CN107277065A - 基于强化学习的检测高级持续威胁的资源调度方法 - Google Patents
基于强化学习的检测高级持续威胁的资源调度方法 Download PDFInfo
- Publication number
- CN107277065A CN107277065A CN201710684939.8A CN201710684939A CN107277065A CN 107277065 A CN107277065 A CN 107277065A CN 201710684939 A CN201710684939 A CN 201710684939A CN 107277065 A CN107277065 A CN 107277065A
- Authority
- CN
- China
- Prior art keywords
- mrow
- resource
- apt
- cloud storage
- defense
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000001514 detection method Methods 0.000 title claims abstract description 35
- 238000000034 method Methods 0.000 title claims abstract description 20
- 230000001105 regulatory effect Effects 0.000 title claims abstract description 11
- 238000013527 convolutional neural network Methods 0.000 claims abstract description 26
- 230000001073 episodic memory Effects 0.000 claims abstract description 19
- 238000013500 data storage Methods 0.000 claims abstract description 10
- 230000001537 neural effect Effects 0.000 claims abstract description 10
- 230000007123 defense Effects 0.000 claims description 42
- 230000009471 action Effects 0.000 claims description 21
- 238000013468 resource allocation Methods 0.000 claims description 20
- 238000010276 construction Methods 0.000 claims description 8
- 230000006870 function Effects 0.000 claims description 4
- 238000011478 gradient descent method Methods 0.000 claims description 3
- 230000015654 memory Effects 0.000 claims description 3
- 230000008569 process Effects 0.000 claims description 3
- 230000006641 stabilisation Effects 0.000 claims 1
- 238000011105 stabilization Methods 0.000 claims 1
- 230000019771 cognition Effects 0.000 abstract description 4
- 230000006835 compression Effects 0.000 abstract description 4
- 238000007906 compression Methods 0.000 abstract description 4
- 201000004409 schistosomiasis Diseases 0.000 abstract description 3
- 238000005516 engineering process Methods 0.000 description 4
- 230000006399 behavior Effects 0.000 description 2
- 230000007613 environmental effect Effects 0.000 description 2
- 238000007689 inspection Methods 0.000 description 2
- 230000009545 invasion Effects 0.000 description 2
- 230000002045 lasting effect Effects 0.000 description 2
- 244000035744 Hura crepitans Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000007246 mechanism Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 210000000056 organ Anatomy 0.000 description 1
- 230000001568 sexual effect Effects 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 239000002023 wood Substances 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1408—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic by monitoring network traffic
- H04L63/1416—Event detection, e.g. attack signature detection
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04L—TRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
- H04L63/00—Network architectures or network communication protocols for network security
- H04L63/14—Network architectures or network communication protocols for network security for detecting or protecting against malicious traffic
- H04L63/1441—Countermeasures against malicious traffic
Landscapes
- Engineering & Computer Science (AREA)
- Computer Security & Cryptography (AREA)
- Computer Hardware Design (AREA)
- Computing Systems (AREA)
