CN107273648A - A kind of electric power system model interface and joining method suitable for non-mechanism model - Google Patents

A kind of electric power system model interface and joining method suitable for non-mechanism model Download PDF

Info

Publication number
CN107273648A
CN107273648A CN201710680596.8A CN201710680596A CN107273648A CN 107273648 A CN107273648 A CN 107273648A CN 201710680596 A CN201710680596 A CN 201710680596A CN 107273648 A CN107273648 A CN 107273648A
Authority
CN
China
Prior art keywords
msub
mrow
msup
model
theta
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710680596.8A
Other languages
Chinese (zh)
Other versions
CN107273648B (en
Inventor
沈赋
鞠平
秦川
陈谦
余平
余一平
潘学萍
金宇清
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hohai University HHU
Original Assignee
Hohai University HHU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hohai University HHU filed Critical Hohai University HHU
Priority to CN201710680596.8A priority Critical patent/CN107273648B/en
Publication of CN107273648A publication Critical patent/CN107273648A/en
Application granted granted Critical
Publication of CN107273648B publication Critical patent/CN107273648B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/06Energy or water supply
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J3/00Circuit arrangements for ac mains or ac distribution networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • Physics & Mathematics (AREA)
  • Economics (AREA)
  • Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Human Resources & Organizations (AREA)
  • Evolutionary Computation (AREA)
  • Computer Hardware Design (AREA)
  • Public Health (AREA)
  • Water Supply & Treatment (AREA)
  • General Health & Medical Sciences (AREA)
  • Geometry (AREA)
  • Marketing (AREA)
  • Primary Health Care (AREA)
  • Strategic Management (AREA)
  • Tourism & Hospitality (AREA)
  • General Business, Economics & Management (AREA)
  • Power Engineering (AREA)
  • Supply And Distribution Of Alternating Current (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

The present invention discloses a kind of electric power system model interface and joining method suitable for non-mechanism model, belongs to power system modeling field.The non-mechanism model of power network of the present invention, trend amount of unbalance based on power network to be spliced derives electric load transfer function model, and then non-mechanism model of the power network to be spliced when overall grid is spliced is derived, as interface model during splicing, realize the splicing of overall grid.The electric power system model interface of the present invention is applicable to Radial network or star network, the amount of unbalance of trend when can solve the problem that power network splicing, solve the problem of existing boundary flow matching algorithm efficiency based on sensitivity correction is relatively low, solve that the problem of not restraining even occurs when intranet and extranet boundary flow differs greatly, while solution is the problem of mechanism model is accessed by model interface by no means.

