six-membered rings having two oxygen atoms as the only ring hetero atoms
    • C07D319/101,4-Dioxanes; Hydrogenated 1,4-dioxanes
    • C07D319/121,4-Dioxanes; Hydrogenated 1,4-dioxanes not condensed with other rings

Abstract

The present invention relates to a kind of production method of the acetyl butyryl of low acid content Isosorbide-5-Nitrae dioxane 2,5, mainly solve prior art and prepare Isosorbide-5-Nitrae dioxane 2, acid content more technical problem during 5 acetyl butyryl, the present invention is by using comprising the following steps:(1) polycondensation:Glycolic acid is subjected to polycondensation reaction, glycol acid oligomer is obtained;(2) Solution Depolymerization, after step (1), at least one solvent is added into reaction system, glycol acid oligomer and solvent is set to be formed homogeneously, raising system reaction temperature is to 230 290 DEG C, vacuum is improved simultaneously to 0.1 5KPa, mixing speed is 30 250 revs/min, glycol acid oligomer is set to occur depolymerization reaction, vacuum distillation goes out target crude product, and the reaction time is the technical scheme of 1 12 hours, preferably solve the problem, in industrialized production available for the acetyl butyryl of low acid content Isosorbide-5-Nitrae dioxane 2,5.

Description

The preparation method of low acid content 1,4- dioxane -2,5- acetyl butyryls
Technical field
The present invention relates to a kind of preparation method of the low 1,4- dioxane -2,5- acetyl butyryls of acid content.
Background technology
Poly- Glycolic acid, is a kind of biodegradable linear aliphatic polyesters, because it has good biocompatibility and machine Tool performance and it is of great interest.The material is also earliest commercialized artificial synthesized operation suture thread.Except that can make Outside for operation suture thread, it is also applied to as drug release capsules material, gas barrier membrane material, packaging material etc..
The preparation of poly- Glycolic acid typically passes through two kinds of routes:One kind is directly prepared by raw materials melt polycondensation one-step method of Glycolic acid Poly- Glycolic acid, but molecular weight prepared by this method is not high.Although molecular weight, material can be improved by solid-phase tack producing Expect hue difference.Another method is that poly- glycol acid oligomer is prepared by raw material of Glycolic acid, then depolymerized oligomer prepare Isosorbide-5-Nitrae- Dioxane -2,5- acetyl butyryl, Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl prepares poly- Glycolic acid by being coordinated ring-opening polymerisation.This is system The common method of standby high-molecular-weight poly Glycolic acid, and by adding molecular weight regulator, different products can be prepared, meet Different applications need.
It can be seen that 1,4- dioxane -2,5- acetyl butyryls are the important monomers for preparing poly- Glycolic acid.Such monomer is a kind of cyclic esters Compound, meets the easy open loop of the water capacity and resolves into linear glycol acid dimer, and further hydrolysis can form Glycolic acid (Fig. 1).Generation Acid can turn into the catalyst of ring-opening reaction, accelerate the hydrolysis of Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl.Thus to make as far as possible during polycondensation Water is removed from oligomeric objects system.Although strengthening polycondensation reduces the influence of water, oligomer molecules amount can be caused to increase, Making the viscosity of system during depolymerization increases, and have impact on glycolide from steaming in system.In order to ensure yield, than needing higher Temperature and vacuum degree condition under react, this can also increase side reaction, while Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl is steamed Take more acid out of, can equally cause deleterious effect.
U.S. patent 2668162 discloses a kind of method, and it is low by melt polycondensation to prepare polyglycolic acid at 170-185 DEG C first Polymers, is then broken into powder by glycolic acid oligomer, and 1.6-2.0kPa, in 270-285 DEG C of heating, is received under a high vacuum Steam of the collection gained containing glycolide.The yield highest of thick glycolide can reach 93%, and the thick glycolide of gained further leads to Cross solvent washing and multiple solvent recrystallization is purified.Experimental study has been carried out according to the method for the patent, has as a result been shown to the greatest extent Pipe yield is higher, but acid content is higher in the Isosorbide-5-Nitrae of gained-dioxane -2,5- acetyl butyryl, and impurity content is higher.