- General Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Computer And Data Communications (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
Abstract
Description
Claims (4)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710684939.8A CN107277065B (zh) | 2017-08-11 | 2017-08-11 | 基于强化学习的检测高级持续威胁的资源调度方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710684939.8A CN107277065B (zh) | 2017-08-11 | 2017-08-11 | 基于强化学习的检测高级持续威胁的资源调度方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107277065A true CN107277065A (zh) | 2017-10-20 |
CN107277065B CN107277065B (zh) | 2019-12-17 |
Family
ID=60077151
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710684939.8A Active CN107277065B (zh) | 2017-08-11 | 2017-08-11 | 基于强化学习的检测高级持续威胁的资源调度方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107277065B (zh) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109002358A (zh) * | 2018-07-23 | 2018-12-14 | 厦门大学 | 基于深度强化学习的移动终端软件自适应优化调度方法 |
CN109388484A (zh) * | 2018-08-16 | 2019-02-26 | 广东石油化工学院 | 一种基于Deep Q-network算法的多资源云作业调度方法 |
CN110191083A (zh) * | 2019-03-20 | 2019-08-30 | 中国科学院信息工程研究所 | 面向高级持续性威胁的安全防御方法、装置与电子设备 |
CN110213262A (zh) * | 2019-05-30 | 2019-09-06 | 华北电力大学 | 一种基于深度q网络的全自动高级逃逸技术测试方法 |
CN110365713A (zh) * | 2019-08-22 | 2019-10-22 | 中国科学技术大学 | 针对高级持续性威胁的网络防御资源最优分配方法 |
CN110659492A (zh) * | 2019-09-24 | 2020-01-07 | 北京信息科技大学 | 一种基于多智能体强化学习的恶意软件检测方法及装置 |
CN112187710A (zh) * | 2020-08-17 | 2021-01-05 | 杭州安恒信息技术股份有限公司 | 威胁情报数据的感知方法、装置、电子装置和存储介质 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103312679A (zh) * | 2012-03-15 | 2013-09-18 | 北京启明星辰信息技术股份有限公司 | 高级持续威胁的检测方法和系统 |
CN106612287A (zh) * | 2017-01-10 | 2017-05-03 | 厦门大学 | 一种云存储系统的持续性攻击的检测方法 |
CN106961684A (zh) * | 2017-03-24 | 2017-07-18 | 厦门大学 | 基于深度强化学习的认知无线电空频二维抗敌意干扰方法 |
-
2017
- 2017-08-11 CN CN201710684939.8A patent/CN107277065B/zh active Active
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103312679A (zh) * | 2012-03-15 | 2013-09-18 | 北京启明星辰信息技术股份有限公司 | 高级持续威胁的检测方法和系统 |
CN106612287A (zh) * | 2017-01-10 | 2017-05-03 | 厦门大学 | 一种云存储系统的持续性攻击的检测方法 |
CN106961684A (zh) * | 2017-03-24 | 2017-07-18 | 厦门大学 | 基于深度强化学习的认知无线电空频二维抗敌意干扰方法 |
Cited By (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109002358A (zh) * | 2018-07-23 | 2018-12-14 | 厦门大学 | 基于深度强化学习的移动终端软件自适应优化调度方法 |
CN109002358B (zh) * | 2018-07-23 | 2021-08-31 | 厦门大学 | 基于深度强化学习的移动终端软件自适应优化调度方法 |
CN109388484A (zh) * | 2018-08-16 | 2019-02-26 | 广东石油化工学院 | 一种基于Deep Q-network算法的多资源云作业调度方法 |
CN109388484B (zh) * | 2018-08-16 | 2020-07-28 | 广东石油化工学院 | 一种基于Deep Q-network算法的多资源云作业调度方法 |
CN110191083A (zh) * | 2019-03-20 | 2019-08-30 | 中国科学院信息工程研究所 | 面向高级持续性威胁的安全防御方法、装置与电子设备 |
CN110213262A (zh) * | 2019-05-30 | 2019-09-06 | 华北电力大学 | 一种基于深度q网络的全自动高级逃逸技术测试方法 |
CN110213262B (zh) * | 2019-05-30 | 2022-01-28 | 华北电力大学 | 一种基于深度q网络的全自动高级逃逸技术检测方法 |
CN110365713A (zh) * | 2019-08-22 | 2019-10-22 | 中国科学技术大学 | 针对高级持续性威胁的网络防御资源最优分配方法 |
CN110365713B (zh) * | 2019-08-22 | 2021-12-14 | 中国科学技术大学 | 针对高级持续性威胁的网络防御资源最优分配方法 |
CN110659492A (zh) * | 2019-09-24 | 2020-01-07 | 北京信息科技大学 | 一种基于多智能体强化学习的恶意软件检测方法及装置 |
CN110659492B (zh) * | 2019-09-24 | 2021-10-15 | 北京信息科技大学 | 一种基于多智能体强化学习的恶意软件检测方法及装置 |
CN112187710A (zh) * | 2020-08-17 | 2021-01-05 | 杭州安恒信息技术股份有限公司 | 威胁情报数据的感知方法、装置、电子装置和存储介质 |
Also Published As
Publication number | Publication date |
---|---|