Description

A kind of electric power system model interface and joining method suitable for non-mechanism model
Technical field
The present invention relates to power system modeling technical field, particularly a kind of power system mould suitable for non-mechanism model Type interface and joining method.
Background technology
While simulation calculation serves as a kind of analysis with control instrument in power system, many power generation departments will also It is as a kind of foundation for instructing power network safety operation, therefore its is significant.In addition, electric system simulation is calculated Again based on system modelling, therefore, if the electric power system model set up is not accurate enough, Power System Analysis may be influenceed Conclusion, even resulting in some important phenomenons can not be found.This not accurate enough system model may be more optimistic, May be overly conservative, it is difficult to effectively instruct power system correctly to run based on such model, while being also difficult in discovery system The problem of existing, easily brings unnecessary economic loss.In system emulation, due to accurate model can not be obtained, Conservative model is more to be used, and the system safety index obtained by such model is relatively low, and this safety analysis to system is Improper.Because what kind of influence model can produce on system on earth, it is difficult to determine in advance, is probably conservative under different situations It is also likely to be what is advanced rashly.
By taking large-scale power outage in the world in the last few years as an example, including beautiful plus " 8.14 " accident in 2003, European Union 2006 Year " 11.4 " accident etc., discovery is carried out during crash analysis to it because original model and parameter is not accurate enough, using original Model be difficult to reproduction accident characteristic when being emulated.In addition, utilizing hair during original electric power system model progress simulation calculation The maintenance level of existing interconnected electric power system is relatively low, and it is relatively low thus to also result in electric energy transmission level, and by changing model structure And after model parameter, the delivery limits of electric energy about improve 25%.Therefore, in order to increase electrical energy transportation ability, improve society Meeting economic benefit, it is essential to obtain accurate power system simulation model.
In recent years, the importance of electric power system model has caused the attention of home and abroad electric power researcher, exists at present Considerable achievement in research is had been achieved in terms of power system modeling.These researchs are to traditional power system load or generating The models such as machine are improved, and the electric power system model after improving gradually comes into operation at home, in external power grid, obtains Good economic benefit.
In existing layering, distributed modeling scheme, one of key technology is to realize the automatic Mosaic of network, and this is included Network topology model is synthesized and boundary flow matches two aspects.For model synthesis, existing mature technology at present.
On the basis of existing commercialization simulation calculation software, boundary flow is modified using sensitivity correction method Match somebody with somebody, not convergent situation even occurs when intranet and extranet boundary flow differs greatly.After being improved to algorithm, although most Convergence eventually, but calculate time-consuming longer.It will be appreciated that during distributed line modeling, the whole network may have many sub- power networks same When need carry out model combination and boundary flow matching, do not adapt to the rapidity demand of line modeling using existing method.
The content of the invention
The purpose of the present invention is to propose to a kind of electric power system model interface accessed suitable for non-mechanism model and splicing Method, the amount of unbalance problem of trend when can solve the problem that power network splicing, and efficiency of algorithm is higher, in intranet and extranet boundary flow difference Also be not in the problem of convergence when larger.
The technical scheme that the present invention takes is:A kind of electric power system model interface accessed suitable for non-mechanism model.
Defining power network to be spliced includes at least two power networks, and for any one power network, its transient potential isOutlet electricity Press and beExporting electric current isRotor velocity is ω, and rotor winding time constant is T 'd0, stator resistance is Rs, rotor resistance For Rr, steady-state reactance is X, and transient state reactance is X ', and stator reactance is Xs, rotor reactance is Xr, excitatory reactance is Xm
Then the electric load transfer function model of the power network to be spliced is:
Wherein, i represents the sequence of sets of power network to be spliced, and S represents laplace operator, Δ IirWith Δ IijElectric current is represented respectively The increment of real and imaginary parts, Δ Ui(S) increment of voltage magnitude is represented;
In formula:air=G, bir=Cr-BrB-GBj, cir=BrG-BjCr, dir=1, eir=-Bj-Ar, fir=BjAr-BrAj
aij=-B, bij=GAj+Cj+ArB, cij=AjCr-ArCj, dij=1, eij=-Bj-Ar, fij=BjAr-BrAj
Wherein:Ar=-(1+B Δ X)/T 'd0;Br=ω -1-G Δs X/T 'd0
Cr=G/T 'd0-B(ω-1);Aj=-ω+1+G Δs X/T 'd0
Bj=-(1+B Δ X)/T 'd0;Cj=[B/T 'd0+G(ω-1)];
Δ X=X-X ';G=RS/(RS 2+X′2);B=X '/(RS 2+X′2);
Then the non-mechanism model equation of the power network to be spliced is:
Wherein, k refers to discrete time (k=1,2,3,4 ...);
The real part coefficient of model is:
The imaginary part coefficient of model is:
Wherein h is sampling step length, and z is the transform factor;