U.S. patent 4727163 discloses a kind of method, and copolymerization is made using the polyethers with good thermal stability, in polycondensation rank Section is added in reaction system, and Glycolic acid carries out block copolymerization with polyethers while homopolymerization, also and obtains block copolymer, most Heating block copolymer carries out depolymerization afterwards, and yield is 67%.Method according to the patent carried out 1,4- dioxanes -2,5- oneself The preparation of diketone.But the yield of the 1,4- dioxane -2,5- acetyl butyryls obtained by this method is relatively low.Tracing it to its cause to be The generation of glycolide is due to that the poly- Glycolic acid oligomer end of the chain time is stung to be formed, and block copolymerization, which have impact on back, stings reaction, so as to influence Yield.
Patent CN 101054371 discloses a kind of method, uses the glycol acid crystal of high-purity for raw material, is contracted by being dehydrated Poly-, melt polycondensation prepares poly- glycol acid oligomer, and the oligomer of the gained high temperature melting under the catalysis of two kinds of catalyst melts Poly-, the highest yield of thick Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl can reach 86%.This method is extended when mentioning melt polycondensation Reaction time and improve reaction temperature to make unreacted raw material and water try one's best removals, although water is eliminated as far as possible, solve It is poly- that above-mentioned yield result need to can be just obtained at higher temperature and vacuum.
The patent CN1496359A of Wu Yu companies mention can using addition high boiling point polar organic solvent and solubilizer to gather In glycol acid oligomer the problem of being easily drained with coking material is blocked up to solve reaction system.But 1,4- dioxanes -2,5- during depolymerization Acetyl butyryl can together be steamed with high boiling organic solvent, be result in Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl crude product and be mixed with this Kind of solvent, the solvent in polymerization can be reaction with Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl, if do not removed, can directly affect poly- Glycolic acid performance.The removal of solvent adds the difficulty and production cost of refined purification.
The content of the invention
The technical problems to be solved by the invention are acid contents when prior art prepares 1,4- dioxane -2,5- acetyl butyryls More the problem of there is provided a kind of production method of low acid content Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl, by controlling polycondensation to conciliate Gather to obtain reaction condition, Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl of preparation has the advantages that acid content is low.
In order to solve the above technical problems, the present invention uses following technical scheme:A kind of low acid content 1,4- dioxanes -2,5- oneself The preparation method of diketone, comprises the following steps:
(1) polycondensation:Glycolic acid is subjected to polycondensation reaction, glycol acid oligomer is obtained;
(2) Solution Depolymerization, after step (1), at least one solvent is added into reaction system, makes glycol acid oligomer and molten Dosage form improves system reaction temperature to 230-290 DEG C into homogeneous, while improving vacuum to 0.1-5KPa, mixing speed is 30-250 revs/min, glycol acid oligomer is set to occur depolymerization reaction, vacuum distillation obtains low acid content Isosorbide-5-Nitrae-dioxane -2,5- Acetyl butyryl crude product, the reaction time is 1-12 hours.
In above-mentioned technical proposal, described step (1) polycondensation preferably specifically includes following steps:A) normal pressure polycondensation, is being urged In the presence of agent, glycol acid crystal is segmented reaction in atmospheric conditions:First stage normal pressure pre-polymerization, keeps reaction temperature to exist Reacted 0.5~10 hour between the fusing point of Glycolic acid and the boiling point of Glycolic acid;Second stage normal pressure polycondensation, in reaction temperature 112~220 DEG C, condensation reaction or ester exchange reaction are carried out, untill anhydrous steam;B) polycondensation is depressurized, after step a, System temperature is kept, while improving system vacuum to 0.1-5KPa, proceeds polycondensation reaction or ester exchange reaction, directly Steamed to no water;C) strengthen polycondensation, after the stepb, keep system temperature and vacuum to continue to react 0.5-10 hours, Obtain glycol acid oligomer.