CN107277065B (zh) | 2019-12-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107277065A (zh) | 基于强化学习的检测高级持续威胁的资源调度方法 | |
Min et al. | Defense against advanced persistent threats in dynamic cloud storage: A colonel blotto game approach | |
Jormakka et al. | Modelling information warfare as a game | |
Tang et al. | Incentivizing honest mining in blockchain networks: A reputation approach | |
CN110300106A (zh) | 基于Markov时间博弈的移动目标防御决策选取方法、装置及系统 | |
Tan et al. | WF-MTD: Evolutionary decision method for moving target defense based on wright-fisher process | |
CN106612287B (zh) | 一种云存储系统的持续性攻击的检测方法 | |
CN108701260B (zh) | 用于辅助决策的系统和方法 | |
Hossain et al. | Desmp: Differential privacy-exploited stealthy model poisoning attacks in federated learning | |
CN107070956A (zh) | 基于动态贝叶斯博弈的apt攻击预测方法 | |
CN109714364A (zh) | 一种基于贝叶斯改进模型的网络安全防御方法 | |
Laszka et al. | Mitigating covert compromises: A game-theoretic model of targeted and non-targeted covert attacks | |
Lin et al. | Optimal defense-attack strategies between M defenders and N attackers: A method based on cumulative prospect theory | |
Yang | Research on network behavior anomaly analysis based on bidirectional LSTM | |
CN110460572A (zh) | 基于Markov信号博弈的移动目标防御策略选取方法及设备 | |
CN115328189B (zh) | 多无人机协同博弈决策方法和系统 | |
CN114491541B (zh) | 基于知识图谱路径分析的安全运营剧本自动化编排方法 | |
Jakóbik et al. | Stackelberg games for modeling defense scenarios against cloud security threats | |
Wu et al. | Risk-attitude-based defense strategy considering proactive strike, preventive strike and imperfect false targets | |
CN115580430A (zh) | 一种基于深度强化学习的攻击树蜜罐部署防御方法与装置 | |
CN113132398A (zh) | 一种基于q学习的阵列蜜罐系统防御策略预测方法 | |
Dong et al. | Mind your heart: Stealthy backdoor attack on dynamic deep neural network in edge computing | |
Kinneer et al. | Modeling observability in adaptive systems to defend against advanced persistent threats | |
Liu et al. | Assessing Membership Leakages via Task-Aligned Divergent Shadow Datasets in Vehicular Road Cooperation | |
CN114666107B (zh) | 移动雾计算中一种高级持续性威胁防御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20171020 Assignee: XIAMEN FOUR-FAITH COMMUNICATION TECHNOLOGY Co.,Ltd. Assignor: XIAMEN University Contract record no.: X2023350000113 Denomination of invention: A Resource Scheduling Method for Detecting Advanced Persistent Threats Based on Reinforcement Learning Granted publication date: 20191217 License type: Common License Record date: 20230323 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20171020 Assignee: XIAMEN XINGZHONG WULIAN TECHNOLOGY Co.,Ltd. Assignor: XIAMEN University Contract record no.: X2023350000206 Denomination of invention: A Resource Scheduling Method for Detecting Advanced Persistent Threats Based on Reinforcement Learning Granted publication date: 20191217 License type: Common License Record date: 20230417 |
|
EE01 | Entry into force of recordation of patent licensing contract | ||
EE01 | Entry into force of recordation of patent licensing contract |
Application publication date: 20171020 Assignee: RUIMA ELECTRIC MANUFACTURING (FUJIAN) Co.,Ltd. Assignor: XIAMEN University Contract record no.: X2024980007788 Denomination of invention: Resource scheduling method for detecting advanced persistent threats based on reinforcement learning Granted publication date: 20191217 License type: Common License Record date: 20240703 |