Above-mentioned non-mechanism model is the model interface of the power network to be spliced in power system model splicing.
It is preferred that, the overall network topology structure of the power network to be spliced is Radial network, star network, or is radiated The combination of type network and star network., can be by Radial network or star network i.e. for any power system network Or both collectively constitute.
On the basis of formula (2), no matter power system network topology to be spliced is radial pattern or star, using adding Power summation can be derived by, and spliced overall grid model equation is:
The real part coefficient of model is:
The imaginary part coefficient of model is:
Ki_realFor the proportionality coefficient for i-th of electric network model electric current real part for participating in splicing;Ki_imageTo participate in the of splicing The proportionality coefficient of i electric network model electric current imaginary part;The power network quantity that n splices for participation;θi1i5To participate in i-th of splicing The real part coefficient of the non-mechanism model of power network;θi6i10For the imaginary part coefficient for the non-mechanism model of i-th of power network for participating in splicing.
Invention additionally discloses a kind of power system model splicing method suitable for non-mechanism model, including step:
S1, calculates the trend amount of unbalance of power network to be spliced respectively;
S2, obtained trend amount of unbalance is calculated based on S1, the respective non-mechanism model of power network to be spliced is obtained;
S3, using the non-mechanism model of each power network to be spliced as its splice when interface model, utilize weighted sum method Model splicing is carried out to power network to be spliced.
Further, step S2 of the present invention also includes:For power network to be spliced, the utilization of trend amount of unbalance is based respectively on Its non-mechanism model carries out dynamic simulation checking.
Further, step S3 of the present invention also includes:For spliced power network, using the non-mechanism model of power network to spelling Whole power network after connecing carries out dynamic simulation checking.
Dynamic simulation of the present invention is verified as, using the non-mechanism model being derived by, before being spliced respectively and Spliced operation of power networks emulation, simulation result is contrasted with actual Operation of Electric Systems parameter, waits to spell so as to verify Connect the correctness of the non-mechanism model of network and the non-mechanism model of spliced overall grid.In simulating, verifying, for radial pattern Network and star network can be verified respectively.
Beneficial effect
Electric power system model interface proposed by the present invention suitable for non-mechanism model, suitable for various electric power system models Splicing, solve power network splicing when trend amount of unbalance;Solve the existing boundary flow matching based on sensitivity correction The problem of algorithm consumes the more calculating time;Solve when intranet and extranet boundary flow differs greatly or even occur not convergent Problem;Solve the problem of non-mechanism model is accessed by model interface.
Brief description of the drawings
Fig. 1 show model interface and its principle schematic;
Fig. 2 show Radial network schematic diagram;
Fig. 3 show Radial network schematic diagram under equivalent same bus;
Fig. 4 show Star Network schematic diagram;
Fig. 5 show Star Network schematic diagram under equivalent same bus.
Embodiment
Further described below in conjunction with the drawings and specific embodiments.
The present invention suitable for non-mechanism model access electric power system model interface be:
Defining power network to be spliced includes at least two power networks, and for any one power network, its transient potential is, outlet electricity Press and be, exporting electric current is, rotor velocity is ω, and rotor winding time constant is T 'd0, stator resistance is Rs, rotor resistance For Rr, steady-state reactance is X, and transient state reactance is X ', and stator reactance is Xs, rotor reactance is Xr, excitatory reactance is Xm
Then the electric load transfer function model of the power network to be spliced is:
Wherein, i represents the sequence of sets of power network to be spliced, and S represents laplace operator, Δ IirWith Δ IijElectric current is represented respectively The increment of real and imaginary parts, Δ Ui(S) increment of voltage magnitude is represented;
In formula:air=G, bir=Cr-BrB-GBj, cir=BrG-BjCr, dir=1, eir=-Bj-Ar, fir=BjAr-BrAj
aij=-B, bij=GAj+Cj+ArB, cij=AjCr-ArCj, dij=1, eij=-Bj-Ar, fij=BjAr-BrAj
Wherein:Ar=-(1+B Δ X)/T 'd0;Br=ω -1-G Δs X/T 'd0
Cr=G/T 'd0-B(ω-1);Aj=-ω+1+G Δs X/T 'd0
Bj=-(1+B Δ X)/Td0;Cj=[B/T 'd0+G(ω-1)];
Δ X=X-X ';G=RS/(RS 2+X′2);B=X '/(RS 2+X′2);
Then the non-mechanism model equation of the power network to be spliced is:
Wherein, k refers to discrete time (k=1,2,3,4 ...);
The real part coefficient of discrete model is:
The imaginary part coefficient of discrete model is:
Wherein h is sampling step length, and z is the transform factor;
Above-mentioned non-mechanism model equation (2) is the model interface side of the power network to be spliced in power system model splicing Journey.
The overall network topology structure of the power network to be spliced is Radial network, star network, or Radial network With the combination of star network., can be by Radial network or star network or two i.e. for any power system network Person collectively constitutes.
On the basis of formula (2), no matter power system network topology to be spliced is radial pattern or star, using adding Power summation can be derived by, and spliced overall grid model equation is:
The real part coefficient of model is:
The imaginary part coefficient of model is:
Ki_realFor the proportionality coefficient for i-th of electric network model electric current real part for participating in splicing;Ki_imageTo participate in the of splicing The proportionality coefficient of i electric network model electric current imaginary part;The power network quantity that n splices for participation;θi1i5To participate in i-th of splicing The real part coefficient of the non-mechanism model of power network;θi6i10For the imaginary part coefficient for the non-mechanism model of i-th of power network for participating in splicing.
Embodiment 1
Model interface is as shown in figure 1, the exit potential vector of Model I is UA∠θA, vector power is PA+jQA, modelⅱ Exit potential phasor be UB∠θB, power phasor is PB+jQB, then interface equation is as follows:
Phase shifting angle θ=- Δ θ=θBA
Transformer voltage ratio
It is grounded admittance
Define in power network to be spliced,It is transient potential,It is voltage,It is electric current, ω is rotor velocity, T 'd0It is to turn Son winding time constant, RsIt is stator resistance, RrIt is rotor resistance, X is steady-state reactance, and X ' is transient state reactance, XsIt is stator electricity It is anti-, XrIt is rotor reactance, XmIt is excitatory reactance.
For Model I, its corresponding electric load transfer function model is:
S represents laplace operator;ΔI1rWith Δ I1jThe increment of the electric current real and imaginary parts of difference representative model 1;ΔU1(S) generation The increment of table voltage magnitude
In formula:a1r=G, b1r=Cr-BrB-GBj, c1r=BrG-BjCr, d1r=1, e1r=-Bj-Ar, f1r=BjAr-BrAj, a1j=-B, b1j=GAj+Cj+ArB, c1j=AjCr-ArCj, d1j=1, e1j=-Bj-Ar, f1j=BjAr-BrAj
Wherein:
Ar=-(1+B Δ X)/Td0;Br=ω -1-G Δs X/T 'd0
Cr=G/T 'd0-B(ω-1);Aj=-ω+1+G Δs X/T 'd0
Bj=-(1+B Δ X)/T 'd0;Cj=[B/T 'd0+G(ω-1)];
Δ X=X-X ';G=RS/(RS 2+X′2);B=X '/(RS 2+Xw2);
Then Model I non-mechanism model equation in splicing is:
In formula, k refers to discrete time (k=1,2,3,4 ...);
The real part coefficient of discrete model is:
The imaginary part coefficient of discrete model is:
Wherein h is sampling step length, and z is the transform factor.
Embodiment 2
Radial network as shown in Figures 2 and 3, is spliced through interface R10 and R20 respectively by M1 and M2.Then for For M1, its corresponding electric load transfer function model is:
It is that the corresponding non-mechanism model equation of R10 interfaces is in splicing:
M2 corresponding non-mechanism model equations of R20 interfaces in splicing, which can similarly be pushed away, is:
M1 and M2 is distinguished to the corresponding non-mechanism model equation of interface as interface during power system model splicing, utilized Weighted sum algorithm, can draw the block mold equation for the Radial network that is spliced respectively through interface R10 and R20 by M1 and M2 For:
Wherein, the real part coefficient of model is:
The imaginary part coefficient of model is:
Ki_realFor the proportionality coefficient for i-th of electric network model electric current real part for participating in splicing;Ki_imageTo participate in the of splicing The proportionality coefficient of i electric network model electric current imaginary part;The power network quantity that n splices for participation;θi1i5To participate in i-th of splicing The real part coefficient of the non-mechanism model of power network;θi6i10For the imaginary part coefficient for the non-mechanism model of i-th of power network for participating in splicing.This N values are 2 in embodiment.
For all power system networks, the either combination of star network or Radial network or both, All by most basic as the corresponding power network of Model I is spliced, therefore, for star network as shown in Figure 4 and Figure 5, equally It can be derived from, the non-mechanism model interface of spliced overall power system is also:
Embodiment 3
A kind of power system model splicing method suitable for non-mechanism model, including step:
S1, calculates the trend amount of unbalance of power network to be spliced respectively;The calculating of the trend amount of unbalance, i.e. formula (1-1), (1-2) and (1-3) calculating, specific calculating process are prior art;
S2, obtained trend amount of unbalance is calculated based on S1, the respective non-mechanism model of power network to be spliced is obtained;
For power network to be spliced, it is based respectively on trend amount of unbalance and is tested using its non-mechanism model progress dynamic simulation Card;
S3, using verify the non-mechanism model of correct each power network to be spliced as its splice when interface model, using adding Weigh the model splicing that summation method carries out overall grid to power network to be spliced;
For spliced overall grid, using the non-mechanism model of obtained overall grid to spliced whole power network Carry out dynamic simulation checking.
In summary the present invention relates to a kind of electric power system model interface suitable for non-mechanism model, power network spelling is solved The amount of unbalance of trend when connecing;Solve the existing boundary flow matching algorithm based on sensitivity correction and consume the more calculating time The problem of;Solve when intranet and extranet boundary flow differs greatly or even the problem of not restraining occurs;Solve non-mechanism mould The problem of type is accessed by model interface.
Described above is only the preferred embodiment of the present invention, it is noted that for the ordinary skill people of the art For member, without departing from the technical principles of the invention, some improvement and deformation can also be made, these improve and deformed Also it should be regarded as protection scope of the present invention.