In above-mentioned technical proposal, the catalyst be preferably the halide or the organic acid compound of tin of tin, the oxide of antimony, The halide of antimony, the organic acid compound of antimony, the oxide of zinc, the halide of zinc, the cooperation of the organic compound of zinc or zinc Mixture more than thing, the complex of organo-aluminum compound or aluminium, rare earth metal complex are at least one or two, catalyst Consumption be Glycolic acid consumption 0.001-10wt%.;
In above-mentioned technical proposal, preferred mixing speed is 30-250 revs/min during the reinforcement polycondensation reaction.
In above-mentioned technical proposal, the solvent added during step (2) Solution Depolymerization is preferably polyethers quasi-oligomer, such It can be liquid or solid during oligomer normal temperature, solvent can be used as liquid under de-polymerization temperature;The solvent added during depolymerization Amount be glycol acid oligomer amount 10-80wt%, preferably 20-60%;The molecular structure of the polyether oligomers is preferred For R6O(-R5 h-O-)qR7, wherein R5For-CH2-、-CH2CH2At least one of-;R6For-H ,-CH3、-CH2CH3 At least one of;R7For-H ,-CH3、-CH2CH3At least one of;0<h<4;0<q<200;Depolymerization reaction temperature Degree is preferably 230-270 DEG C;The vacuum of depolymerization reaction is preferably 1-5KPa;The time of depolymerization reaction is preferably 1-10 hours.
The test of acid content is determined by the way of acid base titration in Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl in the present invention, specific step It is rapid as follows:Take two conical flasks, add the solvent and indicator of equivalent, weigh a certain amount of Isosorbide-5-Nitrae-dioxane -2,5- oneself two Ketone is added in a conical flask, until completely dissolved, is titrated with the titrating solution of the concentration known prepared, another taper product Solution be used as blank.
The advantage of the invention is that:When preparing Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl, by controlling polycondensation reaction condition to conciliate Poly- reaction condition, can prepare Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl of low acid content.
Using technical scheme, a kind of polyethers is added as solvent in depolymerization, while low whipping speed is Stirred under 30-250 revs/min, Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl of low acid content can be prepared, acid content is reachable 1.51×10-4mol·g-1, achieve preferable technique effect.
Embodiment
Embodiments and advantages of the present invention are further illustrated with following non-limiting example.
[embodiment 1]
Added into reactor after 600g glycol acid crystal and 3g stannous octoate catalysts, temperature rises to 90 DEG C from room temperature, After solid is completely dissolved, 112 DEG C of beginning pre-polymerizations are warming up to, 210 DEG C are warming up to after pre-polymerization 1h, after after anhydrous steam, System keeping temperature simultaneously starts to vacuumize.This process vacuum degree control is in 3KPa.After after anhydrous steam, system keeps the shape State continues to react 1.5h, obtains poly- glycol acid oligomer 451g.
Oligomer (the R of 90g polyethers is added into oligomer5For-CH2-;R6For-CH3;R7For-CH3;H=2;Q=20.), Depolymerization system is stirred under 200 revs/min of speed in 270 DEG C of reaction temperature, vacuum 1KPa, is carried out reaction and is prepared Isosorbide-5-Nitrae-dioxa Ring -2,5- acetyl butyryl, reaction stops reaction after 2 hours, obtains Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl crude product 401g, acid content 2.99×10-4mol·g-1
[embodiment 2]
Added into reactor after 600g glycol acid crystal and 3g stannous octoate catalysts, temperature rises to 90 DEG C from room temperature, After solid is completely dissolved, 112 DEG C of beginning pre-polymerizations are warming up to, 210 DEG C are warming up to after pre-polymerization 1h, after after anhydrous steam, System keeping temperature simultaneously starts to vacuumize.This process vacuum degree control is in 3KPa.After after anhydrous steam, system keeps the shape State continues to react 1.5h, obtains poly- glycol acid oligomer 454g.
Oligomer (the R of 90g polyethers is added into oligomer5For-CH2-;R6For-CH3;R7For-CH3;H=2;Q=20.), Depolymerization system is stirred under 200 revs/min of speed in 270 DEG C of reaction temperature, vacuum 1.5KPa, is carried out reaction and is prepared Isosorbide-5-Nitrae-dioxy Heterocycle -2,5- acetyl butyryl, reaction stops reaction after 2 hours, obtains Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl crude product 396g, acid contains Amount 2.59 × 10-4mol·g-1