Claims (6)

1. a kind of electric power system model interface accessed suitable for non-mechanism model, it is characterized in that,
Defining power network to be spliced includes at least two power networks, and for any one power network, its transient potential isExit potential isExporting electric current isRotor velocity is ω, and rotor winding time constant is T 'd0, stator resistance is Rs, rotor resistance is Rr, steady-state reactance is X, and transient state reactance is X ', and stator reactance is Xs, rotor reactance is Xr, excitatory reactance is Xm
Then the electric load transfer function model of the power network to be spliced is:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;I</mi> <mrow> <mi>i</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mi>r</mi> </mrow> </msub> <msup> <mi>S</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>r</mi> </mrow> </msub> <mi>S</mi> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>r</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mi>r</mi> </mrow> </msub> <msup> <mi>S</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mi>r</mi> </mrow> </msub> <mi>S</mi> <mo>+</mo> <msub> <mi>f</mi> <mrow> <mi>i</mi> <mi>f</mi> </mrow> </msub> </mrow> </mfrac> <msub> <mi>&amp;Delta;U</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;I</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <msub> <mi>a</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msup> <mi>S</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mi>S</mi> <mo>+</mo> <msub> <mi>c</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> <mrow> <msub> <mi>d</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <msup> <mi>S</mi> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>e</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mi>S</mi> <mo>+</mo> <msub> <mi>f</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> </mrow> </mfrac> <msub> <mi>&amp;Delta;U</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>S</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
Wherein, i represents the sequence of sets of power network to be spliced, and S represents laplace operator, Δ IirWith Δ IijRepresent respectively electric current real part and The increment of imaginary part, Δ Ui(S) increment of voltage magnitude is represented;
In formula:air=G, bir=Cr-BrB-GBj, cir=BrG-BjCr, dir=1, eir=-Bj-Ar, fir=BjAr-BrAj
aij=-B, bij=GAj+Cj+ArB, cij=AjCr-ArCj, dij=1, eij=-Bj-Ar, fij=BjAr-BrAj
Wherein:Ar=-(1+B Δ X)/T 'd0;Br=ω -1-G Δs X/T 'd0
Cr=G/T 'd0-B(ω-1);Aj=-ω+1+G Δs X/T 'd0
Bj=-(1+B Δ X)/T 'd0;Cj=[B/T 'd0+G(ω-1)];
Δ X=X-X ';G=RS/(RS 2+X′2);B=X '/(RS 2+X′2);
Then the non-mechanism model equation of the power network to be spliced is:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;I</mi> <mrow> <mi>i</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <msub> <mi>&amp;Delta;I</mi> <mrow> <mi>i</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <msub> <mi>&amp;Delta;I</mi> <mrow> <mi>i</mi> <mi>r</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mi>&amp;Delta;</mi> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>4</mn> </mrow> </msub> <mi>&amp;Delta;</mi> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>5</mn> </mrow> </msub> <mi>&amp;Delta;</mi> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;I</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>6</mn> </mrow> </msub> <msub> <mi>&amp;Delta;I</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>7</mn> </mrow> </msub> <msub> <mi>&amp;Delta;I</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>8</mn> </mrow> </msub> <mi>&amp;Delta;</mi> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>9</mn> </mrow> </msub> <mi>&amp;Delta;</mi> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>10</mn> </mrow> </msub> <mi>&amp;Delta;</mi> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, k refers to discrete time (k=1,2,3,4 ...);
The real part coefficient of model is:
<mrow> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>1</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>8</mn> </mrow> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> </mrow> </mfrac> <mo>;</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>2</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>4</mn> </mrow> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> </mrow> </mfrac> <mo>;</mo> </mrow>
<mrow> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>3</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>GB</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <mi>B</mi> <mo>-</mo> <msub> <mi>C</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <mi>G</mi> </mrow> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> </mrow> </mfrac> <mo>;</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>4</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>8</mn> <mi>G</mi> </mrow> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> </mrow> </mfrac> <mo>;</mo> </mrow>
<mrow> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>5</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>GB</mi> <mi>i</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <mi>B</mi> <mo>-</mo> <msub> <mi>C</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> <mi>G</mi> </mrow> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> </mrow> </mfrac> <mo>;</mo> </mrow>
The imaginary part coefficient of model is:
<mrow> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>6</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>j</mi> </msub> <msub> <mi>B</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>8</mn> </mrow> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> </mrow> </mfrac> <mo>;</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>7</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>j</mi> </msub> <msub> <mi>B</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>+</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>4</mn> </mrow> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> </mrow> </mfrac> <mo>;</mo> </mrow>
<mrow> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>8</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>j</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>BA</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>GA</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>4</mn> <mi>B</mi> </mrow> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> </mrow> </mfrac> <mo>;</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>9</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <mn>2</mn> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>j</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>8</mn> <mi>B</mi> </mrow> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> </mrow> </mfrac> <mo>;</mo> </mrow>
<mrow> <msub> <mi>&amp;theta;</mi> <mrow> <mi>i</mi> <mn>10</mn> </mrow> </msub> <mo>=</mo> <mfrac> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>j</mi> </msub> <msub> <mi>C</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <mo>-</mo> <msub> <mi>BA</mi> <mi>r</mi> </msub> <mo>-</mo> <msub> <mi>GA</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>C</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>4</mn> <mi>B</mi> </mrow> <mrow> <msup> <mi>h</mi> <mn>2</mn> </msup> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>B</mi> <mi>r</mi> </msub> <msub> <mi>A</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mn>2</mn> <mi>h</mi> <mrow> <mo>(</mo> <msub> <mi>A</mi> <mi>r</mi> </msub> <mo>+</mo> <msub> <mi>B</mi> <mi>j</mi> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mn>4</mn> </mrow> </mfrac> <mo>;</mo> </mrow>
Wherein h is sampling step length, and z is the transform factor;
Above-mentioned non-mechanism model is the model interface of the power network to be spliced in power system model splicing.
2. the electric power system model interface according to claim 1 accessed suitable for non-mechanism model, it is characterized in that, it is described The overall network topology structure of power network to be spliced is Radial network, star network, or Radial network and star network Combination.
3. the electric power system model interface according to claim 2 accessed suitable for non-mechanism model, it is characterized in that, splicing Overall grid model equation afterwards is:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;I</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;theta;</mi> <mn>1</mn> </msub> <msub> <mi>&amp;Delta;I</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mn>2</mn> </msub> <msub> <mi>&amp;Delta;I</mi> <mi>r</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mn>3</mn> </msub> <mi>&amp;Delta;</mi> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mn>4</mn> </msub> <mi>&amp;Delta;</mi> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mn>5</mn> </msub> <mi>&amp;Delta;</mi> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;Delta;I</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;theta;</mi> <mn>6</mn> </msub> <msub> <mi>&amp;Delta;I</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mn>7</mn> </msub> <msub> <mi>&amp;Delta;I</mi> <mi>j</mi> </msub> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mn>8</mn> </msub> <mi>&amp;Delta;</mi> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>2</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mn>9</mn> </msub> <mi>&amp;Delta;</mi> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>+</mo> <mn>1</mn> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;theta;</mi> <mn>10</mn> </msub> <mi>&amp;Delta;</mi> <mi>U</mi> <mrow> <mo>(</mo> <mi>k</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
The real part coefficient of model is:
The imaginary part coefficient of model is:
Ki_realFor the proportionality coefficient for i-th of electric network model electric current real part for participating in splicing;Ki_imageTo participate in i-th of electricity of splicing The proportionality coefficient of pessimistic concurrency control electric current imaginary part;The power network quantity that n splices for participation;θi1i5I-th of power network for participation splicing is non- The real part coefficient of mechanism model;θi6i10For the imaginary part coefficient for the non-mechanism model of i-th of power network for participating in splicing.
4. a kind of power system model splicing method suitable for non-mechanism model, it is characterized in that, including step:
S1, calculates the trend amount of unbalance of power network to be spliced respectively;
S2, obtained trend amount of unbalance is calculated based on S1, the respective non-mechanism model of power network to be spliced is obtained;
S3, using the non-mechanism model of each power network to be spliced as its splice when interface model, treated using weighted sum method Splice power network and carry out model splicing.
5. method according to claim 4, it is characterized in that, step S2 also includes:For power network to be spliced, it is based respectively on Trend amount of unbalance carries out dynamic simulation checking using its non-mechanism model.
6. method according to claim 4, it is characterized in that, step S3 also includes:For spliced power network, power network is utilized Non- mechanism model dynamic simulation checking is carried out to spliced whole power network.
CN201710680596.8A 2017-08-10 2017-08-10 Power system model interface suitable for non-mechanism model and splicing method Active CN107273648B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710680596.8A CN107273648B (en) 2017-08-10 2017-08-10 Power system model interface suitable for non-mechanism model and splicing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710680596.8A CN107273648B (en) 2017-08-10 2017-08-10 Power system model interface suitable for non-mechanism model and splicing method