[embodiment 3]
Added into reactor after 600g glycol acid crystal and 3g stannous octoate catalysts, temperature rises to 90 DEG C from room temperature, After solid is completely dissolved, 112 DEG C of beginning pre-polymerizations are warming up to, 210 DEG C are warming up to after pre-polymerization 1h, after after anhydrous steam, System keeping temperature simultaneously starts to vacuumize.This process vacuum degree control is in 3KPa.After after anhydrous steam, system keeps the shape State continues to react 1.5h, obtains poly- glycol acid oligomer 451g.
Oligomer (the R of 90g polyethers is added into oligomer5For-CH2-;R6For-CH3;R7For-CH3;H=2;Q=20.), Depolymerization system is stirred under 200 revs/min of speed in 260 DEG C of reaction temperature, vacuum 2KPa, is carried out reaction and is prepared Isosorbide-5-Nitrae-dioxa Ring -2,5- acetyl butyryl, reaction stops reaction after 2 hours, obtains Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl crude product 387g, acid content 2.49×10-4mol·g-1
[embodiment 4]
Added into reactor after 600g glycol acid crystal and 3g stannous octoate catalysts, temperature rises to 90 DEG C from room temperature, After solid is completely dissolved, 112 DEG C of beginning pre-polymerizations are warming up to, 210 DEG C are warming up to after pre-polymerization 1h, after after anhydrous steam, System keeping temperature simultaneously starts to vacuumize.This process vacuum degree control is in 3KPa.After after anhydrous steam, system keeps the shape State continues to react 1.5h, obtains poly- glycol acid oligomer 451g.
Oligomer (the R of 90g polyethers is added into oligomer5For-CH2-;R6For-CH3;R7For-CH3;H=2;Q=20.), Depolymerization system is stirred under 200 revs/min of speed in 270 DEG C of reaction temperature, vacuum 2.5KPa, is carried out reaction and is prepared Isosorbide-5-Nitrae-dioxy Heterocycle -2,5- acetyl butyryl, reaction stops reaction after 2 hours, obtains Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl crude product 378g, acid contains Amount 1.51 × 10-4mol·g-1
[embodiment 5]
Added into reactor after 600g glycol acid crystal and 3g stannous octoate catalysts, temperature rises to 90 DEG C from room temperature, After solid is completely dissolved, 112 DEG C of beginning pre-polymerizations are warming up to, 210 DEG C are warming up to after pre-polymerization 1h, after after anhydrous steam, System keeping temperature simultaneously starts to vacuumize.This process vacuum degree control is in 3KPa.After after anhydrous steam, system keeps the shape State continues to react 1.5h, obtains poly- glycol acid oligomer 451g.
Oligomer (the R of 90g polyethers is added into oligomer5For-CH2-;R6For-CH3;R7For-CH3;H=2;Q=20.), Depolymerization system is stirred under 200 revs/min of speed in 260 DEG C of reaction temperature, vacuum 1.5KPa, is carried out reaction and is prepared Isosorbide-5-Nitrae-dioxy Heterocycle -2,5- acetyl butyryl, reaction stops reaction after 2 hours, obtains Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl crude product 399g, acid contains Amount 2.81 × 10-4mol·g-1
[embodiment 6]
Added into reactor after 600g glycol acid crystal and 3g stannous octoate catalysts, temperature rises to 90 DEG C from room temperature, After solid is completely dissolved, 112 DEG C of beginning pre-polymerizations are warming up to, 210 DEG C are warming up to after pre-polymerization 1h, after after anhydrous steam, System keeping temperature simultaneously starts to vacuumize.This process vacuum degree control is in 3KPa.After after anhydrous steam, system keeps the shape State continues to react 1.5h, obtains poly- glycol acid oligomer 451g.
Oligomer (the R of 90g polyethers is added into oligomer5For-CH2-;R6For-CH3;R7For-CH3;H=2;Q=20.), Depolymerization system is stirred under 200 revs/min of speed in 250 DEG C of reaction temperature, vacuum 1.5KPa, is carried out reaction and is prepared Isosorbide-5-Nitrae-dioxy Heterocycle -2,5- acetyl butyryl, reaction stops reaction after 2 hours, obtains Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl crude product 276g, acid contains Amount 5.07 × 10-4mol·g-1
[embodiment 7]
Added into reactor after 600g glycol acid crystal and 3g stannous octoate catalysts, temperature rises to 90 DEG C from room temperature, After solid is completely dissolved, 112 DEG C of beginning pre-polymerizations are warming up to, 210 DEG C are warming up to after pre-polymerization 1h, after after anhydrous steam, System keeping temperature simultaneously starts to vacuumize.This process vacuum degree control is in 3KPa.After after anhydrous steam, system keeps the shape State continues to react 1.5h, obtains poly- glycol acid oligomer 451g.
Oligomer (the R of 90g polyethers is added into oligomer5For-CH2-;R6For-CH3;R7For-CH3;H=2;Q=20.), Depolymerization system is stirred under 100 revs/min of speed in 270 DEG C of reaction temperature, vacuum 1.5KPa, is carried out reaction and is prepared Isosorbide-5-Nitrae-dioxy Heterocycle -2,5- acetyl butyryl, reaction stops reaction after 2 hours, obtains Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl crude product 276g, acid contains Amount 5.41 × 10-4mol·g-1
[embodiment 8]
Added into reactor after 600g glycol acid crystal and 3g stannous octoate catalysts, temperature rises to 90 DEG C from room temperature, After solid is completely dissolved, 112 DEG C of beginning pre-polymerizations are warming up to, 210 DEG C are warming up to after pre-polymerization 1h, after after anhydrous steam, System keeping temperature simultaneously starts to vacuumize.This process vacuum degree control is in 3KPa.After after anhydrous steam, system keeps the shape State continues to react 0.5h, obtains poly- glycol acid oligomer 453g.
Oligomer (the R of 90g polyethers is added into oligomer5For-CH2-;R6For-CH3;R7For-CH3;H=2;Q=20.), Depolymerization system is stirred under 100 revs/min of speed in 270 DEG C of reaction temperature, vacuum 1.5KPa, is carried out reaction and is prepared Isosorbide-5-Nitrae-dioxy Heterocycle -2,5- acetyl butyryl, reaction stops reaction after 2 hours, obtains Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl crude product 408g, acid contains Amount 6.67 × 10-4mol·g-1
[comparative example 1]
Added into reactor after 600g glycol acid crystal and 3g stannous octoate catalysts, temperature rises to 90 DEG C from room temperature, After solid is completely dissolved, 112 DEG C of beginning pre-polymerizations are warming up to, 210 DEG C are warming up to after pre-polymerization 1h, after after anhydrous steam, System keeping temperature simultaneously starts to vacuumize.This process vacuum degree control is in 3KPa.After after anhydrous steam, system keeps the shape State continues to react 1.5h, obtains poly- glycol acid oligomer 454g.
By the poly- glycol acid oligomer in 270 DEG C of reaction temperature, vacuum 1.5KPa is stirred under 200 revs/min of speed, carried out Reaction prepares Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl, and reaction stops reaction after 2 hours, obtains Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl Crude product 331g, acid content 9.13 × 10-4mol·g-1
[comparative example 2]
Added into reactor after 600g glycol acid crystal and 3g stannous octoate catalysts, temperature rises to 90 DEG C from room temperature, After solid is completely dissolved, 112 DEG C of beginning pre-polymerizations are warming up to, 210 DEG C are warming up to after pre-polymerization 1h, after after anhydrous steam, System keeping temperature simultaneously starts to vacuumize.This process vacuum degree control is in 3KPa.After after anhydrous steam, system keeps the shape State continues to react 1.5h, obtains poly- glycol acid oligomer 451g.
By the poly- glycol acid oligomer in 270 DEG C of reaction temperature, vacuum 1.5KPa carries out reaction and prepares Isosorbide-5-Nitrae-dioxy Heterocycle -2,5- acetyl butyryl, reaction stops reaction after 2 hours, obtains Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl crude product 230g, acid contains Amount 1.12 × 10-3mol·g-1
[comparative example 3]
Added into reactor after 600g glycol acid crystal and 3g stannous octoate catalysts, temperature rises to 90 DEG C from room temperature, After solid is completely dissolved, 112 DEG C of beginning pre-polymerizations are warming up to, 210 DEG C are warming up to after pre-polymerization 1h, after after anhydrous steam, System keeping temperature simultaneously starts to vacuumize.This process vacuum degree control is in 3KPa.After after anhydrous steam, system keeps the shape State continues to react 1.5h, obtains poly- glycol acid oligomer 453g.
Oligomer (the R of 90g polyethers is added into oligomer5For-CH2-;R6For-CH3;R7For-CH3;H=2;Q=20.), Depolymerization system carries out reaction and prepares Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl, instead in 270 DEG C of reaction temperature, vacuum 1KPa Answer and stop reaction after 2 hours, obtain Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl crude product 401g, acid content 8.79 × 10-4mol·g-1

Claims (10)

1. a kind of preparation method of Isosorbide-5-Nitrae-dioxane -2,5- acetyl butyryl, comprises the following steps:
(1) polycondensation:Glycolic acid is subjected to polycondensation reaction, glycol acid oligomer is obtained;
(2) Solution Depolymerization, after step (1), at least one solvent is added into reaction system, glycol acid oligomer and solvent is formed homogeneously, improve system reaction temperature to 230-290 DEG C, while improving vacuum to 0.1-5KPa, mixing speed is 30-250 revs/min, glycol acid oligomer is set to occur depolymerization reaction, vacuum distillation goes out target crude product, and the reaction time is 1-12 hours.
2. Isosorbide-5-Nitrae according to claim 1-dioxane-2,5- acetyl butyryl preparation method, it is characterised in that step (1) polycondensation specifically includes following steps:A) normal pressure polycondensation, in the presence of a catalyst, reaction is segmented by glycol acid crystal in atmospheric conditions:First stage normal pressure pre-polymerization, keeps reaction temperature to be reacted 0.5~10 hour between the fusing point of Glycolic acid and the boiling point of Glycolic acid;Second stage normal pressure polycondensation, in 112~220 DEG C of reaction temperature, carries out condensation reaction or ester exchange reaction, untill anhydrous steam;B) polycondensation is depressurized, after step a, system temperature is kept, while improving system vacuum to 0.1-5KPa, proceeds polycondensation reaction or ester exchange reaction, until no water is steamed;C) strengthen polycondensation, after the stepb, keep system temperature and vacuum to continue to react 0.5-10 hours, obtain glycol acid oligomer.
3. according to claim 21,4- dioxanes -2,5- acetyl butyryl preparation methods, it is characterized in that the mixture of catalyst used at least one or two above of organic acid compound, the oxide of antimony, the halide of antimony, the organic acid compound of antimony, the oxide of zinc, the halide of zinc, complex, the complex of organo-aluminum compound or aluminium, the rare earth metal complex of the organic compound of zinc or zinc of halide or tin of tin, the consumption of catalyst is the 0.001-10wt% of Glycolic acid consumption.
4. Isosorbide-5-Nitrae according to claim 1 or 2-dioxane-2,5- acetyl butyryl preparation method, it is characterised in that the solvent added during step (2) Solution Depolymerization is polyethers quasi-oligomer, and the polyethers quasi-oligomer is liquid under de-polymerization temperature.
5. Isosorbide-5-Nitrae according to claim 1 or 2-dioxane-2,5- acetyl butyryl preparation method, it is characterised in that the amount of the solvent added during step (2) Solution Depolymerization is the 10-80wt% of glycol acid oligomer amount.
6. Isosorbide-5-Nitrae according to claim 1 or 2-dioxane-2,5- acetyl butyryl preparation method, it is characterised in that the amount of the solvent added during step (2) Solution Depolymerization is the 20-60% for glycol acid oligomer amount of glycol acid oligomer amount.
7. Isosorbide-5-Nitrae according to claim 4-dioxane-2,5- acetyl butyryl preparation method, it is characterised in that the molecular structure of the polyether oligomers is R6O(-R5 h-O-)qR7, wherein R5For-CH2-、-CH2CH2At least one of-;R6For-H ,-CH3、-CH2CH3At least one of;R7For-H ,-CH3、-CH2CH3At least one of;0<h<4;0<q<200.
8. Isosorbide-5-Nitrae according to claim 1 or 2-dioxane-2,5- acetyl butyryl preparation method, it is characterised in that 230-270 DEG C of hour of depolymerization reaction temperature.
9. Isosorbide-5-Nitrae according to claim 1 or 2-dioxane-2,5- acetyl butyryl preparation method, it is characterised in that the vacuum 1-5KPa of depolymerization reaction.
10. Isosorbide-5-Nitrae according to claim 1 or 2-dioxane-2,5- acetyl butyryl preparation method, it is characterised in that the time of depolymerization reaction is 1-10 hours.
CN201610227806.3A 2016-04-13 2016-04-13 The preparation method of low acid content 1,4- dioxane -2,5- acetyl butyryls Pending CN107286127A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610227806.3A CN107286127A (en) 2016-04-13 2016-04-13 The preparation method of low acid content 1,4- dioxane -2,5- acetyl butyryls

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610227806.3A CN107286127A (en) 2016-04-13 2016-04-13 The preparation method of low acid content 1,4- dioxane -2,5- acetyl butyryls

Publications (1)

Publication Number Publication Date
CN107286127A true CN107286127A (en) 2017-10-24

Family

ID=60093756

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610227806.3A Pending CN107286127A (en) 2016-04-13 2016-04-13 The preparation method of low acid content 1,4- dioxane -2,5- acetyl butyryls

Country Status (1)

Country Link
CN (1) CN107286127A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107868076A (en) * 2016-09-26 2018-04-03 中国石油化工股份有限公司 The preparation of low impurity content glycolide
CN114805283A (en) * 2022-04-29 2022-07-29 内蒙古久泰新材料有限公司 Method for continuously and stably preparing high-quality glycolide

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830991A (en) * 1996-02-09 1998-11-03 Kureha Kagaku Kagyo Kk Preparation process and purification process of dimeric cyclic ester of hydroxycarboxylic acid
CN1501923A (en) * 2001-04-12 2004-06-02 ��Ԩ��ѧ��ҵ��ʽ���� Glycolide production process, and glycolic acid oligomer for glycolide production
CN101495440A (en) * 2006-08-02 2009-07-29 株式会社吴羽 Method for purifying hydroxycarboxylic acid, method for producing cyclic ester, and method for producing polyhydroxycarboxylic acid
CN103242287A (en) * 2013-05-24 2013-08-14 武汉大学 Preparation method of glycolide
CN105272958A (en) * 2014-07-24 2016-01-27 中国石油化工股份有限公司 Glycolide preparation method
CN105315152A (en) * 2014-07-24 2016-02-10 中国石油化工股份有限公司 Preparation method polyglycolic acid oligomer

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5830991A (en) * 1996-02-09 1998-11-03 Kureha Kagaku Kagyo Kk Preparation process and purification process of dimeric cyclic ester of hydroxycarboxylic acid
CN1501923A (en) * 2001-04-12 2004-06-02 ��Ԩ��ѧ��ҵ��ʽ���� Glycolide production process, and glycolic acid oligomer for glycolide production
CN101495440A (en) * 2006-08-02 2009-07-29 株式会社吴羽 Method for purifying hydroxycarboxylic acid, method for producing cyclic ester, and method for producing polyhydroxycarboxylic acid
CN103242287A (en) * 2013-05-24 2013-08-14 武汉大学 Preparation method of glycolide
CN105272958A (en) * 2014-07-24 2016-01-27 中国石油化工股份有限公司 Glycolide preparation method
CN105315152A (en) * 2014-07-24 2016-02-10 中国石油化工股份有限公司 Preparation method polyglycolic acid oligomer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107868076A (en) * 2016-09-26 2018-04-03 中国石油化工股份有限公司 The preparation of low impurity content glycolide
CN114805283A (en) * 2022-04-29 2022-07-29 内蒙古久泰新材料有限公司 Method for continuously and stably preparing high-quality glycolide

Similar Documents

Publication Publication Date Title
CN107868076A (en) The preparation of low impurity content glycolide
Guillaume et al. Recent advances in metallo/organo-catalyzed immortal ring-opening polymerization of cyclic carbonates
CN111087580B (en) Process for preparing polyglycolic acid
CN105272958A (en) Glycolide preparation method
CN105622567A (en) Preparation method of high-yield glycolide
CN102863420B (en) Method for preparing medical lactide
CN100518937C (en) Use of stannous benzoate as catalyst
CN108610473A (en) A kind of method of synthesizing polylactic acid
Sanglard et al. Poly (lactic acid) Synthesis and Characterization: FH-HES
CN107286127A (en) The preparation method of low acid content 1,4- dioxane -2,5- acetyl butyryls
KR20200035195A (en) Block copolymer of lactone and poly (propylene fumarate)
CN113956230A (en) Synthesis method of high-purity lactide
JP6100970B2 (en) Method for producing PLA using novel polymerization catalyst
JP5500451B2 (en) Process for producing lactic acid polymers with high crystallinity and high molecular weight
Zhou et al. Ring-opening Polymerization of 2-Oxabicyclo [2.2. 2] octan-3-one and the Influence of Stereochemistry on the Thermal Properties of the Polyesters
CA3116431A1 (en) Controlled production of polyglycolic acid and glycolide
CN110563941B (en) Preparation method of medical biodegradable high polymer material polycaprolactone
Ganguly et al. Synthesis and Production of Polylactic Acid (PLA)
CN105315155B (en) The method for preparing glycolic acid oligomer
CN114752042B (en) Preparation method of high molecular weight polyester and product
CN112010834B (en) Method for synthesizing glycolide in one step
CN110092899B (en) Application of phenylalanine stannous complex
CN107286126A (en) The preparation method of 1,4- dioxane -2,5- acetyl butyryls
CN103342800A (en) Method for catalyzing and synthesizing medicinal poly (lactic acid-glycollic acid) by using loaded type catalyst
KR100793903B1 (en) Process for preparing lactones biodegradable solid polymer and apparatus for preparing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171024

RJ01 Rejection of invention patent application after publication