Publications (2)

Publication Number Publication Date
CN107273648A true CN107273648A (en) 2017-10-20
CN107273648B CN107273648B (en) 2020-07-17

Family

ID=60079741

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710680596.8A Active CN107273648B (en) 2017-08-10 2017-08-10 Power system model interface suitable for non-mechanism model and splicing method

Country Status (1)

Country Link
CN (1) CN107273648B (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221599A (en) * 2007-12-12 2008-07-16 国电南瑞科技股份有限公司 Interconnection system distributed tidal current computing method based on computation model split joint
CN103972885A (en) * 2014-04-24 2014-08-06 河海大学 Power grid model splicing method

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101221599A (en) * 2007-12-12 2008-07-16 国电南瑞科技股份有限公司 Interconnection system distributed tidal current computing method based on computation model split joint
CN103972885A (en) * 2014-04-24 2014-08-06 河海大学 Power grid model splicing method

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
姚远: ""基于多微网控制管理的微电网等值研究"", 《万方数据知识服务平台》 *
鞠平 等,: ""综合能源电力系统的在线分布互联建模研究"", 《电力自动化设备》 *

Also Published As

Publication number Publication date
CN107273648B (en) 2020-07-17

Similar Documents

Publication Publication Date Title
CN102682358B (en) A kind of assessment wind-electricity integration scale and Net Frame of Electric Network adaptive planning simulation method
CN105490282B (en) Consider the micro-capacitance sensor real-time voltage control method of the idle torque equilibrium degree of micro battery
CN102436534B (en) Simulating method for electric power system
CN102012956A (en) Wind farm equivalent method based on wind farm input wind speed and wind direction chance fluctuation
CN104485684A (en) Fault current calculation method for electric power system comprising double-feed wind power generator set
CN108062599B (en) Modeling method for cooperative operation of electric power system and natural gas system
CN101192754A (en) A realization method for integrated load model of distribution network in power system
CN107221945A (en) A kind of UHVDC Transmission Lines forecast failure aid decision-making method and device
CN106026113A (en) Micro-grid system monitoring method having reactive automatic compensation function
CN107492888A (en) A kind of voltage weakness zone appraisal procedure of direct current receiving end AC system
CN115622053B (en) Automatic load modeling method and device for considering distributed power supply
CN106532710A (en) Microgrid power flow optimization method considering voltage stability constraint
CN101882785A (en) Flow analysis system and method for intelligent power distribution networks containing distributed generation
CN106208099A (en) A kind of Method for Reactive Power Optimization in Power based on bi-level programming and application thereof
CN115640963A (en) Offshore wind power access system robust planning method considering investment operation mode
CN102163845B (en) Optimal configuration method of distributed generations (DG) based on power moment algorithm
CN107769227B (en) A kind of wind-powered electricity generation station equivalent modeling method suitable for subsynchronous research
CN106816879B (en) A kind of active distribution network voltage control method for coordinating based on urgent need response
CN107069808A (en) A kind of new energy power station model error localization method and device
CN114491886A (en) General modeling method and device for active power distribution network containing multi-type distributed new energy
Tan et al. Automatic generation and parameter verification of large-scale EMT simulation models based on TSP projects
CN105958530A (en) Microgrid system with reactive power automatic compensation function
CN105529736A (en) Calculation method for fault current equivalent model of crowbar switching double-feed wind turbines
CN107273648A (en) A kind of electric power system model interface and joining method suitable for non-mechanism model
CN108416459B (en) Site selection method for battery energy storage power station

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant