CN107272719A - Hypersonic aircraft attitude motion control method for coordinating based on coordinating factor - Google Patents

Hypersonic aircraft attitude motion control method for coordinating based on coordinating factor Download PDF

Info

Publication number
CN107272719A
CN107272719A CN201710514169.2A CN201710514169A CN107272719A CN 107272719 A CN107272719 A CN 107272719A CN 201710514169 A CN201710514169 A CN 201710514169A CN 107272719 A CN107272719 A CN 107272719A
Authority
CN
China
Prior art keywords
mrow
msub
mtd
mover
mtr
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710514169.2A
Other languages
Chinese (zh)
Other versions
CN107272719B (en
Inventor
王玉惠
牟金震
应竣棫
陈谋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Aeronautics and Astronautics
Original Assignee
Nanjing University of Aeronautics and Astronautics
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Aeronautics and Astronautics filed Critical Nanjing University of Aeronautics and Astronautics
Priority to CN201710514169.2A priority Critical patent/CN107272719B/en
Publication of CN107272719A publication Critical patent/CN107272719A/en
Application granted granted Critical
Publication of CN107272719B publication Critical patent/CN107272719B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • G05D1/0816Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability
    • G05D1/0841Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft to ensure stability to prevent a coupling between different modes

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
  • Other Investigation Or Analysis Of Materials By Electrical Means (AREA)

Abstract

本发明公开了一种基于协调因子分析方法的高超声速飞行器姿态运动鲁棒协调控制方法,属于飞行器姿态控制领域。本方法首先针对飞行器姿态运动的强耦合问题,将姿态模型的耦合分解成角运动耦合、惯性耦合与舵面操纵耦合三种形式。其次,对以上三种耦合形式分别设计了三种协调因子。然后将姿态系统分为快回路与慢回路,并分别设计两个回路的鲁棒自适应控制器。最后将协调因子与鲁棒控制器结合起来推导协调力矩,将协调力矩分配到舵面,通过舵面偏转实现协调。本方法有效的提高了舵面的控制效率,尤其是舵面偏转次数减少,节约了能量。

The invention discloses a hypersonic aircraft attitude motion robust coordination control method based on a coordination factor analysis method, belonging to the field of aircraft attitude control. This method first aims at the strong coupling problem of the attitude motion of the aircraft, and decomposes the coupling of the attitude model into three forms: angular motion coupling, inertial coupling and rudder surface control coupling. Secondly, three coordination factors were designed for the above three coupling forms. Then the attitude system is divided into a fast loop and a slow loop, and robust adaptive controllers for the two loops are designed respectively. Finally, the coordination factor is combined with the robust controller to derive the coordination torque, and the coordination torque is distributed to the rudder surface, and the coordination is realized through the deflection of the rudder surface. The method effectively improves the control efficiency of the rudder surface, especially reduces the deflection times of the rudder surface and saves energy.

Description

基于协调因子的高超声速飞行器姿态运动协调控制方法Attitude-motion Coordinated Control Method for Hypersonic Vehicle Based on Coordination Factor

技术领域technical field

本发明公开了一种基于协调因子的高超声速飞行器姿态运动协调控制方法,属于航天器姿态控制技术领域。The invention discloses a hypersonic aircraft attitude motion coordination control method based on a coordination factor, and belongs to the technical field of spacecraft attitude control.

背景技术Background technique

高超声速飞行器具有重要的军事战略意义,是21世纪天空作战的杀手锏武器。目前,高超声速飞行器的研究受到了世界各国的普遍重视。然而,由于快速和大跨度的飞行也给飞行器的控制带来了巨大的挑战。高超声速由于强耦合和强非线性的特点,目前成为研究的热点。Hypersonic aircraft has important military strategic significance and is the killer weapon for sky warfare in the 21st century. At present, the research on hypersonic vehicles has received widespread attention from all over the world. However, due to the rapid and long-span flight, it also brings great challenges to the control of the aircraft. Due to the characteristics of strong coupling and strong nonlinearity, hypersonic speed has become a research hotspot at present.

近年来,在高超声速飞行器姿态运动控制方面取得了众多有价值的科研成果,针对飞行器姿态运动的强耦合问题,不少学者开展了相应的工作。有学者基于反馈线性化,采用神经网络自适应技术,提出了在线实时自适应姿态控制器。然而反馈线性化依靠系统模型的精确度,因此当模型不确定的时候难以保证控制精度。也有学者提出了最优动态逆控制的方法,并且应用到姿态控制中,然而对于系统存在外部干扰的时候,此方法难以保证良好的控制。随后,很多学者提出了非线性控制方法。其中包括将滑模方法用于飞行器控制,设计了基于单环和内环两种滑模控制器,研究表明滑模方法对参数不确定以及外界扰动具有较好的鲁棒性,但难以处理强耦合问题。随后,有一些学者采用分层控制思想,基于非线性方法处理高超声速姿态运动的强耦合问题,也有一些学者采用解耦的方法处理强耦合问题,其中包括采用奇异值摄动理论设计了内外环解耦控制器。上述方法虽然在一定成度上实现了姿态运动的协调,并为后续工作奠定了基础,但由于高超声速飞行器非线性动态的复杂性,这些成果为明确给出协调机制以主动环节、抑制、或利用耦合效应。高超声速飞行器姿态运动的强耦合主要问题体现在变量之间的相互影响,有一些耦合影响有利于飞行器的控制,有一些耦合的积累对飞行器的控制是致命的,长时间的耦合积累会导致飞行器姿态的失稳。基于以上分析,针对高超声速飞行器姿态运动的强耦合问题,有必要研究一种新的控制方法来处理此问题。In recent years, many valuable scientific research achievements have been made in the attitude motion control of hypersonic vehicles. Many scholars have carried out corresponding work on the strong coupling problem of aircraft attitude motion. Some scholars proposed an online real-time adaptive attitude controller based on feedback linearization and neural network adaptive technology. However, feedback linearization depends on the accuracy of the system model, so it is difficult to guarantee control accuracy when the model is uncertain. Some scholars have also proposed the method of optimal dynamic inverse control, and applied it to attitude control. However, when there is external disturbance in the system, this method is difficult to ensure good control. Subsequently, many scholars proposed nonlinear control methods. Among them, the sliding mode method is used for aircraft control, and two sliding mode controllers based on single loop and inner loop are designed. The research shows that the sliding mode method has good robustness to parameter uncertainties and external disturbances, but it is difficult to deal with strong Coupling problem. Subsequently, some scholars used the hierarchical control idea to deal with the strong coupling problem of hypersonic attitude motion based on the nonlinear method, and some scholars used the decoupling method to deal with the strong coupling problem, including using the singular value perturbation theory to design the inner and outer loops Decouple the controller. Although the above methods have achieved the coordination of attitude motion to a certain extent and laid the foundation for the follow-up work, due to the complexity of the nonlinear dynamics of hypersonic vehicles, these achievements are not clear for the coordination mechanism to be actively linked, suppressed, or Take advantage of coupling effects. The main problem of strong coupling of hypersonic aircraft attitude motion is reflected in the mutual influence between variables. Some coupling effects are beneficial to the control of the aircraft, and some coupling accumulations are fatal to the control of the aircraft. Long-term coupling accumulation will lead to aircraft Instability of posture. Based on the above analysis, it is necessary to study a new control method to deal with the strong coupling problem of hypersonic vehicle attitude motion.

发明内容Contents of the invention

为了克服现有的协调控制方法的不足,本发明提出了一种基于协调因子的高超声速飞行器姿态运动协调控制方法。首先,基于姿态系统的数学模型,将姿态运动间的耦合分解成角运动耦合、惯性耦合与舵面操纵耦合。然后对以上耦合形式分别设计协调因子,并将协调因子与设计的鲁棒控制器结合起来推导协调力矩,通过力矩分配成舵面偏转指令来实现协调。最后,通过仿真验证其有效性,证明此方法具有较好的应用前景。In order to overcome the deficiencies of the existing coordinated control methods, the present invention proposes a hypersonic vehicle attitude-motion coordinated control method based on coordination factors. First, based on the mathematical model of the attitude system, the coupling between attitude motions is decomposed into angular motion coupling, inertial coupling and rudder surface manipulation coupling. Then the coordination factors are designed for the above coupling forms, and the coordination factors are combined with the designed robust controller to derive the coordination torque, and the coordination is realized by distributing the torque into the deflection command of the rudder surface. Finally, the effectiveness of the method is verified by simulation, which proves that this method has a good application prospect.

本发明为解决其技术问题采用如下技术方案:The present invention adopts following technical scheme for solving its technical problem:

一种基于协调因子的高超声速飞行器姿态运动协调控制方法,包括如下步骤:A hypersonic vehicle attitude-motion coordinated control method based on a coordination factor, comprising the following steps:

步骤1)针对高超声速飞行器姿态模型进行耦合分析,将姿态运动间的强耦合问题分解成角运动耦合、惯性耦合、舵面操纵耦合三种形式;基于耦合三种形式,将对应的状态变量反馈到对应的舵面回路设计协调因子;Step 1) Carry out coupling analysis for the attitude model of the hypersonic vehicle, and decompose the strong coupling problem between attitude motions into three forms: angular motion coupling, inertial coupling, and rudder surface control coupling; based on the three forms of coupling, the corresponding state variables are fed back to the corresponding rudder surface circuit design coordination factor;

步骤2)基于时标分离原则,将姿态系统分解成慢回路和快回路;基于滑模方法和投影映射方法分别设计慢回路鲁棒控制器和快回路鲁棒控制器;Step 2) Based on the time-scale separation principle, decompose the attitude system into a slow loop and a fast loop; design a slow loop robust controller and a fast loop robust controller based on the sliding mode method and projection mapping method respectively;

步骤3)将协调因子与鲁棒控制器结合起来推导协调力矩,利用舵面分配矩阵,将协调力矩分配成舵面指令,利用舵面的协调偏转实现姿态运动的协调。Step 3) Combining the coordination factor with the robust controller to derive the coordination torque, using the rudder distribution matrix, the coordination torque is distributed into the rudder command, and the coordination deflection of the rudder is used to realize the coordination of the attitude movement.

所述步骤1)的具体过程如下步骤:The specific process of the step 1) is as follows:

步骤1-1),建立高超声速飞行器姿态系统数学模型;Step 1-1), establishing a hypersonic vehicle attitude system mathematical model;

其中表示Ω的导数,Ω表示系统慢回路状态变量,Ω=[α,β,μ]T,α,β,μ分别是攻角、侧滑角、滚转角;表示ω的导数,ω表示系统快回路状态变量,ω=[p,q,r]T,p,q,r分别为滚转角速率、俯仰角速率、偏航角速率;Mc表示快回路力矩,Mc=gu,其中g∈R3×3是姿态系统快回路舵面分配矩阵,u=[δear]T,其中δear分别为左升降舵副翼舵、右升降舵副翼舵、方向舵;fs=[fα,fβ,fμ]T,ff=[fp,fq,fr]Tin Represents the derivative of Ω, Ω represents the state variable of the slow loop of the system, Ω=[α,β,μ] T , α,β,μ are angle of attack, angle of sideslip, and roll angle respectively; represents the derivative of ω, ω represents the state variable of the fast loop of the system, ω=[p,q,r] T , p,q,r are the roll rate, pitch rate, and yaw rate respectively; M c represents the fast loop torque , M c =g u, where g ∈ R 3×3 is the fast loop control surface allocation matrix of the attitude system, u=[δ ear ] T , where δ ear are respectively are left elevator aileron rudder, right elevator aileron rudder and rudder; f s =[f α ,f β ,f μ ] T , f f =[f p ,f q ,f r ] T ,

其中,M,V分别为飞行器的质量和速度;q为动压;S,c,b分别为参考面积、参考长度、和参考宽度;CL,α为由攻角α引起的升力系数,CY,β为侧滑角β引起的侧立系数,g为地球引力系数,Cl,β,Cl,p,Cl.r为由β,p,r引起的升力系数,Cm,α,Cm,q为基本俯仰力矩系数和由q引起的俯仰力矩系数,CD,α为由攻角α引起的阻力系数,Cn,β,Cn,p,Cn,rr为由β,p,r引起的偏航力矩系数,Xcg为质心至参考力矩中心得距离,为快回路分配矩阵系数。Ixx为绕x轴惯性积,Iyy为绕y轴惯性积,Izz为绕z轴惯性积,为Ixx的导数,为Iyy的导数,为Izz的导数,fs,ff,gs,gf为姿态系统状态矩阵,laero,maero,naero表示三通道力矩;Among them, M, V are the mass and speed of the aircraft respectively; q is the dynamic pressure; S, c, b are the reference area, reference length, and reference width respectively; C L, α are the lift coefficients caused by the angle of attack α, C Y, β is the lateral coefficient caused by sideslip angle β, g is the gravitational coefficient of the earth, C l, β , C l, p , C lr is the lift coefficient caused by β, p, r, C m, α , C m,q are the basic pitching moment coefficient and the pitching moment coefficient caused by q, C D,α is the drag coefficient caused by the angle of attack α, C n,β ,C n,p ,C n,r r are caused by β, p, the yaw moment coefficient caused by r, X cg is the distance from the center of mass to the reference moment center, Assign matrix coefficients for fast loops. I xx is the product of inertia around the x-axis, I yy is the product of inertia around the y-axis, I zz is the product of inertia around the z-axis, is the derivative of I xx , is the derivative of I yy , is the derivative of I zz , f s , f f , g s , g f are the attitude system state matrix, l aero , m aero , n aero represent the three-channel torque;

步骤1-2)对所建立的姿态系统模型进行耦合分析,将姿态姿态的耦合分解成姿态角运动耦合、惯性耦合、舵面操纵耦合,Step 1-2) Carry out coupling analysis to the established attitude system model, decompose the coupling of attitude attitude into attitude angle motion coupling, inertial coupling, rudder surface control coupling,

1)姿态角耦合模型:1) Attitude Angle Coupling Model:

在步骤1-1)中所建立的姿态系统模型,姿态角的耦合关系描述为:In the attitude system model established in step 1-1), the coupling relation of the attitude angle is described as:

其中分别表示为慢回路状态变量攻角、侧滑角与滚转角的姿态角耦合;in Respectively expressed as the attitude angle coupling of the slow loop state variables attack angle, sideslip angle and roll angle;

2)惯性耦合2) Inertial coupling

在步骤1-1)所在建立的姿态系统模型中,惯性耦合描述为:In the attitude system model established in step 1-1), the inertial coupling is described as:

其中fp,fq,fr表示快回路系统中由p,q,r引起的惯性耦合;where f p , f q , f r represent the inertial coupling caused by p, q, r in the fast loop system;

3)舵面操纵耦合3) Rudder control coupling

在步骤1-1)所建立的姿态系统模型中,舵面操纵耦合描述为:In the attitude system model established in step 1-1), the control coupling of the rudder surface is described as:

其中gl为滚转通道操纵耦合,gm为俯仰通道操纵耦合,gn为偏航通道耦合,分别为右升舵副翼舵和方向舵引起的滚转力矩系数,为右升降副翼舵引起的俯仰力矩系数,方向舵引起的俯仰力矩系数,为右升降副翼舵引起的偏航力矩系数,方向舵引起的偏航力矩系数;Where g l is the steering coupling of the roll channel, g m is the steering coupling of the pitch channel, and g n is the coupling of the yaw channel, are the rolling moment coefficients caused by the right elevator, aileron rudder and rudder, respectively, is the pitching moment coefficient caused by the right elevon rudder, The pitching moment coefficient caused by the rudder, is the yaw moment coefficient caused by the right elevon rudder, yaw moment coefficient caused by rudder;

Gf,δ为舵面分配矩阵,分别为左升降舵引起的侧立系数、右升降舵副翼引起的侧力系数与方向舵引起的侧力系数,为左升降舵引起的偏航力矩系数、俯仰力矩系数、滚转力矩系数与阻力系数, 为右升降舵副翼引起的阻力系数,为方向舵引起的阻力系数,为左升降舵引起升力系数,为方向舵引起的升力系数,为右升降舵副翼引起的偏航力矩系数,为方向舵引起的偏航力矩系数,为俯仰通道舵面分配矩阵参数,为偏航通道舵面分配矩阵参数,为滚转通道舵面分配矩阵参数;G f,δ is the distribution matrix of the rudder surface, are the lateral force coefficient caused by the left elevator, the side force coefficient caused by the right elevator aileron and the side force coefficient caused by the rudder, respectively, are the yaw moment coefficient, pitch moment coefficient, roll moment coefficient and drag coefficient caused by the left elevator, is the drag coefficient caused by the right elevator aileron, is the drag coefficient caused by the rudder, is the lift coefficient caused by the left elevator, is the lift coefficient caused by the rudder, is the yaw moment coefficient caused by the right elevator aileron, is the yaw moment coefficient caused by the rudder, Assign matrix parameters for the pitch channel rudder surface, Assign matrix parameters for the yaw channel rudder surface, Assign matrix parameters for the roll channel rudder surface;

步骤1-3)协调因子的设计;Step 1-3) the design of coordination factor;

对于步骤1-2)中的1)姿态角耦合,置为0,表示为psina-rcosα=0,得出r=ptanα,将r=ptanα反馈到方向舵回路,因此协调因子设计为其中k1>0为设计参数,为方向舵协调因子第一个分量;For 1) attitude angle coupling in steps 1-2), It is set to 0, expressed as psina-rcosα=0, and r=ptanα is obtained, and r=ptanα is fed back to the rudder loop, so the coordination factor is designed as Where k 1 >0 is a design parameter, is the first component of the rudder coordination factor;

在步骤1-2)中1)攻角与滚转角耦合关系描述为p-σr<p≤pcosα+rsinα<p+ρr,将β反馈到方向舵回路的调因子设计为:In steps 1-2), 1) the coupling relationship between attack angle and roll angle is described as p-σr<p≤pcosα+rsinα<p+ρr, and the adjustment factor for feeding β to the rudder loop is designed as:

其中|sina|≠Δα,k2,k3设计大于零的参数,为方向舵协调因子第二个分量;Where |sina|≠Δ α , k 2 , k 3 design parameters greater than zero, is the second component of the rudder coordination factor;

对于步骤1-2)中的2)惯性耦合,将β,r反馈到副翼回路,将β,q反馈到方向舵回路,将α,p反馈到升降舵回路来增加阻尼力矩和稳定性力矩;协调因子设计为:For 2) inertial coupling in step 1-2), feed β,r to the aileron loop, β,q to the rudder loop, and α,p to the elevator loop to increase the damping torque and stability torque; coordination The factorial design is:

其中λe,λa分别为对应状态变量反馈到左升降舵、右升降副翼舵与方向舵的协调因子,k4,k5,k6,k7,k8,k9为大于零的设计参数;where λ e , λ a , are the coordination factors of corresponding state variables fed back to the left elevator, right elevon rudder and rudder, k 4 , k 5 , k 6 , k 7 , k 8 , k 9 are design parameters greater than zero;

对于步骤1-2)中的3)舵面操纵耦合,定义副翼舵与方向舵操纵耦合度为:For 3) rudder control coupling in steps 1-2), define the coupling degree of aileron rudder and rudder control as:

其中,in,

其中,为方向舵偏转引起的三通道力矩系数变化增量系数,为右升降副翼舵偏转引起的三通道力矩系数变化增量系数,Scwr,Scw表示为方向舵面积与垂尾面积;S,L参考面积和参考长度;ycwr方向舵面心到纵轴的距离;χ为后掠角;ξ为修正因子;满足Scwr≤S,Scw≤S,ycwr≤L,0<ξ≤1,0<cosχ≤1;n是副翼的相对执行效率;ηk,分别为外露翼的跟梢比和茎展比;f外露翼与根稍比;舵面协调策略设计为δa=Eδr,0<E≤1,E为方向舵与右升降副翼舵的耦合度。in, is the incremental coefficient of the three-channel moment coefficient change caused by the rudder deflection, is the three-channel moment coefficient change increment coefficient caused by the right elevon rudder deflection, S cwr , S cw are expressed as rudder area and vertical tail area; S, L reference area and reference length; y cwr is the distance from the rudder surface center to the longitudinal axis Distance; χ is the sweep angle; ξ is the correction factor; satisfy S cwr ≤ S, S cw ≤ S, y cwr ≤ L, 0<ξ≤1, 0<cosχ≤1; n is the relative execution efficiency of the aileron; η k , are the heel-to-tip ratio and stem-to-span ratio of the exposed wing, respectively; f is the ratio of the exposed wing to the root; the coordination strategy of the rudder surface is designed as δ a = Eδ r , 0<E≤1, and E is the coupling degree between the rudder and the right elevon rudder.

所述步骤2)的具体过程如下步骤:The specific process of said step 2) is as follows:

步骤2-1)引入不确定参数向量Step 2-1) Introduce uncertain parameter vector

通过引入不确定参数向量,将步骤1-1)中的系统模型表示为By introducing an uncertain parameter vector, the system model in step 1-1) is expressed as

其中,D代表外部干扰,Among them, D stands for external disturbance,

θ1=CL,α2=CY,β3=[CY,βCL,α]T,θ 1CL,α2 =C Y,β3 =[C Y,β C L,α ] T ,

其中CL,α,CY,β,CY,β,CL,α,Cn,β,Cn,p,Cn,r,Cm,α,Cm,q,CD,α,Cl,β,Cl,r,Cl,p为飞行器气动参数。where C L,α , C Y,β , C Y,β , C L,α , C n,β , C n,p , C n,r , C m,α , C m,q , C D,α , C l,β , C l,r , C l,p are the aerodynamic parameters of the aircraft.

步骤2-2)投影映射算法Step 2-2) Projection Mapping Algorithm

ΘΩω分别表示为不确定参数向量θΩω的界,表述为:Θ Ω , Θ ω are denoted as the bounds of uncertain parameter vectors θ Ω , θ ω respectively, expressed as:

ΘΩ={θΩ∈R4Ωi min≤θΩi≤θΩi max,i=1,…,4},Θ Ω ={θ Ω ∈ R 4Ωi min ≤θ Ωi ≤θ Ωi max ,i=1,…,4},

Θω={θω∈R17ωi min≤θωi≤θωi max,i=1,…,17}Θ ω ={θ ω ∈ R 17ωi min ≤θ ωi ≤θ ωi max ,i=1,...,17}

其中θΩi,θΩi min,θΩi max为慢回路状态变量的分量、分量的最小值与分量的最大值,θωi,θωi min,θωi max为快回路状态变量的分量、分量的最小值与分量的最大值;令表示为θΩ的估计值,表示估计误差,θω类似于θΩ,根据投影映射算法,不确定参数的自适应律为Among them, θ Ωi , θ Ωi min , θ Ωi max are the components of the slow loop state variable, the minimum value of the component and the maximum value of the component, θ ωi , θ ωi min , θ ωi max are the components of the fast loop state variable, the minimum value of the component The maximum value and component; let Expressed as an estimate of θ Ω , Represents the estimation error, θ ω is similar to θ Ω , according to the projection mapping algorithm, the adaptive law of uncertain parameters is

其中分别为快、慢回路自适应函数,Γ>0为对角阵,τ为自适应函数,投影算子定义为in are fast and slow loop adaptive functions respectively, Γ>0 is a diagonal matrix, τ is an adaptive function, and the projection operator defined as

其中θimax,θimin为状态变量的估计值分量、状态变量分量的最大值与状态变量分量的的最小值显然,对于自适应函数τ,in θ imax , θ imin is the estimated value component of the state variable, the maximum value of the state variable component and the minimum value of the state variable component Obviously, for the adaptive function τ,

其中为自适应估计值,θmin,θmax为估计最小值与最大值,为估计误差转置,Γ-1为参数对角矩阵的逆,Γ为设计参数;in is the adaptive estimated value, θ min and θ max are the estimated minimum and maximum values, For the estimated error transposition, Γ -1 is the inverse of the parameter diagonal matrix, and Γ is the design parameter;

步骤2-3)姿态角鲁棒控制器设计Step 2-3) Attitude Angle Robust Controller Design

定义跟踪误差e1=Ω-Ωc,滑模函数设计为Define the tracking error e 1 =Ω-Ω c , the sliding mode function is designed as

其中,K=diag{K1,K2,K3},Ki>0,i=1,2,3,表示设计参数,σ为滑模函数,对滑模函数求一阶导数得到Among them, K=diag{K 1 , K 2 ,K 3 }, K i >0, i=1, 2, 3, which represent the design parameters, σ is the sliding mode function, and the first order derivative of the sliding mode function is obtained

求得的自适应律为其中,κ1>0,Γ1∈R4×4Ω=diag{λ1234}>0为控制器参数,gs,f1,Ψ为系统系数矩阵,ΨT为Ψ的转置矩阵,e1为误差,慢回路跟踪指令的导数,为慢回路状态变量的估计值,为估计误差,δ为滑模函数;obtain The adaptive law of Among them, κ 1 >0, Γ 1 ∈R 4×4 , λ Ω =diag{λ 1234 }>0 are the controller parameters, g s , f 1 , Ψ are the system coefficient matrix , Ψ T is the transpose matrix of Ψ, e 1 is the error, The slow loop follows the derivative of the instruction, is the estimated value of the slow loop state variable, is the estimation error, δ is the sliding mode function;

步骤2-4)姿态角速率控制器设计Step 2-4) Attitude Angle Rate Controller Design

定义误差e2=ω-ωc,对误差求导得Define the error e 2 =ω-ω c , and derive the error

虚拟控制器看成扰动,得出其中ΞT为系统快回路系统矩阵的转置;姿态角速率回路控制设计为其中为快回路系统状态矩阵gf的逆,ΞT为系统快回路系统矩阵的转置,θω为快回路状态变量,gf为系统状态矩阵,Mc为控制力矩,D为外界干扰,为慢回路控制器的导数,κ2为控制设计参数,为观测器输出,为慢回路状态系统矩阵的转置,通过观测器估计,定义观测误差自适应律为其中κ2>0,Γ2∈R17×17>0,λω∈R17 ×17>0为控制器参数,为估计误差,观测器设计为virtual controller As a disturbance, we get in Ξ T is the transposition of the system fast loop system matrix; the attitude angle rate loop control design is in is the inverse of the fast loop system state matrix g f , Ξ T is the transposition of the system fast loop system matrix, θ ω is the fast loop state variable, g f is the system state matrix, M c is the control torque, D is the external disturbance, is the derivative of the slow loop controller, κ 2 is the control design parameter, and is the observed tor output, is the transpose of the slow loop state system matrix, Estimated by the observer, defining the observation error Adaptive law is Among them, κ 2 >0, Γ 2 ∈R 17×17 >0, λ ω ∈R 17 ×17 >0 are the controller parameters, To estimate the error, the observer is designed as

其中, in,

q1(e),q2(e),…,qn(e)为观测器参数。q 1 (e), q 2 (e),...,q n (e) are observer parameters.

所述步骤3)的具体过程如下步骤:The specific process of said step 3) is as follows:

有姿态角速率回路控制器Mc以及舵面分配矩阵g,协调力矩表示为Mc=gΓfδ·δ,其中With the attitude angular rate loop controller M c and the rudder distribution matrix g , the coordination torque is expressed as M c =g Γfδ ·δ, where

其中为俯仰通道舵面分配矩阵参数,为偏航通道舵面分配矩阵参数,为滚转通道舵面分配矩阵参数,λe,λa,λr为协调因子;则舵面指令求得δ=gΓfδ -1·Mcin Assign matrix parameters for the pitch channel rudder surface, Assign matrix parameters for the yaw channel rudder surface, Assign matrix parameters to the control surface of the roll channel, λ e , λ a , and λ r are coordination factors; then the control surface command can be calculated as δ=g Γfδ -1 ·M c .

当协调策略采用副翼舵与方向舵协调偏转实现偏航力矩和滚转力矩,升降舵偏转实现俯仰力矩,舵面协调设计为:When the coordination strategy adopts the coordinated deflection of the aileron rudder and rudder to realize the yaw moment and roll moment, and the deflection of the elevator to realize the pitch moment, the coordinated design of the rudder surface is:

δcoe=δecoa=Eδrcor=δrδ coe = δ e , δ coa = Eδ r , δ cor = δ r .

本发明的有益效果如下:The beneficial effects of the present invention are as follows:

1、控制器加入协调因子,性能表现要优于未加协调因子的控制器。协调控制器的优越性能体现在震动次数减少,姿态角跟踪超调小,跟踪稳定,相应快速。1. The performance of the controller with the coordination factor added is better than that of the controller without the coordination factor. The superior performance of the coordinated controller is reflected in the reduced number of vibrations, small overshoot of attitude angle tracking, stable tracking and fast response.

2、控制器加入协调因子,姿态角速率相应变得平稳和快速。2. The controller adds the coordination factor, and the attitude angle rate becomes stable and fast accordingly.

3、控制器加入协调因子,有效的提高了舵面的控制效率,尤其是舵面偏转次数减少,节约了能量。3. The controller adds a coordination factor, which effectively improves the control efficiency of the rudder surface, especially reduces the deflection times of the rudder surface and saves energy.

附图说明Description of drawings

图1是飞行器姿态运动协调机制原理图。Figure 1 is a schematic diagram of the aircraft attitude movement coordination mechanism.

图2是姿态角加入协调因子与未加协调因子的相应仿真对比图,其中(a)是攻角跟踪曲线对比图,(b)是侧滑角跟踪曲线对比图,(c)是滚转角跟踪对比曲线图。Figure 2 is the corresponding simulation comparison diagram of the attitude angle with and without coordination factor, where (a) is the comparison diagram of the attack angle tracking curve, (b) is the comparison diagram of the sideslip angle tracking curve, and (c) is the roll angle tracking curve Comparison graph.

图3是姿态角速率加入协调因子与未加协调因子仿真对比图,其中(a)是滚转角速率响应对比图,(b)是俯仰角速率响应对比图。(c)是偏航角速率响应对比图。Figure 3 is a simulation comparison diagram of attitude angular rate with coordination factor and without coordination factor, in which (a) is a comparison diagram of roll angular rate response, and (b) is a comparison diagram of pitch angular rate response. (c) is a comparison chart of yaw rate response.

图4是舵面偏转加入协调因子与未加入协调因子对比曲线图,(a)是副翼舵偏转对比曲线,(b)是升降舵偏转对比曲线,(c)是方向舵偏转对比曲线。Figure 4 is a comparison curve of rudder surface deflection with coordination factor and without coordination factor, (a) is the comparison curve of aileron rudder deflection, (b) is the comparison curve of elevator deflection, and (c) is the comparison curve of rudder deflection.

具体实施方式detailed description

下面结合附图对本发明创造做进一步详细说明。The invention will be described in further detail below in conjunction with the accompanying drawings.

在图1中,通过设计快回路控制律得出的快回路力矩指令Mc并与所设计的协调因子(19)结合起来推导协调力矩,协调力矩最终通过快回路舵面分配矩阵分配成舵面协调指令δear,通过舵面的协调偏转最终实现高超声速飞行器姿态运动间的协调控制。图2、图3与图4为仿真验证,通过仿真图分析与对比可以得出协调因子的加入可以有效的改善控制器控制效果,对于耦合的抑制有明显的效果。In Fig. 1, the fast-loop torque command M c obtained by designing the fast-loop control law is combined with the designed coordination factor (19) to derive the coordinated torque, and the coordinated torque is finally allocated to the rudder surface through the fast-loop rudder distribution matrix The coordination commands δ e , δ a , δ r , through the coordinated deflection of the rudder surface, finally realize the coordinated control of the attitude motion of the hypersonic vehicle. Figure 2, Figure 3, and Figure 4 are simulation verifications. Through the analysis and comparison of the simulation diagrams, it can be concluded that the addition of the coordination factor can effectively improve the control effect of the controller, and has a significant effect on the suppression of coupling.

高超声速飞行器姿态系统模型为:The hypersonic vehicle attitude system model is:

其中表示Ω的导数,Ω表示系统慢回路状态变量,Ω=[α,β,μ]T,α,β,μ分别是攻角、侧滑角、滚转角;表示ω的导数,ω表示系统快回路状态变量,ω=[p,q,r]T,p,q,r分别为滚转角速率、俯仰角速率、偏航角速率;Mc表示快回路力矩,Mc=gu,其中g∈R3×3是姿态系统快回路舵面分配矩阵,u=[δear]T,其中δear分别为左升降舵副翼舵、右升降舵副翼舵、方向舵;fs=[fα,fβ,fμ]T,ff=[fp,fq,fr]Tin Represents the derivative of Ω, Ω represents the state variable of the slow loop of the system, Ω=[α,β,μ] T , α,β,μ are angle of attack, angle of sideslip, and roll angle respectively; Indicates the derivative of ω, ω indicates the state variable of the fast loop of the system, ω=[p,q,r] T , p,q,r are the roll rate, pitch rate, and yaw rate respectively; M c indicates the fast loop torque , M c =g u, where g ∈ R 3×3 is the fast loop control surface allocation matrix of the attitude system, u=[δ ear ] T , where δ ear are respectively are left elevator aileron rudder, right elevator aileron rudder and rudder; f s =[f α ,f β ,f μ ] T , f f =[f p ,f q ,f r ] T ,

其中,M,V分别为飞行器的质量和速度;为动压;S,c,b分别为参考面积、参考长度、和参考宽度;CL,α为由攻角α引起的升力系数,CY,β为侧滑角β引起的侧立系数,g为地球引力系数,Cl,β,Cl,p,Cl.r为由β,p,r引起的升力系数,Cm,α,Cm,q为基本俯仰力矩系数和由q引起的俯仰力矩系数,CD,α为由攻角α引起的阻力系数,Cn,β,Cn,p,Cn,rr为由β,p,r引起的偏航力矩系数,Xcg为质心至参考力矩中心得距离,为快回路分配矩阵系数。Ixx为绕x轴惯性积,Iyy为绕y轴惯性积,Izz为绕z轴惯性积,为Ixx的导数,为Iyy的导数,为Izz的导数,fs,ff,gs,gf为姿态系统状态矩阵,laero,maero,naero表示三通道力矩。从姿态系统数学模型可以看出,姿态运动耦合可以分解成姿态角耦合、惯性耦合与舵面操纵耦合。Among them, M and V are the mass and velocity of the aircraft respectively; is the dynamic pressure; S, c, b are the reference area, reference length, and reference width; C L, α is the lift coefficient caused by the angle of attack α; C Y, β is the lateral coefficient caused by the sideslip angle β, g is the gravitational coefficient of the earth, C l, β , C l, p , C lr are the lift coefficients caused by β, p, r, C m, α , C m, q are the basic pitching moment coefficients and the pitching force caused by q Moment coefficient, C D, α is the drag coefficient caused by the angle of attack α, C n, β , C n, p , C n, r r is the yaw moment coefficient caused by β, p, r, X cg is the center of mass The distance to the reference moment center, Assign matrix coefficients for fast loops. I xx is the product of inertia around the x-axis, I yy is the product of inertia around the y-axis, I zz is the product of inertia around the z-axis, is the derivative of I xx , is the derivative of I yy , is the derivative of I zz , f s , f f , g s , g f are the state matrix of the attitude system, l aero , ma aero , n aero represent the three-channel torque. It can be seen from the mathematical model of the attitude system that the attitude-motion coupling can be decomposed into attitude angle coupling, inertial coupling and rudder surface control coupling.

姿态角耦合可以描述为:Attitude-angle coupling can be described as:

其中分别表示为慢回路状态变量攻角、侧滑角与滚转角的姿态角耦合。in Respectively expressed as the attitude angle coupling of the slow loop state variables attack angle, sideslip angle and roll angle.

惯性耦合可以描述为:Inertial coupling can be described as:

其中fp,fq,fr表示快回路系统中由p,q,r引起的惯性耦合。Among them, f p , f q , fr represent the inertial coupling caused by p, q, r in the fast loop system.

舵面操纵耦合可以描述为:The rudder control coupling can be described as:

其中gl为滚转通道操纵耦合,gm为俯仰通道操纵耦合,gn为偏航通道耦合,分别为右升舵副翼舵和方向舵引起的滚转力矩系数,为右升降副翼舵引起的俯仰力矩系数,方向舵引起的俯仰力矩系数,为右升降副翼舵引起的偏航力矩系数,方向舵引起的偏航力矩系数。Where g l is the steering coupling of the roll channel, g m is the steering coupling of the pitch channel, and g n is the coupling of the yaw channel, are the rolling moment coefficients caused by the right elevator, aileron rudder and rudder, respectively, is the pitching moment coefficient caused by the right elevon rudder, The pitching moment coefficient caused by the rudder, is the yaw moment coefficient caused by the right elevon rudder, The yaw moment coefficient caused by the rudder.

Gf,δ为舵面分配矩阵,分别为左升降舵引起的侧立系数、右升降舵副翼引起的侧力系数与方向舵引起的侧力系数,为左升降舵引起的偏航力矩系数、俯仰力矩系数、滚转力矩系数与阻力系数, 为右升降舵副翼引起的阻力系数,为方向舵引起的阻力系数,为左升降舵引起升力系数,为方向舵引起的升力系数,为右升降舵副翼引起的偏航力矩系数,为方向舵引起的偏航力矩系数,为俯仰通道舵面分配矩阵参数,gq,δe,gq,δa,gq,δr为偏航通道舵面分配矩阵参数,为滚转通道舵面分配矩阵参数。G f,δ is the distribution matrix of the rudder surface, are the lateral force coefficient caused by the left elevator, the side force coefficient caused by the right elevator aileron and the side force coefficient caused by the rudder, respectively, are the yaw moment coefficient, pitch moment coefficient, roll moment coefficient and drag coefficient caused by the left elevator, is the drag coefficient caused by the right elevator aileron, is the drag coefficient caused by the rudder, is the lift coefficient caused by the left elevator, is the lift coefficient caused by the rudder, is the yaw moment coefficient caused by the right elevator aileron, is the yaw moment coefficient caused by the rudder, Assign matrix parameters for pitch channel rudder surface, g q,δe , g q,δa , g q,δr are yaw channel rudder surface assignment matrix parameters, Assign matrix parameters for the roll channel rudder surface.

在式(7)中,令侧滑角变化率为0,即可以置为0,则In formula (7), let the side slip angle change rate be 0, that is can be set to 0, then

psina-rcosα=0 (12)psina-rcosα=0 (12)

可以得出r=ptanα,将r=ptanα反馈到方向舵回路,因此协调因子设计为It can be drawn that r=ptanα, r=ptanα is fed back to the rudder loop, so the coordination factor is designed as

其中k1>0为设计参数,为方向舵协调因子第一个分量。Where k 1 >0 is a design parameter, is the first component of the rudder coordination factor.

攻角与滚转角耦合关系可以描述为p-σr<p≤pcosα+rsinα<p+ρr,将β反馈到方向舵回路,则协调因子设计为:The coupling relationship between attack angle and roll angle can be described as p-σr<p≤pcosα+rsinα<p+ρr, and β is fed back to the rudder loop, then the coordination factor is designed as:

其中|sina|≠Δα,k2,k3设计大于零的参数,为方向舵协调因子第二个分量。Where |sina|≠Δ α , k 2 , k 3 design parameters greater than zero, is the second component of the rudder coordination factor.

在式(8)中,将β,r反馈到副翼回路,将β,q反馈到方向舵回路,将α,p反馈到升降舵回路的协调因子设计为:In formula (8), the coordination factor of feeding back β, r to the aileron circuit, feeding back β, q to the rudder circuit, and feeding back α, p to the elevator circuit is designed as:

其中λe,λa,λr3分别为对应状态变量反馈到左升降舵、右升降副翼舵与方向舵的协调因子,k4,k5,k6,k7,k8,k9为大于零的设计参数。Among them, λ e , λ a , λ r3 are the coordination factors of corresponding state variables fed back to the left elevator, right elevon rudder and rudder, k 4 , k 5 , k 6 , k 7 , k 8 , k 9 are greater than zero design parameters.

对于式(9)中的舵面操纵耦合,定义了副翼舵与方向舵操纵耦合度:For the rudder control coupling in formula (9), the coupling degree of aileron rudder and rudder control is defined as:

其中,in,

其中,为方向舵偏转引起的三通道力矩系数变化增量系数,为右升降副翼舵偏转引起的三通道力矩系数变化增量系数,Scwr,Scw表示为方向舵面积与垂尾面积;S,L参考面积和参考长度;ycwr方向舵面心到纵轴的距离;χ为后掠角;ξ为修正因子;满足Scwr≤S,Scw≤S,ycwr≤L,0<ξ≤1,0<cosχ≤1;n是副翼的相对执行效率;ηk,分别为外露翼的跟梢比和茎展比,f外露翼与根稍比,舵面协调策略设计为in, is the incremental coefficient of the three-channel moment coefficient change caused by the rudder deflection, is the three-channel moment coefficient change increment coefficient caused by the right elevon rudder deflection, S cwr , S cw are expressed as rudder area and vertical tail area; S, L reference area and reference length; y cwr is the distance from the rudder surface center to the longitudinal axis Distance; χ is the sweep angle; ξ is the correction factor; satisfy S cwr ≤ S, S cw ≤ S, y cwr ≤ L, 0<ξ≤1, 0<cosχ≤1; n is the relative execution efficiency of the aileron; η k , are the heel-to-tip ratio and stem-to-span ratio of the exposed wing, respectively, f the ratio of the exposed wing to the root, The rudder surface coordination strategy is designed as

δa=Eδr,0<E≤1 (18)δ a = Eδ r , 0<E≤1 (18)

E为方向舵与右升降副翼舵的耦合度。考虑到式(13)、(14)、(15),高超声速飞行器姿态运动协调因子为:E is the coupling degree of rudder and right elevon rudder. Considering equations (13), (14), and (15), the hypersonic vehicle attitude motion coordination factor is:

其中λe,λr,λa为对应状态变量反馈到左升降舵、方向舵与右升降副翼舵的协调因子Among them, λ e , λ r , λ a are the coordination factors of corresponding state variables fed back to the left elevator, rudder and right elevon rudder

引入不确定矢量向量,姿态系统模型可以从新建立为:Introducing the uncertainty vector, the attitude system model can be re-established as:

其中,D代表外部干扰,Among them, D stands for external disturbance,

θ1=CL,α2=CY,β3=[CY,β CL,α]T,θ 1CL,α2 =C Y,β3 =[C Y,β C L,α ] T ,

其中CL,α,CY,β,CY,β,CL,α,Cn,β,Cn,p,Cn,r,Cm,α,Cm,q,CD,α,Cl,β,Cl,r,Cl,p为飞行器气动参数。where C L,α , C Y,β , C Y,β , C L,α , C n,β , C n,p , C n,r , C m,α , C m,q , C D,α , C l,β , C l,r , C l,p are the aerodynamic parameters of the aircraft.

定义ΘΩω分别表示为不确定参数向量θΩω的界,可以表述为:Define Θ Ω , Θ ω as the bounds of uncertain parameter vectors θ Ω , θ ω respectively, which can be expressed as:

其中θΩi,θΩi min,θΩi max为慢回路状态变量的分量、分量的最小值与分量的最大值,θωi,θωi min,θωi max为快回路状态变量的分量、分量的最小值与分量的最大值。令表示为θΩ的估计值,表示估计误差,θω类似于θΩ,根据投影映射算法,不确定参数的自适应律为Among them, θ Ωi , θ Ωi min , θ Ωi max are the components of the slow loop state variable, the minimum value of the component and the maximum value of the component, θ ωi , θ ωi min , θ ωi max are the components of the fast loop state variable, the minimum value of the component The maximum value and component. make Expressed as an estimate of θ Ω , Represents the estimation error, θ ω is similar to θ Ω , according to the projection mapping algorithm, the adaptive law of uncertain parameters is

其中分别为快、慢回路自适应函数,Γ>0为对角阵,τ为自适应函数,投影算子其中为投影算子,定义为in are fast and slow loop adaptive functions respectively, Γ>0 is a diagonal matrix, τ is an adaptive function, and the projection operator in is a projection operator, defined as

其中θimax,θimin为状态变量的估计值分量、状态变量分量的最大值与状态变量分量的的最小值。显然,对于自适应函数τin θ imax , θ imin are the estimated value component of the state variable, the maximum value of the state variable component and the minimum value of the state variable component. Obviously, for the adaptive function τ

其中为自适应估计值,θmin,θmax为估计最小值与最大值,为估计误差转置,Γ-1为参数对角矩阵的逆,Γ为设计参数,τ为自适应函数。in is the adaptive estimated value, θ min and θ max are the estimated minimum and maximum values, For the estimation error transpose, Γ -1 is the inverse of the parameter diagonal matrix, Γ is the design parameter, and τ is the adaptive function.

定义跟踪误差e1=Ω-Ωc,其中Ωc为姿态角指令信号,滑模函数设计为Define the tracking error e 1 =Ω-Ω c , where Ω c is the attitude angle command signal, and the sliding mode function is designed as

其中,K=diag{K1,K2,K3},Ki>0,i=1,2,3,表示为设计参数,σ为滑模函数。对滑模函数求一阶导数可以得到Wherein, K=diag{K 1 , K 2 , K 3 }, K i >0, i=1, 2, 3, which represent design parameters, and σ is a sliding mode function. Taking the first derivative of the sliding mode function gives

求得obtain

其中gs,f1,Ψ为系统系数矩阵,ΨT为Ψ的转置矩阵,K为设计参数矩阵,κ1>0为控制器参数,e1为误差,慢回路跟踪指令的导数,为慢回路状态变量的估计值,其自适应律设计为Where g s , f 1 , Ψ is the system coefficient matrix, Ψ T is the transpose matrix of Ψ, K is the design parameter matrix, κ 1 >0 is the controller parameter, e 1 is the error, The slow loop follows the derivative of the instruction, is the estimated value of the state variable of the slow loop, and its adaptive law is designed as

其中Γ1∈R4×4Ω=diag{λ1234}>0表示设计参数矩阵,为估计误差,δ为滑模函数,Ψ为慢回路系统系数矩阵。考虑到Lyapunov函数Where Γ 1 ∈ R 4×4Ω =diag{λ 1234 }>0 means the design parameter matrix, is the estimation error, δ is the sliding mode function, and Ψ is the coefficient matrix of the slow loop system. Considering the Lyapunov function

其中σ为滑模函数,σT为计划米函数的转置,慢回路估计误差矩阵转置,为自适应设计参数矩阵逆矩阵,对(30)求导可得where σ is the sliding mode function, σ T is the transpose of the planned meter function, slow loop estimation error matrix transpose, To design the inverse matrix of the parameter matrix for self-adaption, the derivative of (30) can be obtained

结合式(28)、(29)可得Combining formula (28), (29) can get

其中κ1>0,Γ1∈R4×4Ω=diag{λ1234}>0表示设计参数矩阵,为估计误差,σ为滑模函数,σT为计划米函数的转置,慢回路估计误差矩阵转置,gs,f1,Ψ为系统系数矩阵,ΨT为Ψ的转置矩阵,e2为误差,gs为慢回路状态系统矩阵。Where κ 1 >0, Γ 1 ∈R 4×4 , λ Ω =diag{λ 1234 }>0 means the design parameter matrix, is the estimation error, σ is the sliding mode function, σ T is the transpose of the planned meter function, The slow loop estimation error matrix is transposed, g s , f 1 , Ψ is the system coefficient matrix, Ψ T is the transposed matrix of Ψ, e 2 is the error, and g s is the slow loop state system matrix.

定义误差e2=ω-ωc,ωc为姿态角速率指令信号,对误差求导可得Define the error e 2 =ω-ω c , ω c is the command signal of the attitude angular rate, and the derivative of the error can be obtained

其中ΞT为系统快回路系统矩阵的转置,θω为快回路状态变量,gf为系统状态矩阵,Mc为控制力矩,D为外界干扰,为慢回路控制器的导数。虚拟控制器看成扰动,可以得出其中,姿态角速率回路控制设计为where Ξ T is the transpose of the fast loop system matrix of the system, θ ω is the state variable of the fast loop, g f is the system state matrix, M c is the control torque, D is the external disturbance, is the derivative of the slow loop controller. virtual controller As a disturbance, it can be concluded that in, The attitude angle rate loop control is designed as

其中为快回路系统状态矩阵gf的逆,κ2为控制设计参数,为观测器输出,为慢回路状态系统矩阵的转置,其他参数与上文一致。通过观测器估计,定义观测误差自适应律为in is the inverse of the state matrix g f of the fast loop system, κ 2 is the control design parameter, is the observer output, is the transposition of the slow loop state system matrix, and other parameters are the same as above. Estimated by the observer, defining the observation error Adaptive law is

其中κ2>0,Γ2∈R17×17>0,λω∈R17×17>0为设计参数,为估计误差。观测器设计为Where κ 2 >0, Γ 2 ∈R 17×17 >0, λ ω ∈R 17×17 >0 are the design parameters, for the estimation error. The observer is designed as

其中, in,

q1(e),q2(e),…,qn(e)为观测器参数。q 1 (e), q 2 (e),...,q n (e) are observer parameters.

证明:考虑Lyapunov函数选取如下Proof: Consider the selection of the Lyapunov function as follows

其中,e2为误差,为误差的转置,θω为快回路状态变量,为估计误差,的转置,为观测误差,为观测误差转置,为自适应参数的转置矩阵,Lyapunov函数对于时间t求导可以得到Among them, e 2 is the error, is the transposition of the error, θ ω is the state variable of the fast loop, is the estimation error, for the transposition of is the observation error, is the observation error transpose, is the transposition matrix of the adaptive parameter, and the derivative of the Lyapunov function for time t can be obtained

其中为慢回路Lyapunov函数对于时间t的求导,误差转置,误差导数,的转置,为快回路自适应函数,为观测误差的转置矩阵,观测器输出的导数,将式(32)、(34)、(35)代入到式(38)得in is the derivative of the slow loop Lyapunov function with respect to time t, error transpose, error derivative, for the transposition of is the fast loop adaptive function, is the transposed matrix of the observation error, The derivative of the observer output, substituting equations (32), (34), and (35) into equation (38) to get

令L(e)=c>1,Q(e)=ce,则可以得出Let L(e)=c>1, Q(e)=ce, then we can get

其中c为观测器设计参数,其他参数与前文一致。Among them, c is the design parameter of the observer, and other parameters are consistent with the previous ones.

由式(40)得出,Lyapunov函数一致有界,因此,所设计的控制律保证被控系统一致有界。From equation (40), the Lyapunov function is uniformly bounded, so the designed control law ensures that the controlled system is uniformly bounded.

姿态运动鲁棒协调控制是引入协调因子(19)后,结合姿态角速率回路控制器Mc以及舵面分配矩阵g,计算协调力矩,将协调力矩分配成舵面指令,通过舵面偏转实现协调,鲁棒协调控制方案如图1所示。在图1中,通过设计快回路控制律得出的快回路力矩指令Mc并与所设计的协调因子(19)结合起来推导协调力矩,协调力矩最终通过快回路舵面分配矩阵分配成舵面协调指令δear,通过舵面的协调偏转最终实现高超声速飞行器姿态运动间的协调控制。则协调力矩可以表示为The robust coordination control of attitude motion is to introduce the coordination factor (19), combine the attitude angle rate loop controller M c and the rudder surface distribution matrix g , calculate the coordination torque, and distribute the coordination torque into rudder surface commands, which are realized by the rudder surface deflection Coordination, the robust coordination control scheme is shown in Fig. 1. In Fig. 1, the fast-loop torque command M c obtained by designing the fast-loop control law is combined with the designed coordination factor (19) to derive the coordinated torque, and the coordinated torque is finally allocated to the rudder surface through the fast-loop rudder distribution matrix The coordination commands δ e , δ a , δ r , through the coordinated deflection of the rudder surface, finally realize the coordinated control of the attitude motion of the hypersonic vehicle. Then the coordination moment can be expressed as

Mc=gΓfδ·δ (41)M c =g Γfδ ·δ (41)

其中in

其中为俯仰通道舵面分配矩阵参数,为偏航通道舵面分配矩阵参数,为滚转通道舵面分配矩阵参数,λe,λa,λr为前文设计的协调因子。则舵面指令可以求得in Assign matrix parameters for the pitch channel rudder surface, Assign matrix parameters for the yaw channel rudder surface, Assign matrix parameters to the roll channel rudder surface, λ e , λ a , λ r are the coordination factors designed above. Then the rudder command can be obtained

δ=gΓfδ -1·Mc (43)δ=g Γfδ -1 ·M c (43)

当协调策略采用副翼舵与方向舵协调偏转实现偏航力矩和滚转力矩,升降舵偏转实现俯仰力矩,舵面协调可以设计为When the coordination strategy uses the coordinated deflection of the aileron rudder and the rudder to realize the yaw moment and roll moment, and the deflection of the elevator to realize the pitch moment, the rudder surface coordination can be designed as

δcoe=δecoa=Eδrcor=δr (44)δ coe = δ e , δ coa = Eδ r , δ cor = δ r (44)

为了证明控制器的有效性,我们选取式(1)所描述的高超声速飞行器姿态系统模型,模型的基本参数为:M=54013lb、Ma=8、V=13398ft/s、H=68898ft、T=280000lb。设计参数选择为:ki=1,i=1…7,K1=K2=K3=4,κ1=κ2=5。初始条件设置为:α=1°,β=5°,μ=0°,p=q=r=0°/s。姿态角的指令信号取为:αc=5°,βc=0°,μc=4°。外部扰动D选取为D(t)=[0.5sin(1.5t) 0.5cos(2t) 0.5sin(2t)]T。仿真结果如图2、图3、图4所示。在图2-(a)未加入协调因子(14)的时候,α的超调量为35%,加入协调因子(14)后,超调量为10%。在图2-(b)中加入协调因子(14)后β的超调量小于未加协调因子的超调量。快回路加入协调因子后(15),图3-(a)p的跟踪曲线、3-(b)q的跟踪曲线以及3-(c)r的跟踪曲线的抖动幅度明显减小,姿态角速率的变化范围及抖动幅度小于未加协调的控制器作用下的响应曲线。得益于协调控制器,姿态角速率趋近平衡的过程更加平滑和快速。在图4中,加入协调因子(18)提升了操纵舵面的控制效率。这种性能提升能够提高姿态系统的可控性和高超声速飞行器的机动性。In order to prove the effectiveness of the controller, we select the hypersonic vehicle attitude system model described in formula (1), the basic parameters of the model are: M = 54013lb, Ma=8, V=13398ft/s, H=68898ft, T = 280000 lb. The design parameters are selected as: ki =1, i =1...7, K 1 =K 2 =K 3 =4, κ 12 =5. The initial conditions are set as: α=1°, β=5°, μ=0°, p=q=r=0°/s. The command signal of attitude angle is taken as: α c =5°, β c =0°, μ c =4°. The external disturbance D is selected as D(t)=[0.5sin(1.5t) 0.5cos(2t) 0.5sin(2t)] T . The simulation results are shown in Figure 2, Figure 3, and Figure 4. In Figure 2-(a) when the coordination factor (14) is not added, the overshoot of α is 35%, and after adding the coordination factor (14), the overshoot is 10%. In Figure 2-(b), the overshoot of β after adding the coordination factor (14) is smaller than the overshoot without adding the coordination factor. After adding the coordination factor (15) to the fast loop, the jitter amplitudes of the tracking curves in Figure 3-(a)p, 3-(b)q and 3-(c)r are significantly reduced, and the attitude angular rate The variation range and jitter amplitude are smaller than the response curve under the action of an uncoordinated controller. Thanks to the coordinated controller, the process of attitude angular rate approaching equilibrium is smoother and faster. In Fig. 4, adding the coordination factor (18) improves the control efficiency of the rudder surface. This performance boost could improve the controllability of the attitude system and the maneuverability of the hypersonic vehicle.

Claims (5)

1.一种基于协调因子的高超声速飞行器姿态运动协调控制方法,其特征在于:包括如下步骤:1. a hypersonic vehicle attitude-motion coordinated control method based on coordination factors, is characterized in that: comprise the steps: 步骤1)针对高超声速飞行器姿态模型进行耦合分析,将姿态运动间的强耦合问题分解成角运动耦合、惯性耦合、舵面操纵耦合三种形式;基于耦合三种形式,将对应的状态变量反馈到对应的舵面回路设计协调因子;Step 1) Carry out coupling analysis for the attitude model of the hypersonic vehicle, and decompose the strong coupling problem between attitude motions into three forms: angular motion coupling, inertial coupling, and rudder surface control coupling; based on the three forms of coupling, the corresponding state variables are fed back to the corresponding rudder surface circuit design coordination factor; 步骤2)基于时标分离原则,将姿态系统分解成慢回路和快回路;基于滑模方法和投影映射方法分别设计慢回路鲁棒控制器和快回路鲁棒控制器;Step 2) Based on the time-scale separation principle, decompose the attitude system into a slow loop and a fast loop; design a slow loop robust controller and a fast loop robust controller based on the sliding mode method and projection mapping method respectively; 步骤3)将协调因子与鲁棒控制器结合起来推导协调力矩,利用舵面分配矩阵,将协调力矩分配成舵面指令,利用舵面的协调偏转实现姿态运动的协调。Step 3) Combining the coordination factor with the robust controller to derive the coordination torque, using the rudder distribution matrix, the coordination torque is distributed into the rudder command, and the coordination deflection of the rudder is used to realize the coordination of the attitude movement. 2.根据权利要求1所述的基于协调因子的高超声速飞行器姿态运动协调控制方法,其特征在于,所述步骤1)的具体过程如下步骤:2. the hypersonic vehicle attitude-motion coordinated control method based on coordination factor according to claim 1, is characterized in that, the specific process of described step 1) is following steps: 步骤1-1),建立高超声速飞行器姿态系统数学模型;Step 1-1), establishing a hypersonic vehicle attitude system mathematical model; <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mover> <mi>&amp;Omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>f</mi> <mi>s</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>s</mi> </msub> <mi>&amp;omega;</mi> </mtd> </mtr> <mtr> <mtd> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>f</mi> <mi>f</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>f</mi> </msub> <msub> <mi>M</mi> <mi>c</mi> </msub> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""><mtable><mtr><mtd><mover><mi>&amp;Omega;</mi><mo>&amp;CenterDot;</mo></mover><mo>=</mo><msub><mi>f</mi><mi>s</mi></msub><mo>+</mo><msub><mi>g</mi><mi>s</mi></msub><mi>&amp;omega;</mi></mtd></mtr><mtr><mtd><mover><mi>&amp;omega;</mi><mo>&amp;CenterDot;</mo></mover><mo>=</mo><msub><mi>f</mi><mi>f</mi></msub><mo>+</mo><msub><mi>g</mi><mi>f</mi></msub><msub><mi>M</mi><mi>c</mi></msub></mtd></mtr></mtable></mfenced> 其中表示Ω的导数,Ω表示系统慢回路状态变量,Ω=[α,β,μ]T,α,β,μ分别是攻角、侧滑角、滚转角;表示ω的导数,ω表示系统快回路状态变量,ω=[p,q,r]T,p,q,r分别为滚转角速率、俯仰角速率、偏航角速率;Mc表示快回路力矩,Mc=gu,其中g∈R3×3是姿态系统快回路舵面分配矩阵,u=[δear]T,其中δear分别为左升降舵副翼舵、右升降舵副翼舵、方向舵;fs=[fα,fβ,fμ]T,ff=[fp,fq,fr]Tin Represents the derivative of Ω, Ω represents the state variable of the slow loop of the system, Ω=[α,β,μ] T , α,β,μ are angle of attack, angle of sideslip, and roll angle respectively; Indicates the derivative of ω, ω indicates the state variable of the fast loop of the system, ω=[p,q,r] T , p,q,r are the roll rate, pitch rate, and yaw rate respectively; M c indicates the fast loop torque , M c =g u, where g ∈ R 3×3 is the fast loop control surface assignment matrix of the attitude system, u=[δ ear ] T , where δ ear are respectively are left elevator aileron rudder, right elevator aileron rudder and rudder; f s =[f α ,f β ,f μ ] T , f f =[f p ,f q ,f r ] T , <mrow> <msub> <mi>f</mi> <mi>&amp;alpha;</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>M</mi> <mi>V</mi> <mi> </mi> <mi>cos</mi> <mi>&amp;beta;</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mo>-</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SC</mi> <mrow> <mi>L</mi> <mo>,</mo> <mi>&amp;alpha;</mi> </mrow> </msub> <mo>+</mo> <mi>M</mi> <mi>g</mi> <mi> </mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;gamma;</mi> <mi>cos</mi> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>f</mi><mi>&amp;alpha;</mi></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mi>M</mi><mi>V</mi><mi></mi><mi>cos</mi><mi>&amp;beta;</mi></mrow></mfrac><mrow><mo>(</mo><mo>-</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SC</mi><mrow><mi>L</mi><mo>,</mo><mi>&amp;alpha;</mi></mrow></msub><mo>+</mo><mi>M</mi><mi>g</mi><mi></mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;gamma;</mi><mi>cos</mi><mi>&amp;mu;</mi><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>f</mi> <mi>&amp;beta;</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>M</mi> <mi>V</mi> </mrow> </mfrac> <mrow> <mo>(</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SC</mi> <mrow> <mi>Y</mi> <mo>,</mo> <mi>&amp;beta;</mi> </mrow> </msub> <mi>&amp;beta;</mi> <mo>+</mo> <mi>M</mi> <mi>g</mi> <mi> </mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;gamma;</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;mu;</mi> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>f</mi><mi>&amp;beta;</mi></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mi>M</mi><mi>V</mi></mrow></mfrac><mrow><mo>(</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SC</mi><mrow><mi>Y</mi><mo>,</mo><mi>&amp;beta;</mi></mrow></msub><mi>&amp;beta;</mi><mo>+</mo><mi>M</mi><mi>g</mi><mi></mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;gamma;</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>&amp;mu;</mi><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>f</mi> <mi>&amp;mu;</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mrow> <mi>M</mi> <mi>V</mi> </mrow> </mfrac> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SC</mi> <mrow> <mi>Y</mi> <mo>,</mo> <mi>&amp;beta;</mi> </mrow> </msub> <mi>&amp;beta;</mi> <mi>tan</mi> <mi>&amp;gamma;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;mu;</mi> <mo>+</mo> <mfrac> <mn>1</mn> <mrow> <mi>M</mi> <mi>V</mi> </mrow> </mfrac> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SC</mi> <mrow> <mi>L</mi> <mo>,</mo> <mi>&amp;alpha;</mi> </mrow> </msub> </mrow> <mrow><msub><mi>f</mi><mi>&amp;mu;</mi></msub><mo>=</mo><mfrac><mn>1</mn><mrow><mi>M</mi><mi>V</mi></mrow></mfrac><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SC</mi><mrow><mi>Y</mi><mo>,</mo><mi>&amp;beta;</mi></mrow></msub><mi>&amp;beta;</mi><mi>tan</mi><mi>&amp;gamma;</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;mu;</mi><mo>+</mo><mfrac><mn>1</mn><mrow><mi>M</mi><mi>V</mi></mrow></mfrac><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SC</mi><mrow><mi>L</mi><mo>,</mo><mi>&amp;alpha;</mi></mrow></msub></mrow> <mrow> <mo>(</mo> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>&amp;gamma;</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;mu;</mi> <mo>+</mo> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>&amp;beta;</mi> <mo>)</mo> <mo>-</mo> <mfrac> <mi>g</mi> <mi>V</mi> </mfrac> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;gamma;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;mu;</mi> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>&amp;beta;</mi> </mrow> <mrow><mo>(</mo><mi>t</mi><mi>a</mi><mi>n</mi><mi>&amp;gamma;</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>&amp;mu;</mi><mo>+</mo><mi>t</mi><mi>a</mi><mi>n</mi><mi>&amp;beta;</mi><mo>)</mo><mo>-</mo><mfrac><mi>g</mi><mi>V</mi></mfrac><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;gamma;</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;mu;</mi><mi>t</mi><mi>a</mi><mi>n</mi><mi>&amp;beta;</mi></mrow> <mrow> <msub> <mi>g</mi> <mi>s</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mo>-</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;alpha;</mi> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>&amp;beta;</mi> </mrow> </mtd> <mtd> <mn>1</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;alpha;</mi> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>&amp;beta;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>sin</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mo>-</mo> <mi>cos</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>cos</mi> <mi>&amp;alpha;</mi> <mi>s</mi> <mi>e</mi> <mi>c</mi> <mi>&amp;beta;</mi> </mrow> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mrow> <mi>sin</mi> <mi>&amp;alpha;</mi> <mi>sec</mi> <mi>&amp;beta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><msub><mi>g</mi><mi>s</mi></msub><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><mrow><mo>-</mo><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;alpha;</mi><mi>t</mi><mi>a</mi><mi>n</mi><mi>&amp;beta;</mi></mrow></mtd><mtd><mn>1</mn></mtd><mtd><mrow><mo>-</mo><mi>s</mi><mi>i</mi><mi>n</mi><mi>&amp;alpha;</mi><mi>t</mi><mi>a</mi><mi>n</mi><mi>&amp;beta;</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>sin</mi><mi>&amp;alpha;</mi></mrow></mtd><mtd><mn>0</mn></mtd><mtd><mrow><mo>-</mo><mi>cos</mi><mi>&amp;alpha;</mi></mrow></mtd></mtr><mtr><mtd><mrow><mi>cos</mi><mi>&amp;alpha;</mi><mi>s</mi><mi>e</mi><mi>c</mi><mi>&amp;beta;</mi></mrow></mtd><mtd><mn>0</mn></mtd><mtd><mrow><mi>sin</mi>mi><mi>&amp;alpha;</mi><mi>sec</mi><mi>&amp;beta;</mi></mrow></mtd></mtr></mtable></mfenced></mrow> <mrow> <msub> <mi>f</mi> <mi>p</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mfrac> <mrow> <mo>(</mo> <msub> <mi>l</mi> <mrow> <mi>a</mi> <mi>e</mi> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>+</mo> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mrow> <mo>)</mo> <mi>q</mi> <mi>r</mi> <mo>-</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mi>p</mi> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>f</mi><mi>p</mi></msub><mo>=</mo><mfrac><mn>1</mn><msub><mi>I</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub></mfrac><mrow><mo>(</mo><msub><mi>l</mi><mrow><mi>a</mi><mi>e</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>+</mo><mo>(</mo><mrow><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub><mo>-</mo><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub></mrow><mo>)</mo><mi>q</mi><mi>r</mi><mo>-</mo><msub><mover><mi>I</mi><mo>&amp;CenterDot;</mo></mover><mrow><mi>x</mi><mi>x</mi></mrow></msub><mi>p</mi><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>f</mi> <mi>q</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mfrac> <mrow> <mo>(</mo> <msub> <mi>m</mi> <mrow> <mi>a</mi> <mi>e</mi> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>+</mo> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mrow> <mo>)</mo> <mi>p</mi> <mi>r</mi> <mo>-</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mi>q</mi> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>f</mi><mi>q</mi></msub><mo>=</mo><mfrac><mn>1</mn><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub></mfrac><mrow><mo>(</mo><msub><mi>m</mi><mrow><mi>a</mi><mi>e</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>+</mo><mo>(</mo><mrow><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub><mo>-</mo><msub><mi>I</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub></mrow><mo>)</mo><mi>p</mi><mi>r</mi><mo>-</mo><msub><mover><mi>I</mi><mo>&amp;CenterDot;</mo></mover><mrow><mi>y</mi><mi>y</mi></mrow></msub><mi>q</mi><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mfrac> <mrow> <mo>(</mo> <msub> <mi>n</mi> <mrow> <mi>a</mi> <mi>e</mi> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>+</mo> <mo>(</mo> <mrow> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> <mo>)</mo> <mi>p</mi> <mi>q</mi> <mo>-</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mi>r</mi> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>f</mi><mi>r</mi></msub><mo>=</mo><mfrac><mn>1</mn><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub></mfrac><mrow><mo>(</mo><msub><mi>n</mi><mrow><mi>a</mi><mi>e</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>+</mo><mo>(</mo><mrow><msub><mi>I</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>-</mo><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub></mrow><mo>)</mo><mi>p</mi><mi>q</mi><mo>-</mo><msub><mover><mi>I</mi><mo>&amp;CenterDot;</mo></mover><mrow><mi>z</mi><mi>z</mi></mrow></msub><mi>r</mi><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>g</mi> <mi>f</mi> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>g</mi> <mi>l</mi> <mi>p</mi> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mi>g</mi> <mi>m</mi> <mi>q</mi> </msubsup> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <msubsup> <mi>g</mi> <mi>n</mi> <mi>r</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><msub><mi>g</mi><mi>f</mi></msub><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><msubsup><mi>g</mi><mi>l</mi><mi>p</mi></msubsup></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msubsup><mi>g</mi><mi>m</mi><mi>q</mi></msubsup></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd><mtd><msubsup><mi>g</mi><mi>n</mi><mi>r</mi></msubsup></mtd></mtr></mtable></mfenced></mrow> <mrow> <msub> <mi>l</mi> <mrow> <mi>a</mi> <mi>e</mi> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi>b</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>&amp;beta;</mi> </mrow> </msub> <mi>&amp;beta;</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mi>p</mi> <mi>b</mi> <mo>/</mo> <mn>2</mn> <mi>V</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mo>.</mo> <mi>r</mi> </mrow> </msub> <mi>r</mi> <mi>b</mi> <mo>/</mo> <mn>2</mn> <mi>V</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow> 1 <mrow><msub><mi>l</mi><mrow><mi>a</mi><mi>e</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi>b</mi><mrow><mo>(</mo><msub><mi>C</mi><mrow><mi>l</mi><mo>,</mo><mi>&amp;beta;</mi></mrow></msub><mi>&amp;beta;</mi><mo>+</mo><msub><mi>C</mi><mrow><mi>l</mi><mo>,</mo><mi>p</mi></mrow></msub><mi>p</mi><mi>b</mi><mo>/</mo><mn>2</mn><mi>V</mi><mo>+</mo><msub><mi>C</mi><mrow><mi>l</mi><mo>.</mo><mi>r</mi></mrow></msub><mi>r</mi><mi>b</mi><mo>/</mo><mn>2</mn><mi>V</mi><mo>)</mo></mrow><mo>,</mo></mrow> 1 <mrow> <mtable> <mtr> <mtd> <mrow> <msub> <mi>m</mi> <mrow> <mi>a</mi> <mi>e</mi> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>&amp;alpha;</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <mi>q</mi> <mi>c</mi> <mo>/</mo> <mn>2</mn> <mi>V</mi> <mo>)</mo> </mrow> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>g</mi> </mrow> </msub> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>D</mi> <mo>,</mo> <mi>&amp;alpha;</mi> </mrow> </msub> <mi>sin</mi> <mi>&amp;alpha;</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>L</mi> <mo>,</mo> <mi>&amp;alpha;</mi> </mrow> </msub> <mi>cos</mi> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> <mo>,</mo> </mrow> <mrow><mtable><mtr><mtd><mrow><msub><mi>m</mi><mrow><mi>a</mi><mi>e</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi>c</mi><mrow><mo>(</mo><msub><mi>C</mi><mrow><mi>m</mi><mo>,</mo><mi>&amp;alpha;</mi></mrow></msub><mo>+</mo><msub><mi>C</mi><mrow><mi>m</mi><mo>,</mo><mi>q</mi></mrow></msub><mi>q</mi><mi>c</mi><mo>/</mo><mn>2</mn><mi>V</mi><mo>)</mo></mrow><mo>+</mo></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>X</mi><mrow><mi>c</mi><mi>g</mi></mrow></msub><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mrow><mo>(</mo><msub><mi>C</mi><mrow><mi>D</mi><mo>,</mo><mi>&amp;alpha;</mi></mrow></msub><mi>sin</mi><mi>&amp;alpha;</mi><mo>+</mo><msub><mi>C</mi><mrow><mi>L</mi><mo>,</mo><mi>&amp;alpha;</mi></mrow></msub><mi>cos</mi><mi>&amp;alpha;</mi><mo>)</mo></mrow></mrow></mtd></mtr></mtable><mo>,</mo></mrow> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>n</mi> <mrow> <mi>a</mi> <mi>e</mi> <mi>r</mi> <mi>o</mi> </mrow> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi>b</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>&amp;beta;</mi> </mrow> </msub> <mi>&amp;beta;</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <mi>p</mi> <mi>b</mi> <mo>/</mo> <mn>2</mn> <mi>V</mi> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <mi>r</mi> <mi>b</mi> <mo>/</mo> <mn>2</mn> <mi>V</mi> <mo>)</mo> </mrow> <mo>+</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>g</mi> </mrow> </msub> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SC</mi> <mrow> <mi>Y</mi> <mo>,</mo> <mi>&amp;beta;</mi> </mrow> </msub> <mi>&amp;beta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open=""close=""><mtable><mtr><mtd><mrow><msub><mi>n</mi><mrow><mi>a</mi><mi>e</mi><mi>r</mi><mi>o</mi></mrow></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi>b</mi><mrow><mo>(</mo><msub><mi>C</mi><mrow><mi>n</mi><mo>,</mo><mi>&amp;beta;</mi></mrow></msub><mi>&amp;beta;</mi><mo>+</mo><msub><mi>C</mi><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow></msub><mi>p</mi><mi>b</mi><mo>/</mo><mn>2</mn><mi>V</mi><mo>+</mo><msub><mi>C</mi><mrow><mi>n</mi><mo>,</mo><mi>r</mi></mrow></msub><mi>r</mi><mi>b</mi><mo>/</mo><mn>2</mn><mi>V</mi><mo>)</mo></mrow><mo>+</mo></mrow></mtd></mtr><mtr><mtd><mrow><msub><mi>X</mi><mrow><mi>c</mi><mi>g</mi></mrow></msub><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SC</mi><mrow><mi>Y</mi><mo>,</mo><mi>&amp;beta;</mi></mrow></msub><mi>&amp;beta;</mi></mrow></mtd></mtr></mtable></mfenced> 其中,M,V分别为飞行器的质量和速度;为动压;S,c,b分别为参考面积、参考长度、和参考宽度;CL,α为由攻角α引起的升力系数,CY,β为侧滑角β引起的侧立系数,g为地球引力系数,Cl,β,Cl,p,Cl.r为由β,p,r引起的升力系数,Cm,α,Cm,q为基本俯仰力矩系数和由q引起的俯仰力矩系数,CD,α为由攻角α引起的阻力系数,Cn,β,Cn,p,Cn,rr为由β,p,r引起的偏航力矩系数,Xcg为质心至参考力矩中心得距离,为快回路分配矩阵系数;Ixx为绕x轴惯性积,Iyy为绕y轴惯性积,Izz为绕z轴惯性积,为Ixx的导数,为Iyy的导数,为Izz的导数,fs,ff,gs,gf为姿态系统状态矩阵,laero,maero,naero表示三通道力矩;Among them, M and V are the mass and velocity of the aircraft respectively; is the dynamic pressure; S, c, b are the reference area, reference length, and reference width respectively; C L, α is the lift coefficient caused by the angle of attack α, C Y, β is the lateral coefficient caused by the sideslip angle β, g is the gravitational coefficient of the earth, C l, β , C l, p , C lr are the lift coefficients caused by β, p, r, C m, α , C m, q are the basic pitching moment coefficients and the pitching force caused by q Moment coefficient, C D, α is the drag coefficient caused by the angle of attack α, C n, β , C n, p , C n, r r is the yaw moment coefficient caused by β, p, r, X cg is the center of mass The distance to the reference moment center, Assign matrix coefficients for the fast loop; I xx is the product of inertia around the x-axis, I yy is the product of inertia around the y-axis, I zz is the product of inertia around the z-axis, is the derivative of I xx , is the derivative of I yy , is the derivative of I zz , f s , f f , g s , g f are the attitude system state matrix, l aero , m aero , n aero represent the three-channel torque; 步骤1-2)对所建立的姿态系统模型进行耦合分析,将姿态姿态的耦合分解成姿态角运动耦合、惯性耦合、舵面操纵耦合,Step 1-2) Carry out coupling analysis to the established attitude system model, decompose the coupling of attitude attitude into attitude angle motion coupling, inertial coupling, rudder surface control coupling, 1)姿态角耦合模型:1) Attitude Angle Coupling Model: 在步骤1-1)中所建立的姿态系统模型,姿态角的耦合关系描述为:In the attitude system model established in step 1-1), the coupling relation of the attitude angle is described as: <mrow> <mover> <mi>&amp;alpha;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>&amp;beta;</mi> <mrow> <mo>(</mo> <mi>p</mi> <mi> </mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;alpha;</mi> <mo>+</mo> <mi>r</mi> <mi> </mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> <mrow><mover><mi>&amp;alpha;</mi><mo>&amp;CenterDot;</mo></mover><mo>=</mo><mo>-</mo><mi>t</mi><mi>a</mi><mi>n</mi><mi>&amp;beta;</mi><mrow><mo>(</mo><mi>p</mi><mi></mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;alpha;</mi><mo>+</mi>mo><mi>r</mi><mi></mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>&amp;alpha;</mi><mo>)</mo></mrow></mrow> <mrow> <mover> <mi>&amp;beta;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>p</mi> <mi> </mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;alpha;</mi> <mo>-</mo> <mi>r</mi> <mi> </mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;alpha;</mi> </mrow> <mrow><mover><mi>&amp;beta;</mi><mo>&amp;CenterDot;</mo></mover><mo>=</mo><mi>p</mi><mi></mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>&amp;alpha;</mi><mo>-</mo><mi>r</mi><mi></mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;alpha;</mi></mrow> <mrow> <mover> <mi>&amp;mu;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <mi>sec</mi> <mi>&amp;beta;</mi> <mrow> <mo>(</mo> <mi>p</mi> <mi> </mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;alpha;</mi> <mo>+</mo> <mi>r</mi> <mi> </mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> <mrow><mover><mi>&amp;mu;</mi><mo>&amp;CenterDot;</mo></mover><mo>=</mo><mi>sec</mi><mi>&amp;beta;</mi><mrow><mo>(</mo><mi>p</mi><mi></mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;alpha;</mi><mo>+</mo><mi>r</mi><mi></mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>&amp;alpha;</mi><mo>)</mo></mrow></mrow> 其中分别表示为慢回路状态变量攻角、侧滑角与滚转角的姿态角耦合;in Respectively expressed as slow loop state variables attack angle, sideslip angle and attitude angle coupling of roll angle; 2)惯性耦合2) Inertial coupling 在步骤1-1)所在建立的姿态系统模型中,惯性耦合描述为:In the attitude system model established in step 1-1), the inertial coupling is described as: <mrow> <msub> <mi>f</mi> <mi>p</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>q</mi> <mi>r</mi> <mo>-</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mi>p</mi> </mrow> <mrow><msub><mi>f</mi><mi>p</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub><mo>-</mo><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub><mo>)</mo></mrow><mi>q</mi><mi>r</mi><mo>-</mo><msub><mover><mi>I</mi><mo>&amp;CenterDot;</mo></mover><mrow><mi>x</mi><mi>x</mi></mrow></msub><mi>p</mi></mrow> <mrow> <msub> <mi>f</mi> <mi>q</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>p</mi> <mi>r</mi> <mo>-</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mi>q</mi> </mrow> <mrow><msub><mi>f</mi><mi>q</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub><mo>-</mo><msub><mi>I</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>)</mo></mrow><mi>p</mi><mi>r</mi><mo>-</mo><msub><mover><mi>I</mi><mo>&amp;CenterDot;</mo></mover><mrow><mi>y</mi><mi>y</mi></mrow></msub><mi>q</mi></mrow> <mrow> <msub> <mi>f</mi> <mi>r</mi> </msub> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>)</mo> </mrow> <mi>p</mi> <mi>q</mi> <mo>-</mo> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>x</mi> <mi>z</mi> </mrow> </msub> <mi>p</mi> </mrow> <mrow><msub><mi>f</mi><mi>r</mi></msub><mo>=</mo><mrow><mo>(</mo><msub><mi>I</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>-</mo><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub><mo>)</mo></mrow><mi>p</mi><mi>q</mi><mo>-</mo><msub><mover><mi>I</mi><mo>&amp;CenterDot;</mo></mover><mrow><mi>x</mi><mi>z</mi></mrow></msub><mi>p</mi></mrow> 其中fp,fq,fr表示快回路系统中由p,q,r引起的惯性耦合;where f p , f q , f r represent the inertial coupling caused by p, q, r in the fast loop system; 3)舵面操纵耦合3) Rudder control coupling 在步骤1-1)所建立的姿态系统模型中,舵面操纵耦合描述为:In the attitude system model established in step 1-1), the control coupling of the rudder surface is described as: <mrow> <msub> <mi>g</mi> <mi>l</mi> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi>b</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>g</mi><mi>l</mi></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi>b</mi><mrow><mo>(</mo><msub><mi>C</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub><mo>+</mo><msub><mi>C</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>g</mi> <mi>m</mi> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi>c</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>m</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>m</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>g</mi><mi>m</mi></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi>c</mi><mrow><mo>(</mo><msub><mi>C</mi><mrow><mi>m</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub><mo>+</mo><msub><mi>C</mi><mrow><mi>m</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub><mo>)</mo></mrow></mrow> <mrow> <msub> <mi>g</mi> <mi>n</mi> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi>b</mi> <mrow> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> <mo>)</mo> </mrow> </mrow> <mrow><msub><mi>g</mi><mi>n</mi></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi>b</mi><mrow><mo>(</mo><msub><mi>C</mi><mrow><mi>n</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub><mo>+</mo><msub><mi>C</mi><mrow><mi>n</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub><mo>)</mo></mrow></mrow> 其中gl为滚转通道操纵耦合,gm为俯仰通道操纵耦合,gn为偏航通道耦合,分别为右升舵副翼舵和方向舵引起的滚转力矩系数,为右升降副翼舵引起的俯仰力矩系数,方向舵引起的俯仰力矩系数,为右升降副翼舵引起的偏航力矩系数,方向舵引起的偏航力矩系数;Where g l is the steering coupling of the roll channel, g m is the steering coupling of the pitch channel, and g n is the coupling of the yaw channel, are the rolling moment coefficients caused by the right elevator, aileron rudder and rudder, respectively, is the pitching moment coefficient caused by the right elevon rudder, The pitching moment coefficient caused by the rudder, is the yaw moment coefficient caused by the right elevon rudder, yaw moment coefficient caused by rudder; <mrow> <msub> <mi>G</mi> <mrow> <mi>f</mi> <mo>,</mo> <mi>&amp;delta;</mi> </mrow> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>g</mi> <mrow> <mi>p</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>g</mi> <mrow> <mi>p</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>g</mi> <mrow> <mi>p</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>g</mi> <mrow> <mi>q</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>g</mi> <mrow> <mi>q</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>g</mi> <mrow> <mi>q</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>g</mi> <mrow> <mi>r</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>g</mi> <mrow> <mi>r</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>g</mi> <mrow> <mi>r</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><msub><mi>G</mi><mrow><mi>f</mi><mo>,</mo><mi>&amp;delta;</mi></mrow></msub><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>g</mi><mrow><mi>p</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub></mtd><mtd><msub><mi>g</mi><mrow><mi>p</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub></mtd><mtd><msub><mi>g</mi><mrow><mi>p</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>g</mi><mrow><mi>q</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub></mtd><mtd><msub><mi>g</mi><mrow><mi>q</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub></mtd><mtd><msub><mi>g</mi><mrow><mi>q</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>g</mi><mrow><mi>r</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub></mtd><mtd><msub><mi>g</mi><mrow><mi>r</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub></mtd><mtd><msub><mi>g</mi><mrow><mi>r</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub></mtd></mtr></mtable></mfenced></mrow> <mrow> <msub> <mi>g</mi> <mrow> <mi>p</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SbC</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> </mrow> <mrow><msub><mi>g</mi><mrow><mi>p</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SbC</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub></mrow> <mrow> <msub> <mi>g</mi> <mrow> <mi>p</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SbC</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> </mrow> <mrow><msub><mi>g</mi><mrow><mi>p</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SbC</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub></mrow> <mrow> <msub> <mi>g</mi> <mrow> <mi>p</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SbC</mi> <mrow> <mi>l</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> </mrow> <mrow><msub><mi>g</mi><mrow><mi>p</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SbC</mi><mrow><mi>l</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub></mrow> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>q</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>ScC</mi> <mrow> <mi>m</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>g</mi> </mrow> </msub> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>D</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> <mi>sin</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>L</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> <mi>cos</mi> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><msub><mi>g</mi><mrow><mi>q</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>ScC</mi><mrow><mi>m</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub><mo>+</mo><msub><mi>X</mi><mrow><mi>c</mi><mi>g</mi></mrow></msub><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mo>(</mo><msub><mi>C</mi><mrow><mi>D</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub><mi>sin</mi><mi>&amp;alpha;</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><msub><mi>C</mi><mrow><mi>L</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub><mi>cos</mi><mi>&amp;alpha;</mi><mo>)</mo></mrow></mtd></mtr></mtable></mfenced> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>q</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>ScC</mi> <mrow> <mi>m</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>g</mi> </mrow> </msub> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mo>(</mo> <msub> <mi>C</mi> <mrow> <mi>D</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> <mi>sin</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>+</mo> <msub> <mi>C</mi> <mrow> <mi>L</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> <mi>cos</mi> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><msub><mi>g</mi><mrow><mi>q</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>ScC</mi><mrow><mi>m</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub><mo>+</mo><msub><mi>X</mi><mrow><mi>c</mi><mi>g</mi></mrow></msub><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mo>(</mo><msub><mi>C</mi><mrow><mi>D</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub><mi>sin</mi><mi>&amp;alpha;</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>+</mo><msub><mi>C</mi><mrow><mi>L</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub><mi>cos</mi><mi>&amp;alpha;</mi><mo>)</mo></mrow></mtd></mtr></mtable></mfenced> <mrow> <msub> <mi>g</mi> <mrow> <mi>q</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>ScC</mi> <mrow> <mi>m</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>g</mi> </mrow> </msub> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SC</mi> <mrow> <mi>D</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> <mi>sin</mi> <mi>&amp;alpha;</mi> </mrow> <mrow><msub><mi>g</mi><mrow><mi>q</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>ScC</mi><mrow><mi>m</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub><mo>+</mo><msub><mi>X</mi><mrow><mi>c</mi><mi>g</mi></mrow></msub><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SC</mi><mrow><mi>D</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub><mi>sin</mi><mi>&amp;alpha;</mi></mrow> <mrow> <msub> <mi>g</mi> <mrow> <mi>r</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SbC</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>g</mi> </mrow> </msub> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SC</mi> <mrow> <mi>Y</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> </mrow> <mrow><msub><mi>g</mi><mrow><mi>r</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SbC</mi><mrow><mi>n</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub><mo>+</mo><msub><mi>X</mi><mrow><mi>c</mi><mi>g</mi></mrow></msub><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SC</mi><mrow><mi>Y</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub></mrow> <mrow> <msub> <mi>g</mi> <mrow> <mi>r</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SbC</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>g</mi> </mrow> </msub> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SC</mi> <mrow> <mi>Y</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> </mrow> <mrow><msub><mi>g</mi><mrow><mi>r</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SbC</mi><mrow><mi>n</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub><mo>+</mo><msub><mi>X</mi><mrow><mi>c</mi><mi>g</mi></mrow></msub><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SC</mi><mrow><mi>Y</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub></mrow> <mrow> <msub> <mi>g</mi> <mrow> <mi>r</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> <mo>=</mo> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SbC</mi> <mrow> <mi>n</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>g</mi> </mrow> </msub> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msub> <mi>SC</mi> <mrow> <mi>Y</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> </mrow> <mrow><msub><mi>g</mi><mrow><mi>r</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub><mo>=</mo><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SbC</mi><mrow><mi>n</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub><mo>+</mo><msub><mi>X</mi><mrow><mi>c</mi><mi>g</mi></mrow></msub><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msub><mi>SC</mi><mrow><mi>Y</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub></mrow> Gf,δ为舵面分配矩阵,分别为左升降舵引起的侧立系数、右升降舵副翼引起的侧力系数与方向舵引起的侧力系数,为左升降舵引起的偏航力矩系数、俯仰力矩系数、滚转力矩系数与阻力系数, 为右升降舵副翼引起的阻力系数,为方向舵引起的阻力系数,为左升降舵引起升力系数,为方向舵引起的升力系数,为右升降舵副翼引起的偏航力矩系数,为方向舵引起的偏航力矩系数,为俯仰通道舵面分配矩阵参数,gq,δe,gq,δa,gq,δr为偏航通道舵面分配矩阵参数,为滚转通道舵面分配矩阵参数;G f,δ is the distribution matrix of the rudder surface, are the lateral force coefficient caused by the left elevator, the side force coefficient caused by the right elevator aileron and the side force coefficient caused by the rudder, respectively, are the yaw moment coefficient, pitch moment coefficient, roll moment coefficient and drag coefficient caused by the left elevator, is the drag coefficient caused by the right elevator aileron, is the drag coefficient caused by the rudder, is the lift coefficient caused by the left elevator, is the lift coefficient caused by the rudder, is the yaw moment coefficient caused by the right elevator aileron, is the yaw moment coefficient caused by the rudder, Assign matrix parameters for pitch channel rudder surface, g q,δe , g q,δa , g q,δr are yaw channel rudder surface assignment matrix parameters, Assign matrix parameters for the roll channel rudder surface; 步骤1-3)协调因子的设计;Step 1-3) the design of coordination factor; 对于步骤1-2)中的1)姿态角耦合,置为0,表示为psina-rcosα=0,得出r=ptanα,将r=ptanα反馈到方向舵回路,因此协调因子设计为其中k1>0为设计参数,为方向舵协调因子第一个分量;For 1) attitude angle coupling in steps 1-2), Set to 0, expressed as psina-rcosα=0, get r=ptanα, r=ptanα is fed back to the rudder loop, so the coordination factor is designed as Where k 1 >0 is a design parameter, is the first component of the rudder coordination factor; 在步骤1-2)中1)攻角与滚转角耦合关系描述为p-σr<p≤pcosα+rsinα<p+ρr,将β反馈到方向舵回路的调因子设计为:In steps 1-2), 1) the coupling relationship between attack angle and roll angle is described as p-σr<p≤pcosα+rsinα<p+ρr, and the adjustment factor for feeding β to the rudder loop is designed as: <mrow> <msub> <mi>&amp;lambda;</mi> <msub> <mi>r</mi> <mn>2</mn> </msub> </msub> <mo>=</mo> <msub> <mi>k</mi> <mn>2</mn> </msub> <mi>&amp;beta;</mi> <mo>+</mo> <msub> <mi>k</mi> <mn>3</mn> </msub> <mfrac> <mrow> <mi>p</mi> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mi>cos</mi> <mi>&amp;alpha;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>sin</mi> <mi>&amp;alpha;</mi> <mo>+</mo> <msub> <mi>&amp;Delta;</mi> <mi>&amp;alpha;</mi> </msub> </mrow> </mfrac> </mrow> <mrow><msub><mi>&amp;lambda;</mi><msub><mi>r</mi><mn>2</mn></msub></msub><mo>=</mo><msub><mi>k</mi><mn>2</mn></msub><mi>&amp;beta;</mi><mo>+</mo><msub><mi>k</mi><mn>3</mn></msub><mfrac><mrow><mi>p</mi><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mi>cos</mi><mi>&amp;alpha;</mi><mo>)</mo></mrow></mrow><mrow><mi>sin</mi><mi>&amp;alpha;</mi><mo>+</mo><msub><mi>&amp;Delta;</mi><mi>&amp;alpha;</mi></mi></mi>msub></mrow></mfrac></mrow> 其中|sina|≠Δα,k2,k3设计大于零的参数,为方向舵协调因子第二个分量;Where |sina|≠Δ α , k 2 , k 3 design parameters greater than zero, is the second component of the rudder coordination factor; 对于步骤1-2)中的2)惯性耦合,将β,r反馈到副翼回路,将β,q反馈到方向舵回路,将α,p反馈到升降舵回路来增加阻尼力矩和稳定性力矩;协调因子设计为:For 2) inertial coupling in step 1-2), feed β,r to the aileron loop, β,q to the rudder loop, and α,p to the elevator loop to increase the damping torque and stability torque; coordination The factorial design is: <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msub> <mi>&amp;lambda;</mi> <mi>e</mi> </msub> <mo>=</mo> <msub> <mi>k</mi> <mn>4</mn> </msub> <mi>&amp;alpha;</mi> <mo>+</mo> <msub> <mi>k</mi> <mn>5</mn> </msub> <mi>p</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;lambda;</mi> <mi>a</mi> </msub> <mo>=</mo> <msub> <mi>k</mi> <mn>6</mn> </msub> <mi>&amp;beta;</mi> <mo>+</mo> <msub> <mi>k</mi> <mn>7</mn> </msub> <mi>r</mi> </mtd> </mtr> <mtr> <mtd> <msub> <mi>&amp;lambda;</mi> <msub> <mi>r</mi> <mn>3</mn> </msub> </msub> <mo>=</mo> <msub> <mi>k</mi> <mn>8</mn> </msub> <mi>&amp;beta;</mi> <mo>+</mo> <msub> <mi>k</mi> <mn>9</mn> </msub> <mi>q</mi> </mtd> </mtr> </mtable> </mfenced> 3 <mfenced open = "{" close = ""><mtable><mtr><mtd><msub><mi>&amp;lambda;</mi><mi>e</mi></msub><mo>=</mo><msub><mi>k</mi><mn>4</mn></msub><mi>&amp;alpha;</mi><mo>+</mo><msub><mi>k</mi><mn>5</mn></msub><mi>p</mi></mtd></mtr><mtr><mtd><msub><mi>&amp;lambda;</mi><mi>a</mi></msub><mo>=</mo><msub><mi>k</mi><mn>6</mn></msub><mi>&amp;beta;</mi><mo>+</mo><msub><mi>k</mi><mn>7</mn></msub><mi>r</mi></mtd></mtr><mtr><mtd><msub><mi>&amp;lambda;</mi><msub><mi>r</mi><mn>3</mn></msub></msub><mo>=</mo><msub><mi>k</mi><mn>8</mn></msub><mi>&amp;beta;</mi><mo>+</mo><msub><mi>k</mi><mn>9</mn></msub><mi>q</mi></mtd></mtr></mtable></mfenced> 3 其中λe,λa分别为对应状态变量反馈到左升降舵、右升降副翼舵与方向舵的协调因子,k4,k5,k6,k7,k8,k9为大于零的设计参数;where λ e , λ a , are respectively the coordination factors corresponding to the state variables fed back to the left elevator, right elevon rudder and rudder, k 4 , k 5 , k 6 , k 7 , k 8 , k 9 are design parameters greater than zero; 对于步骤1-2)中的3)舵面操纵耦合,定义副翼舵与方向舵操纵耦合度为:For 3) rudder control coupling in steps 1-2), define the coupling degree of aileron rudder and rudder control as: <mrow> <mi>E</mi> <mo>=</mo> <mfrac> <msubsup> <mi>C</mi> <mi>x</mi> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </msubsup> <msubsup> <mi>C</mi> <mi>x</mi> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </msubsup> </mfrac> <mo>&amp;times;</mo> <mn>100</mn> <mi>%</mi> </mrow> <mrow><mi>E</mi><mo>=</mo><mfrac><msubsup><mi>C</mi><mi>x</mi><msub><mi>&amp;delta;</mi><mi>r</mi></msub></msubsup><msubsup><mi>C</mi><mi>x</mi><msub><mi>&amp;delta;</mi><mi>a</mi></msub></msubsup></mfrac><mo>&amp;times;</mo><mn>100</mn><mi>%</mi></mrow> 其中,in, <mrow> <msubsup> <mi>C</mi> <mi>x</mi> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </msubsup> <mo>=</mo> <mfrac> <mrow> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>w</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>S</mi> <mrow> <mi>c</mi> <mi>w</mi> </mrow> </msub> </mrow> <msup> <mi>S</mi> <mn>2</mn> </msup> </mfrac> <mfrac> <msub> <mi>y</mi> <mrow> <mi>c</mi> <mi>w</mi> <mi>r</mi> </mrow> </msub> <mi>L</mi> </mfrac> <mi>&amp;xi;</mi> <mi>cos</mi> <mi>&amp;chi;</mi> </mrow> <mrow><msubsup><mi>C</mi><mi>x</mi><msub><mi>&amp;delta;</mi><mi>r</mi></msub></msubsup><mo>=</mo><mfrac><mrow><msub><mi>S</mi><mrow><mi>c</mi><mi>w</mi><mi>r</mi></mrow></msub><msub><mi>S</mi><mrow><mi>c</mi><mi>w</mi></mrow></msub></mrow><msup><mi>S</mi><mn>2</mn></msup></mfrac><mfrac><msub><mi>y</mi><mrow><mi>c</mi><mi>w</mi><mi>r</mi></mrow></msub><mi>L</mi></mfrac><mi>&amp;xi;</mi><mi>cos</mi><mi>&amp;chi;</mi></mrow> <mrow> <msubsup> <mi>C</mi> <mi>x</mi> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </msubsup> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mo>&amp;lsqb;</mo> <mi>n</mi> <mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;eta;</mi> <mi>k</mi> </msub> <mo>+</mo> <mn>1</mn> <mo>)</mo> <msup> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mover> <mi>D</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mn>2</mn> </msup> </mrow> <mrow> <msub> <mi>&amp;eta;</mi> <mi>k</mi> </msub> <mo>+</mo> <mn>1</mn> <mo>-</mo> <mn>2</mn> <mover> <mi>D</mi> <mo>&amp;OverBar;</mo> </mover> </mrow> </mfrac> <mo>&amp;lsqb;</mo> <mover> <mi>D</mi> <mo>&amp;OverBar;</mo> </mover> <mo>+</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>-</mo> <mover> <mi>D</mi> <mo>&amp;OverBar;</mo> </mover> <mo>)</mo> </mrow> <mi>f</mi> <mo>&amp;rsqb;</mo> <mo>&amp;rsqb;</mo> </mrow> <mrow><msubsup><mi>C</mi><mi>x</mi><msub><mi>&amp;delta;</mi><mi>a</mi></msub></msubsup><mo>=</mo><mfrac><mn>1</mn><mn>2</mn></mfrac><mo>&amp;lsqb;</mo><mi>n</mi><mfrac><mrow><mo>(</mo><msub><mi>&amp;eta;</mi><mi>k</mi></msub><mo>+</mo><mn>1</mn><mo>)</mo><msup><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mover><mi>D</mi><mo>&amp;OverBar;</mo></mover><mo>)</mo></mrow><mn>2</mn></msup></mrow><mrow><msub><mi>&amp;eta;</mi><mi>k</mi></msub><mo>+</mo><mn>1</mn><mo>-</mo><mn>2</mn><mover><mi>D</mi><mo>&amp;OverBar;</mo></mover></mrow></mfrac><mo>&amp;lsqb;</mo><mover><mi>D</mi><mo>&amp;OverBar;</mo></mover><mo>+</mo><mrow><mo>(</mo><mn>1</mn><mo>-</mo><mover><mi>D</mi><mo>&amp;OverBar;</mo></mover><mo>)</mo></mrow><mi>f</mi><mo>&amp;rsqb;</mo><mo>&amp;rsqb;</mo></mrow> 其中,为方向舵偏转引起的三通道力矩系数变化增量系数,为右升降副翼舵偏转引起的三通道力矩系数变化增量系数,Scwr,Scw表示为方向舵面积与垂尾面积;S,L参考面积和参考长度;ycwr方向舵面心到纵轴的距离;χ为后掠角;ξ为修正因子;满足Scwr≤S,Scw≤S,ycwr≤L,0<ξ≤1,0<cosχ≤1;n是副翼的相对执行效率;ηk,分别为外露翼的跟梢比和茎展比;f外露翼与根稍比;舵面协调策略设计为δa=Eδr,0<E≤1,E为方向舵与右升降副翼舵的耦合度。in, is the incremental coefficient of the three-channel moment coefficient change caused by the rudder deflection, is the three-channel moment coefficient change increment coefficient caused by the right elevon rudder deflection, S cwr , S cw are expressed as rudder area and vertical tail area; S, L reference area and reference length; Distance; χ is the sweep angle; ξ is the correction factor; satisfy S cwr ≤ S, S cw ≤ S, y cwr ≤ L, 0<ξ≤1, 0<cosχ≤1; n is the relative execution efficiency of the aileron; η k , are the heel-to-tip ratio and stem-to-span ratio of the exposed wing, respectively; f is the ratio of the exposed wing to the root; the coordination strategy of the rudder surface is designed as δ a = Eδ r , 0<E≤1, and E is the coupling degree of the rudder and the right elevon rudder. 3.根据权利要求1所述的基于协调因子的高超声速飞行器姿态运动协调控制方法,其特征在于,所述步骤2)的具体过程如下步骤:3. the hypersonic vehicle attitude-motion coordinated control method based on coordination factor according to claim 1, is characterized in that, described step 2) the concrete process following steps: 步骤2-1)引入不确定参数向量Step 2-1) Introduce uncertain parameter vector 通过引入不确定参数向量,将步骤1-1)中的系统模型表示为By introducing an uncertain parameter vector, the system model in step 1-1) is expressed as <mrow> <mover> <mi>&amp;Omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>+</mo> <msup> <mi>&amp;Psi;</mi> <mi>T</mi> </msup> <msub> <mi>&amp;theta;</mi> <mi>&amp;Omega;</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>s</mi> </msub> <mi>&amp;omega;</mi> </mrow> <mrow><mover><mi>&amp;Omega;</mi><mo>&amp;CenterDot;</mo></mover><mo>=</mo><msub><mi>f</mi><mn>1</mn></msub><mo>+</mo><msup><mi>&amp;Psi;</mi><mi>T</mi></msup><msub><mi>&amp;theta;</mi><mi>&amp;Omega;</mi></msub><mo>+</mo><msub><mi>g</mi><mi>s</mi></msub><mi>&amp;omega;</mi></mrow> <mrow> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msup> <mi>&amp;Xi;</mi> <mi>T</mi> </msup> <msub> <mi>&amp;theta;</mi> <mi>&amp;omega;</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>f</mi> </msub> <msub> <mi>M</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>D</mi> </mrow> <mrow><mover><mi>&amp;omega;</mi><mo>&amp;CenterDot;</mo></mover><mo>=</mo><msup><mi>&amp;Xi;</mi><mi>T</mi></msup><msub><mi>&amp;theta;</mi><mi>&amp;omega;</mi></msub><mo>+</mo><msub><mi>g</mi><mi>f</mi></msub><msub><mi>M</mi><mi>c</mi></msub><mo>+</mo><mi>D</mi></mrow> 其中,D代表外部干扰,Among them, D stands for external disturbance, <mrow> <msub> <mi>&amp;theta;</mi> <mi>&amp;Omega;</mi> </msub> <mo>=</mo> <msubsup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>&amp;theta;</mi> <mn>1</mn> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&amp;theta;</mi> <mn>2</mn> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&amp;theta;</mi> <mn>3</mn> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mrow> <mn>4</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> <mo>,</mo> <msub> <mi>&amp;theta;</mi> <mi>&amp;omega;</mi> </msub> <mo>=</mo> <msubsup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msubsup> <mi>&amp;theta;</mi> <mn>4</mn> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&amp;theta;</mi> <mn>5</mn> <mi>T</mi> </msubsup> </mtd> <mtd> <msubsup> <mi>&amp;theta;</mi> <mn>6</mn> <mi>T</mi> </msubsup> </mtd> </mtr> </mtable> </mfenced> <mrow> <mn>17</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> <mi>T</mi> </msubsup> </mrow> <mrow><msub><mi>&amp;theta;</mi><mi>&amp;Omega;</mi></msub><mo>=</mo><msubsup><mfenced open = "[" close = "]"><mtable><mtr><mtd><msubsup><mi>&amp;theta;</mi><mn>1</mn><mi>T</mi></msubsup></mtd><mtd><msubsup><mi>&amp;theta;</mi><mn>2</mn><mi>T</mi></msubsup></mtd><mtd><msubsup><mi>&amp;theta;</mi><mn>3</mn><mi>T</mi></msubsup></mtd></mtr></mtable></mfenced><mrow><mn>4</mn><mo>&amp;times;</mo><mn>1</mn></mrow><mi>T</mi></msubsup><mo>,</mo><msub><mi>&amp;theta;</mi><mi>&amp;omega;</mi></msub><mo>=</mo><msubsup><mfenced open = "[" close = "]"><mtable><mtr><mtd><msubsup><mi>&amp;theta;</mi><mn>4</mn><mi>T</mi></msubsup></mtd><mtd><msubsup><mi>&amp;theta;</mi><mn>5</mn><mi>T</mi></msubsup></mtd><mtd><msubsup><mi>&amp;theta;</mi><mn>6</mn><mi>T</mi></msubsup></mtd></mtr></mtable></mfenced><mrow><mn>17</mn><mo>&amp;times;</mo><mn>1</mn></mrow><mi>T</mi></msubsup></mrow> θ1=CL,α2=CY,β3=[CY,β CL,α]T,θ 1CL,α2 =C Y,β3 =[C Y,β C L,α ] T , <mrow> <msub> <mi>&amp;theta;</mi> <mn>4</mn> </msub> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mrow> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>C</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>&amp;beta;</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>C</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>C</mi> <mrow> <mi>n</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>C</mi> <mrow> <mi>Y</mi> <mo>,</mo> <mi>&amp;beta;</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> <mrow><msub><mi>&amp;theta;</mi><mn>4</mn></msub><mo>=</mo><msup><mfenced open = "[" close = "]"><mtable><mtr><mtd><mfrac><mrow><msub><mi>I</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub><mo>-</mo><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub></mrow><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mover><mi>I</mi><mo>&amp;CenterDot;</mo></mover><mrow><mi>z</mi><mi>z</mi></mrow></msub><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mi>C</mi><mrow><mi>n</mi><mo>,</mo><mi>&amp;beta;</mi></mrow></msub><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mi>C</mi><mrow><mi>n</mi><mo>,</mo><mi>p</mi></mrow></msub><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mi>C</mi><mrow><mi>n</mi><mo>,</mo><mi>r</mi></mrow></msub><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mi>C</mi><mrow><mi>Y</mi><mo>,</mo><mi>&amp;beta;</mi></mrow></msub><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub></mfrac></mtd></mtr></mtable></mfenced><mi>T</mi></msup><mo>,</mo></mrow> <mrow> <msub> <mi>&amp;theta;</mi> <mn>5</mn> </msub> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mrow> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>C</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>&amp;alpha;</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>C</mi> <mrow> <mi>m</mi> <mo>,</mo> <mi>q</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>C</mi> <mrow> <mi>D</mi> <mo>,</mo> <mi>&amp;alpha;</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>C</mi> <mrow> <mi>L</mi> <mo>,</mo> <mi>&amp;alpha;</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> <mrow><msub><mi>&amp;theta;</mi><mn>5</mn></msub><mo>=</mo><msup><mfenced open = "[" close = "]"><mtable><mtr><mtd><mfrac><mrow><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub><mo>-</mo><msub><mi>I</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub></mrow><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mover><mi>I</mi><mo>&amp;CenterDot;</mo></mover><mrow><mi>y</mi><mi>y</mi></mrow></msub><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mi>C</mi><mrow><mi>m</mi><mo>,</mo><mi>&amp;alpha;</mi></mrow></msub><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mi>C</mi><mrow><mi>m</mi><mo>,</mo><mi>q</mi></mrow></msub><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mi>C</mi><mrow><mi>D</mi><mo>,</mo><mi>&amp;alpha;</mi></mrow></msub><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mi>C</mi><mrow><mi>L</mi><mo>,</mo><mi>&amp;alpha;</mi></mrow></msub><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub></mfrac></mtd></mtr></mtable></mfenced><mi>T</mi></msup><mo>,</mo></mrow> <mrow> <msub> <mi>&amp;theta;</mi> <mn>6</mn> </msub> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <msub> <mi>I</mi> <mrow> <mi>y</mi> <mi>y</mi> </mrow> </msub> <mo>-</mo> <msub> <mi>I</mi> <mrow> <mi>z</mi> <mi>z</mi> </mrow> </msub> </mrow> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mover> <mi>I</mi> <mo>&amp;CenterDot;</mo> </mover> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>&amp;beta;</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>p</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mfrac> </mtd> <mtd> <mfrac> <msub> <mi>C</mi> <mrow> <mi>l</mi> <mo>,</mo> <mi>r</mi> </mrow> </msub> <msub> <mi>I</mi> <mrow> <mi>x</mi> <mi>x</mi> </mrow> </msub> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> <mrow><msub><mi>&amp;theta;</mi><mn>6</mn></msub><mo>=</mo><msup><mfenced open = "[" close = "]"><mtable><mtr><mtd><mfrac><mrow><msub><mi>I</mi><mrow><mi>y</mi><mi>y</mi></mrow></msub><mo>-</mo><msub><mi>I</mi><mrow><mi>z</mi><mi>z</mi></mrow></msub></mrow><msub><mi>I</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mover><mi>I</mi><mo>&amp;CenterDot;</mo></mover><mrow><mi>x</mi><mi>x</mi></mrow></msub><msub><mi>I</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mi>C</mi><mrow><mi>l</mi><mo>,</mo><mi>&amp;beta;</mi></mrow></msub><msub><mi>I</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mi>C</mi><mrow><mi>l</mi><mo>,</mo><mi>p</mi></mrow></msub><msub><mi>I</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub></mfrac></mtd><mtd><mfrac><msub><mi>C</mi><mrow><mi>l</mi><mo>,</mo><mi>r</mi></mrow></msub><msub><mi>I</mi><mrow><mi>x</mi><mi>x</mi></mrow></msub></mfrac></mtd></mtr></mtable></mfenced><mi>T</mi></msup><mo>,</mo></mrow> <mrow> <mi>&amp;Psi;</mi> <mo>=</mo> <msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;Psi;</mi> <mn>1</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <mn>0</mn> </mtd> <mtd> <msub> <mi>&amp;psi;</mi> <mn>2</mn> </msub> </mtd> <mtd> <mn>0</mn> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>2</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>2</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>&amp;Psi;</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mrow> <mn>4</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> <mo>,</mo> <mi>&amp;Xi;</mi> <mo>=</mo> <msub> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <msub> <mi>&amp;Xi;</mi> <mn>1</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>5</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>5</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>6</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>&amp;Xi;</mi> <mn>2</mn> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>6</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mn>0</mn> <mrow> <mn>6</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mn>0</mn> <mrow> <mn>6</mn> <mo>&amp;times;</mo> <mn>1</mn> </mrow> </msub> </mtd> <mtd> <msub> <mi>&amp;Xi;</mi> <mn>3</mn> </msub> </mtd> </mtr> </mtable> </mfenced> <mrow> <mn>17</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> </mrow> <mrow><mi>&amp;Psi;</mi><mo>=</mo><msub><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>&amp;Psi;</mi><mn>1</mn></msub></mtd><mtd><mn>0</mn></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><mn>0</mn></mtd><mtd><msub><mi>&amp;psi;</mi><mn>2</mn></msub></mtd><mtd><mn>0</mn></mtd></mtr><mtr><mtd><msub><mn>0</mn><mrow><mn>2</mn><mo>&amp;times;</mo><mn>1</mn></mrow></msub></mtd><mtd><msub><mn>0</mn><mrow><mn>2</mn><mo>&amp;times;</mo><mn>1</mn></mrow></msub></mtd><mtd><msub><mi>&amp;Psi;</mi><mn>3</mn></msub></mtd></mtr></mtable></mfenced><mrow><mn>4</mn><mo>&amp;times;</mo><mn>3</mn></mrow></msub><mo>,</mo><mi>&amp;Xi;</mi><mo>=</mo><msub><mfenced open = "[" close = "]"><mtable><mtr><mtd><msub><mi>&amp;Xi;</mi><mn>1</mn></msub></mtd><mtd><msub><mn>0</mn><mrow><mn>5</mn><mo>&amp;times;</mo><mn>1</mn></mrow></msub></mtd><mtd><msub><mn>0</mn><mrow><mn>5</mn><mo>&amp;times;</mo><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><mn>0</mn><mrow><mn>6</mn><mo>&amp;times;</mo><mn>1</mn></mrow></msub></mtd><mtd><msub><mi>&amp;Xi;</mi><mn>2</mn></msub></mtd><mtd><msub><mn>0</mn><mrow><mn>6</mn><mo>&amp;times;</mo><mn>1</mn></mrow></msub></mtd></mtr><mtr><mtd><msub><mn>0</mn><mrow><mn>6</mn><mo>&amp;times;</mo><mn>1</mn></mrow></msub></mtd><mtd><msub><mn>0</mn><mrow><mn>6</mn><mo>&amp;times;</mo><mn>1</mn></mrow></msub></mtd><mtd><msub><mi>&amp;Xi;</mi><mn>3</mn></msub></mtd></mtr></mtable></mfenced><mrow><mn>17</mn><mo>&amp;times;</mo><mn>3</mn></mrow></msub></mrow> <mrow> <msub> <mi>&amp;Psi;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> </mrow> <mrow> <mi>M</mi> <mi>V</mi> <mi> </mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> </mfrac> <mo>,</mo> <msub> <mi>&amp;Psi;</mi> <mn>2</mn> </msub> <mo>=</mo> <mo>-</mo> <mfrac> <mrow> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi>&amp;beta;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mrow> <mi>M</mi> <mi>V</mi> </mrow> </mfrac> <mo>,</mo> </mrow> 4 <mrow><msub><mi>&amp;Psi;</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>-</mo><mfrac><mrow><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi></mrow><mrow><mi>M</mi><mi>V</mi><mi></mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;beta;</mi></mrow></mfrac><mo>,</mo><msub><mi>&amp;Psi;</mi><mn>2</mn></msub><mo>=</mo><mo>-</mo><mfrac><mrow><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi>&amp;beta;</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;beta;</mi></mrow><mrow><mi>M</mi><mi>V</mi></mrow></mfrac><mo>,</mo></mrow> 4 <mrow> <msub> <mi>&amp;Psi;</mi> <mn>3</mn> </msub> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi>&amp;beta;</mi> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>&amp;gamma;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;mu;</mi> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mi>&amp;beta;</mi> </mrow> <mrow> <mi>M</mi> <mi>V</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mrow> <mo>(</mo> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>&amp;gamma;</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mi>&amp;mu;</mi> <mo>+</mo> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mi>&amp;beta;</mi> <mo>)</mo> </mrow> </mrow> <mrow> <mi>M</mi> <mi>V</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> <mrow><msub><mi>&amp;Psi;</mi><mn>3</mn></msub><mo>=</mo><msup><mfenced open = "[" close = "]"><mtable><mtr><mtd><mfrac><mrow><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi>&amp;beta;</mi><mi>t</mi><mi>a</mi><mi>n</mi><mi>&amp;gamma;</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;mu;</mi><mi>c</mi><mi>o</mi><mi>s</mi><mi>&amp;beta;</mi></mrow><mrow><mi>M</mi><mi>V</mi></mrow></mfrac></mtd><mtd><mfrac><mrow><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mrow><mo>(</mo><mi>t</mi><mi>a</mi><mi>n</mi><mi>&amp;gamma;</mi><mi>s</mi><mi>i</mi><mi>n</mi><mi>&amp;mu;</mi><mo>+</mo><mi>t</mi><mi>a</mi><mi>n</mi><mi>&amp;beta;</mi><mo>)</mo></mrow></mrow><mrow><mi>M</mi><mi>V</mi></mrow></mfrac></mtd></mtr></mtable></mfenced><mi>T</mi></msup></mrow> <mrow> <msub> <mi>&amp;Xi;</mi> <mn>1</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>q</mi> <mi>r</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>p</mi> </mrow> </mtd> <mtd> <mrow> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi>b</mi> <mi>&amp;beta;</mi> </mrow> </mtd> <mtd> <mfrac> <mrow> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msup> <mi>Sb</mi> <mn>2</mn> </msup> <mi>p</mi> </mrow> <mrow> <mn>2</mn> <mi>V</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msup> <mi>Sb</mi> <mn>2</mn> </msup> <mi>r</mi> </mrow> <mrow> <mn>2</mn> <mi>V</mi> </mrow> </mfrac> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> <mo>,</mo> </mrow> <mrow><msub><mi>&amp;Xi;</mi><mn>1</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mfenced open = "[" close = "]"><mtable><mtr><mtd><mrow><mi>q</mi><mi>r</mi></mrow></mtd><mtd><mrow><mo>-</mo><mi>p</mi></mrow></mtd><mtd><mrow><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi>b</mi><mi>&amp;beta;</mi></mrow></mtd><mtd><mfrac><mrow><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msup><mi>Sb</mi><mn>2</mn></msup><mi>p</mi></mrow><mrow><mn>2</mn><mi>V</mi></mrow></mfrac></mtd><mtd><mfrac><mrow><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msup><mi>Sb</mi><mn>2</mn></msup><mi>r</mi></mrow><mrow><mn>2</mn><mi>V</mi></mrow></mfrac></mtd></mtr></mtable></mfenced><mi>T</mi></msup><mo>,</mo></mrow> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;Xi;</mi> <mn>2</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <mo>&amp;lsqb;</mo> <mtable> <mtr> <mtd> <mrow> <mi>p</mi> <mi>r</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>q</mi> </mrow> </mtd> <mtd> <mrow> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi>c</mi> </mrow> </mtd> </mtr> </mtable> </mrow> </mtd> </mtr> <mtr> <mtd> <mtable> <mtr> <mtd> <mfrac> <mrow> <msup> <mi>qSc</mi> <mn>2</mn> </msup> <mi>q</mi> </mrow> <mrow> <mn>2</mn> <mi>V</mi> </mrow> </mfrac> </mtd> <mtd> <mrow> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>g</mi> </mrow> </msub> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi> </mi> <mi>sin</mi> <mi>&amp;alpha;</mi> </mrow> </mtd> <mtd> <mrow> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>g</mi> </mrow> </msub> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi> </mi> <mi>cos</mi> <mi>&amp;alpha;</mi> <msup> <mo>&amp;rsqb;</mo> <mi>T</mi> </msup> </mrow> </mtd> </mtr> </mtable> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><msub><mi>&amp;Xi;</mi><mn>2</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><mo>&amp;lsqb;</mo><mtable><mtr><mtd><mrow><mi>p</mi><mi>r</mi></mrow></mtd><mtd><mrow><mo>-</mo><mi>q</mi></mrow></mtd><mtd><mrow><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi>c</mi></mrow></mtd></mtr></mtable></mrow></mtd></mtr><mtr><mtd><mtable><mtr><mtd><mfrac><mrow><msup><mi>qSc</mi><mn>2</mn></msup><mi>q</mi></mrow><mrow><mn>2</mn><mi>V</mi></mrow></mfrac></mtd><mtd><mrow><msub><mi>X</mi><mrow><mi>c</mi><mi>g</mi></mrow></msub><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi></mi><mi>sin</mi><mi>&amp;alpha;</mi></mrow></mtd><mtd><mrow><msub><mi>X</mi><mrow><mi>c</mi><mi>g</mi></mrow></msub><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi></mi><mi>cos</mi><mi>&amp;alpha;</mi><msup><mo>&amp;rsqb;</mo><mi>T</mi></msup></mrow></mtd></mtr></mtable></mtd></mtr></mtable></mfenced> <mrow> <msub> <mi>&amp;Xi;</mi> <mn>3</mn> </msub> <mrow> <mo>(</mo> <mi>x</mi> <mo>)</mo> </mrow> <mo>=</mo> <msup> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>p</mi> <mi>q</mi> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>r</mi> </mrow> </mtd> <mtd> <mrow> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi>b</mi> <mi>&amp;beta;</mi> </mrow> </mtd> <mtd> <mfrac> <mrow> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msup> <mi>Sb</mi> <mn>2</mn> </msup> <mi>p</mi> </mrow> <mrow> <mn>2</mn> <mi>V</mi> </mrow> </mfrac> </mtd> <mtd> <mfrac> <mrow> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <msup> <mi>Sb</mi> <mn>2</mn> </msup> <mi>r</mi> </mrow> <mrow> <mn>2</mn> <mi>V</mi> </mrow> </mfrac> </mtd> <mtd> <mrow> <msub> <mi>X</mi> <mrow> <mi>c</mi> <mi>g</mi> </mrow> </msub> <mover> <mi>q</mi> <mo>&amp;OverBar;</mo> </mover> <mi>S</mi> <mi>&amp;beta;</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mi>T</mi> </msup> </mrow> <mrow><msub><mi>&amp;Xi;</mi><mn>3</mn></msub><mrow><mo>(</mo><mi>x</mi><mo>)</mo></mrow><mo>=</mo><msup><mfenced open = "[" close = "]"><mtable><mtr><mtd><mrow><mi>p</mi><mi>q</mi></mrow></mtd><mtd><mrow><mo>-</mo><mi>r</mi></mrow></mtd><mtd><mrow><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi>b</mi><mi>&amp;beta;</mi></mrow></mtd><mtd><mfrac><mrow><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msup><mi>Sb</mi><mn>2</mn></msup><mi>p</mi></mrow><mrow><mn>2</mn><mi>V</mi></mrow></mfrac></mtd><mtd><mfrac><mrow><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><msup><mi>Sb</mi><mn>2</mn></msup><mi>r</mi></mrow><mrow><mn>2</mn><mi>V</mi></mrow></mfrac></mtd><mtd><mrow><msub><mi>X</mi><mrow><mi>c</mi><mi>g</mi></mrow></msub><mover><mi>q</mi><mo>&amp;OverBar;</mo></mover><mi>S</mi><mi>&amp;beta;</mi></mrow></mtd></mtr></mtable></mfenced><mi>T</mi></msup></mrow> <mrow> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mfrac> <mrow> <mi>g</mi> <mi> </mi> <mi>cos</mi> <mi>&amp;gamma;</mi> <mi>cos</mi> <mi> </mi> <mi>u</mi> </mrow> <mrow> <mi>V</mi> <mi> </mi> <mi>cos</mi> <mi>&amp;beta;</mi> </mrow> </mfrac> </mtd> </mtr> <mtr> <mtd> <mfrac> <mrow> <mi>g</mi> <mi> </mi> <mi>cos</mi> <mi>&amp;gamma;</mi> <mi>sin</mi> <mi> </mi> <mi>u</mi> </mrow> <mi>V</mi> </mfrac> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mfrac> <mrow> <mi>g</mi> <mi> </mi> <mi>cos</mi> <mi>&amp;gamma;</mi> <mi>cos</mi> <mi> </mi> <mi>u</mi> <mi> </mi> <mi>tan</mi> <mi>&amp;beta;</mi> </mrow> <mi>V</mi> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> <mrow><msub><mi>f</mi><mn>1</mn></msub><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><mfrac><mrow><mi>g</mi><mi></mi><mi>cos</mi><mi>&amp;gamma;</mi><mi>cos</mi><mi></mi><mi>u</mi></mrow><mrow><mi>V</mi><mi></mi><mi>cos</mi><mi>&amp;beta;</mi></mrow></mfrac></mtd></mtr><mtr><mtd><mfrac><mrow><mi>g</mi><mi></mi><mi>cos</mi><mi>&amp;gamma;</mi><mi>sin</mi><mi></mi><mi>u</mi></mrow><mi>V</mi></mfrac></mtd></mtr><mtr><mtd><mrow><mo>-</mo><mfrac><mrow><mi>g</mi><mi></mi><mi>cos</mi><mi>&amp;gamma;</mi><mi>cos</mi><mi></mi><mi>u</mi><mi></mi><mi>tan</mi><mi>&amp;beta;</mi></mrow><mi>V</mi></mfrac></mrow></mtd></mtr></mtable></mfenced></mrow> 其中CL,α,CY,β,CY,β,CL,α,Cn,β,Cn,p,Cn,r,Cm,α,Cm,q,CD,α,Cl,β,Cl,r,Cl,p为飞行器气动参数;where C L,α , C Y,β , C Y,β , C L,α , C n,β , C n,p , C n,r , C m,α , C m,q , C D,α , C l,β , C l,r , C l,p are the aerodynamic parameters of the aircraft; 步骤2-2)投影映射算法Step 2-2) Projection Mapping Algorithm ΘΩω分别表示为不确定参数向量θΩω的界,表述为:Θ Ω , Θ ω are denoted as the bounds of uncertain parameter vectors θ Ω , θ ω respectively, expressed as: ΘΩ={θΩ∈R4Ωi min≤θΩi≤θΩi max,i=1,…,4},Θ Ω ={θ Ω ∈ R 4Ωi min ≤θ Ωi ≤θ Ωi max ,i=1,…,4}, Θω={θω∈R17ωimin≤θωi≤θωimax,i=1,…,17}Θ ω ={θ ω ∈ R 17ωimin ≤θ ωi ≤θ ωimax ,i=1,…,17} 其中θΩi,θΩi min,θΩi max为慢回路状态变量的分量、分量的最小值与分量的最大值,θωi,θωi min,θωi max为快回路状态变量的分量、分量的最小值与分量的最大值;令表示为θΩ的估计值,表示估计误差,θω类似于θΩ,根据投影映射算法,不确定参数的自适应律为Among them, θ Ωi , θ Ωi min , θ Ωi max are the components of the slow loop state variable, the minimum value of the component and the maximum value of the component, θ ωi , θ ωi min , θ ωi max are the components of the fast loop state variable, the minimum value of the component The maximum value and component; let Expressed as an estimate of θ Ω , Represents the estimation error, θ ω is similar to θ Ω , according to the projection mapping algorithm, the adaptive law of uncertain parameters is <mrow> <msub> <mover> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mi>&amp;Omega;</mi> </msub> <mo>=</mo> <msub> <mi>Proj</mi> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> </msub> <mrow> <mo>(</mo> <mi>&amp;Gamma;</mi> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> </mrow> <mrow><msub><mover><mover><mi>&amp;theta;</mi><mo>^</mo></mover><mo>&amp;CenterDot;</mo></mover><mi>&amp;Omega;</mi></msub><mo>=</mo><msub><mi>Proj</mi><mover><mi>&amp;theta;</mi><mo>^</mo></mover></msub><mrow><mo>(</mo><mi>&amp;Gamma;</mi><mi>&amp;tau;</mi><mo>)</mo></mrow></mrow> <mrow> <msub> <mover> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mo>&amp;CenterDot;</mo> </mover> <mi>&amp;omega;</mi> </msub> <mo>=</mo> <msub> <mi>Proj</mi> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> </msub> <mrow> <mo>(</mo> <mi>&amp;Gamma;</mi> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> </mrow> <mrow><msub><mover><mover><mi>&amp;theta;</mi><mo>^</mo></mover><mo>&amp;CenterDot;</mo></mover><mi>&amp;omega;</mi></msub><mo>=</mo><msub><mi>Proj</mi><mover><mi>&amp;theta;</mi><mo>^</mo></mover></msub><mrow><mo>(</mo><mi>&amp;Gamma;</mi><mi>&amp;tau;</mi><mo>)</mo></mrow></mrow> 其中 分别为快、慢回路自适应函数,Γ>0为对角阵,τ为自适应函数,投影算子定义为in are fast and slow loop adaptive functions respectively, Γ>0 is a diagonal matrix, τ is an adaptive function, and the projection operator defined as 其中θimax,θimin为状态变量的估计值分量、状态变量分量的最大值与状态变量分量的的最小值显然,对于自适应函数τ,in θ imax , θ imin is the estimated value component of the state variable, the maximum value of the state variable component and the minimum value of the state variable component Obviously, for the adaptive function τ, <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mn>1</mn> </msub> </mtd> <mtd> <mrow> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mo>&amp;Subset;</mo> <mi>&amp;Theta;</mi> <mo>=</mo> <mo>{</mo> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mo>|</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> </msub> <mo>&amp;le;</mo> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mo>&amp;le;</mo> <msub> <mi>&amp;theta;</mi> <mrow> <mi>m</mi> <mi>a</mi> <mi>x</mi> </mrow> </msub> <mo>}</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><msub><mi>P</mi><mn>1</mn></msub></mtd><mtd><mrow><mover><mi>&amp;theta;</mi><mo>^</mo></mover><mo>&amp;Subset;</mo><mi>&amp;Theta;</mi><mo>=</mo><mo>{</mo><mover><mi>&amp;theta;</mi><mo>^</mo></mover><mo>|</mo><msub><mi>&amp;theta;</mi><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow></msub><mo>&amp;le;</mo><mover><mi>&amp;theta;</mi><mo>^</mo></mover><mo>&amp;le;</mo><msub><mi>&amp;theta;</mi><mrow><mi>m</mi><mi>a</mi><mi>x</mi></mrow></msub><mo>}</mo></mrow></mtd></mtr></mtable></mfenced> <mrow> <mtable> <mtr> <mtd> <msub> <mi>P</mi> <mn>2</mn> </msub> </mtd> <mtd> <mrow> <msup> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>T</mi> </msup> <mrow> <mo>(</mo> <msup> <mi>&amp;Gamma;</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <msub> <mi>Proj</mi> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> </msub> <mo>(</mo> <mrow> <mi>&amp;Gamma;</mi> <mi>&amp;tau;</mi> </mrow> <mo>)</mo> <mo>-</mo> <mi>&amp;tau;</mi> <mo>)</mo> </mrow> <mo>&amp;le;</mo> <mn>0</mn> <mo>,</mo> <mo>&amp;ForAll;</mo> <mi>&amp;tau;</mi> </mrow> </mtd> </mtr> </mtable> <mo>.</mo> </mrow> <mrow><mtable><mtr><mtd><msub><mi>P</mi><mn>2</mn></msub></mtd><mtd><mrow><msup><mover><mi>&amp;theta;</mi><mo>~</mo></mover><mi>T</mi></msup><mrow><mo>(</mo><msup><mi>&amp;Gamma;</mi><mrow><mo>-</mo><mn>1</mn></mrow></msup><msub><mi>Proj</mi><mover><mi>&amp;theta;</mi><mo>^</mo></mover></msub><mo>(</mo><mrow><mi>&amp;Gamma;</mi><mi>&amp;tau;</mi></mrow><mo>)</mo><mo>-</mo><mi>&amp;tau;</mi><mo>)</mo></mrow><mo>&amp;le;</mo><mn>0</mn><mo>,</mo><mo>&amp;ForAll;</mo><mi>&amp;tau;</mi></mrow></mtd></mtr></mtable><mo>.</mo></mrow> 其中为自适应估计值,θmin,θmax为估计最小值与最大值,为估计误差转置,Γ-1为参数对角矩阵的逆,Γ为设计参数;in is the adaptive estimated value, θ min and θ max are the estimated minimum and maximum values, For the estimated error transposition, Γ -1 is the inverse of the parameter diagonal matrix, and Γ is the design parameter; 步骤2-3)姿态角鲁棒控制器设计Step 2-3) Attitude Angle Robust Controller Design 定义跟踪误差e1=Ω-Ωc,滑模函数设计为Define the tracking error e 1 =Ω-Ω c , the sliding mode function is designed as <mrow> <mi>&amp;sigma;</mi> <mo>=</mo> <msub> <mi>e</mi> <mn>1</mn> </msub> <mo>+</mo> <mi>K</mi> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </msubsup> <msub> <mi>e</mi> <mn>1</mn> </msub> <mi>d</mi> <mi>t</mi> </mrow> <mrow><mi>&amp;sigma;</mi><mo>=</mo><msub><mi>e</mi><mn>1</mn></msub><mo>+</mo><mi>K</mi><msubsup><mo>&amp;Integral;</mo><mn>0</mn><mi>t</mi></msubsup><msub><mi>e</mi><mn>1</mn></msub><mi>d</mi><mi>t</mi></mrow> 其中,K=diag{K1,K2,K3},Ki>0,i=1,2,3,表示设计参数,σ为滑模函数,对滑模函数求一阶导数得到Among them, K=diag{K 1 , K 2 ,K 3 }, K i >0, i=1, 2, 3, which represent the design parameters, σ is the sliding mode function, and the first order derivative of the sliding mode function is obtained <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>&amp;sigma;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>=</mo> <msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>Ke</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>+</mo> <msup> <mi>&amp;Psi;</mi> <mi>T</mi> </msup> <msub> <mi>&amp;theta;</mi> <mi>&amp;Omega;</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>s</mi> </msub> <mi>&amp;omega;</mi> <mo>-</mo> <msub> <mover> <mi>&amp;Omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>Ke</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <msub> <mi>f</mi> <mn>1</mn> </msub> <mo>+</mo> <msup> <mi>&amp;Psi;</mi> <mi>T</mi> </msup> <msub> <mi>&amp;theta;</mi> <mi>&amp;Omega;</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>s</mi> </msub> <mrow> <mo>(</mo> <msub> <mi>e</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>&amp;omega;</mi> <mi>c</mi> </msub> <mo>)</mo> </mrow> <mo>-</mo> <msub> <mover> <mi>&amp;Omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>c</mi> </msub> <mo>+</mo> <msub> <mi>Ke</mi> <mn>1</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><mover><mi>&amp;sigma;</mi><mo>&amp;CenterDot;</mo></mover><mo>=</mo><msub><mover><mi>e</mi><mo>&amp;CenterDot;</mo></mover><mn>1</mn></msub><mo>+</mo><msub><mi>Ke</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><msub><mi>f</mi><mn>1</mn></msub><mo>+</mo><msup><mi>&amp;Psi;</mi><mi>T</mi></msup><msub><mi>&amp;theta;</mi><mi>&amp;Omega;</mi></msub><mo>+</mo><msub><mi>g</mi><mi>s</mi></msub><mi>&amp;omega;</mi><mo>-</mo><msub><mover><mi>&amp;Omega;</mi><mo>&amp;CenterDot;</mo></mover><mi>c</mi></msub><mo>+</mo><msub><mi>Ke</mi><mn>1</mn></msub></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><msub><mi>f</mi><mn>1</mn></msub><mo>+</mo><msup><mi>&amp;Psi;</mi><mi>T</mi></msup><msub><mi>&amp;theta;</mi><mi>&amp;Omega;</mi></msub><mo>+</mo><msub><mi>g</mi><mi>s</mi></msub><mrow><mo>(</mo><msub><mi>e</mi><mn>2</mn></msub><mo>+</mo><msub><mi>&amp;omega;</mi><mi>c</mi></msub><mo>)</mo></mrow><mo>-</mo><msub><mover><mi>&amp;Omega;</mi><mo>&amp;CenterDot;</mo></mover><mi>c</mi></msub><mo>+</mo><msub><mi>Ke</mi><mn>1</mn></msub></mrow></mtd></mtr></mtable></mfenced> 求得 的自适应律为其中,κ1>0,Γ1∈R4×4Ω=diag{λ1234}>0为控制器参数,gs,f1,Ψ为系统系数矩阵,ΨT为Ψ的转置矩阵,e1为误差,慢回路跟踪指令的导数,为慢回路状态变量的估计值,为估计误差,δ为滑模函数;obtain The adaptive law of Among them, κ 1 >0, Γ 1 ∈R 4×4 , λ Ω =diag{λ 1234 }>0 are the controller parameters, g s , f 1 , Ψ are the system coefficient matrix , Ψ T is the transpose matrix of Ψ, e 1 is the error, The slow loop follows the derivative of the instruction, is the estimated value of the slow loop state variable, is the estimation error, δ is the sliding mode function; 步骤2-4)姿态角速率控制器设计Step 2-4) Attitude Angle Rate Controller Design 定义误差e2=ω-ωc,对误差求导得Define the error e 2 =ω-ω c , and derive the error <mrow> <msub> <mover> <mi>e</mi> <mo>&amp;CenterDot;</mo> </mover> <mn>2</mn> </msub> <mo>=</mo> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mo>-</mo> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>c</mi> </msub> <mo>=</mo> <msup> <mi>&amp;Xi;</mi> <mi>T</mi> </msup> <msub> <mi>&amp;theta;</mi> <mi>&amp;omega;</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>f</mi> </msub> <msub> <mi>M</mi> <mi>c</mi> </msub> <mo>+</mo> <mi>D</mi> <mo>-</mo> <msub> <mover> <mi>&amp;omega;</mi> <mo>&amp;CenterDot;</mo> </mover> <mi>c</mi> </msub> </mrow> <mrow><msub><mover><mi>e</mi><mo>&amp;CenterDot;</mo></mover><mn>2</mn></msub><mo>=</mo><mover><mi>&amp;omega;</mi><mo>&amp;CenterDot;</mo></mover><mo>-</mo><msub><mover><mi>&amp;omega;</mi><mo>&amp;CenterDot;</mo></mover><mi>c</mi></msub><mo>=</mo><msup><mi>&amp;Xi;</mi><mi>T</mi></msup><msub><mi>&amp;theta;</mi><mi>&amp;omega;</mi></msub><mo>+</mo><msub><mi>g</mi><mi>f</mi></msub><msub><mi>M</mi><mi>c</mi></msub><mo>+</mo><mi>D</mi><mo>-</mo><msub><mover><mi>&amp;omega;</mi><mo>&amp;CenterDot;</mi>mo></mover><mi>c</mi></msub></mrow> 虚拟控制器看成扰动,得出其中ΞT为系统快回路系统矩阵的转置;姿态角速率回路控制设计为其中为快回路系统状态矩阵gf的逆,ΞT为系统快回路系统矩阵的转置,θω为快回路状态变量,gf为系统状态矩阵,Mc为控制力矩,D为外界干扰,为慢回路控制器的导数,κ2为控制设计参数,为观测器输出,为慢回路状态系统矩阵的转置,通过观测器估计,定义观测误差 自适应律为其中κ2>0,Γ2∈R17×17>0,λω∈R17×17>0为控制器参数,为估计误差,观测器设计为virtual controller As a disturbance, we get in Ξ T is the transposition of the system fast loop system matrix; the attitude angle rate loop control design is in is the inverse of the fast loop system state matrix g f , Ξ T is the transposition of the system fast loop system matrix, θ ω is the fast loop state variable, g f is the system state matrix, M c is the control torque, D is the external disturbance, is the derivative of the slow loop controller, κ 2 is the control design parameter, and is the observed tor output, is the transpose of the slow loop state system matrix, Estimated by the observer, defining the observation error Adaptive law is Among them, κ 2 >0, Γ 2 ∈R 17×17 >0, λ ω ∈R 17×17 >0 are the controller parameters, To estimate the error, the observer is designed as <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mover> <mi>d</mi> <mo>^</mo> </mover> <mo>=</mo> <mi>z</mi> <mo>+</mo> <mi>Q</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mover> <mi>z</mi> <mo>&amp;CenterDot;&amp;CenterDot;</mo> </mover> <mo>=</mo> <mo>-</mo> <mi>L</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>)</mo> </mrow> <mi>z</mi> <mo>-</mo> <mi>L</mi> <mrow> <mo>(</mo> <mi>e</mi> <mo>)</mo> </mrow> <mrow> <mo>(</mo> <msup> <mi>&amp;Xi;</mi> <mi>T</mi> </msup> <msub> <mover> <mi>&amp;theta;</mi> <mo>^</mo> </mover> <mi>&amp;omega;</mi> </msub> <mo>+</mo> <msub> <mi>g</mi> <mi>f</mi> </msub> <mi>M</mi> <mo>+</mo> <mi>Q</mi> <mo>(</mo> <mi>e</mi> <mo>)</mo> </mrow> <mo>)</mo> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "{" close = ""><mtable><mtr><mtd><mrow><mover><mi>d</mi><mo>^</mo></mover><mo>=</mo><mi>z</mi><mo>+</mo><mi>Q</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow></mrow></mtd></mtr><mtr><mtd><mrow><mover><mi>z</mi><mo>&amp;CenterDot;&amp;CenterDot;</mo></mover><mo>=</mo><mo>-</mo><mi>L</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mi>z</mi><mo>-</mo><mi>L</mi><mrow><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mrow><mo>(</mo><msup><mi>&amp;Xi;</mi><mi>T</mi></msup><msub><mover><mi>&amp;theta;</mi><mo>^</mo></mover><mi>&amp;omega;</mi></mi>msub><mo>+</mo><msub><mi>g</mi><mi>f</mi></msub><mi>M</mi><mo>+</mo><mi>Q</mi><mo>(</mo><mi>e</mi><mo>)</mo></mrow><mo>)</mo></mrow></mtd></mtr></mtable></mfenced> 其中, in, q1(e),q2(e),...,qn(e)为观测器参数。q 1 (e), q 2 (e), . . . , q n (e) are observer parameters. 4.根据的权利要求1所述的基于协调因子的高超声速飞行器姿态运动协调控制方法,其特征在于,所述步骤3)的具体过程如下步骤:4. the hypersonic vehicle attitude motion coordination control method based on coordination factor according to claim 1, it is characterized in that, described step 3) the concrete process following steps: 有姿态角速率回路控制器Mc以及舵面分配矩阵g,协调力矩表示为Mc=gΓfδ·δ,其中With the attitude angular rate loop controller M c and the rudder distribution matrix g , the coordination torque is expressed as M c =g Γfδ ·δ, where <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>&amp;Gamma;</mi> <mi>f</mi> <mi>&amp;delta;</mi> </mrow> </msub> <mo>=</mo> <msub> <mi>g</mi> <mrow> <mi>f</mi> <mi>&amp;delta;</mi> </mrow> </msub> <mo>+</mo> <mi>&amp;Gamma;</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>p</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mi>e</mi> </msub> </mrow> </mtd> <mtd> <msub> <mi>g</mi> <mrow> <mi>p</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>g</mi> <mrow> <mi>p</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>g</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>&amp;delta;</mi> <mi>e</mi> </mrow> </msub> </mtd> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>&amp;delta;</mi> <mi>a</mi> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mi>a</mi> </msub> </mrow> </mtd> <mtd> <msub> <mi>g</mi> <mrow> <mi>q</mi> <mo>,</mo> <mi>&amp;delta;</mi> <mi>r</mi> </mrow> </msub> </mtd> </mtr> <mtr> <mtd> <msub> <mi>g</mi> <mrow> <mi>r</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>e</mi> </msub> </mrow> </msub> </mtd> <mtd> <msub> <mi>g</mi> <mrow> <mi>r</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>a</mi> </msub> </mrow> </msub> </mtd> <mtd> <mrow> <msub> <mi>g</mi> <mrow> <mi>r</mi> <mo>,</mo> <msub> <mi>&amp;delta;</mi> <mi>r</mi> </msub> </mrow> </msub> <mo>+</mo> <msub> <mi>&amp;lambda;</mi> <mi>r</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><msub><mi>g</mi><mrow><mi>&amp;Gamma;</mi><mi>f</mi><mi>&amp;delta;</mi></mrow></msub><mo>=</mo><msub><mi>g</mi><mrow><mi>f</mi><mi>&amp;delta;</mi></mrow></msub><mo>+</mo><mi>&amp;Gamma;</mi></mrow></mtd></mtr><mtr><mtd><mrow><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><mrow><msub><mi>g</mi><mrow><mi>p</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub><mo>+</mo><msub><mi>&amp;lambda;</mi><mi>e</mi></msub></mrow></mtd><mtd><msub><mi>g</mi><mrow><mi>p</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub></mtd><mtd><msub><mi>g</mi><mrow><mi>p</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>g</mi><mrow><mi>q</mi><mo>,</mo><mi>&amp;delta;</mi><mi>e</mi></mrow></msub></mtd><mtd><mrow><msub><mi>g</mi><mrow><mi>q</mi><mo>,</mi>mo><mi>&amp;delta;</mi><mi>a</mi></mrow></msub><mo>+</mo><msub><mi>&amp;lambda;</mi><mi>a</mi></msub></mrow></mtd><mtd><msub><mi>g</mi><mrow><mi>q</mi><mo>,</mo><mi>&amp;delta;</mi><mi>r</mi></mrow></msub></mtd></mtr><mtr><mtd><msub><mi>g</mi><mrow><mi>r</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>e</mi></msub></mrow></msub></mtd><mtd><msub><mi>g</mi><mrow><mi>r</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>a</mi></msub></mrow></msub></mtd><mtd><mrow><msub><mi>g</mi><mrow><mi>r</mi><mo>,</mo><msub><mi>&amp;delta;</mi><mi>r</mi></msub></mrow></msub><mo>+</mo><msub><mi>&amp;lambda;</mi><mi>r</mi></msub></mrow></mtd></mtr></mtable></mfenced></mrow></mtd></mtr></mtable></mfenced> 其中为俯仰通道舵面分配矩阵参数,gq,δe,gq,δa,gq,δr为偏航通道舵面分配矩阵参数,为滚转通道舵面分配矩阵参数,λe,λa,λr为协调因子;则舵面指令求得δ=gΓfδ -1·Mcin Assign matrix parameters for pitch channel rudder surface, g q,δe , g q,δa , g q,δr are yaw channel rudder surface assignment matrix parameters, Assign matrix parameters to the control surface of the roll channel, λ e , λ a , and λ r are coordination factors; then the control surface command can be calculated as δ=g Γfδ -1 ·M c . 5.根据的权利要求4所述的基于协调因子的高超声速飞行器姿态运动协调控制方法,其特征在于,当协调策略采用副翼舵与方向舵协调偏转实现偏航力矩和滚转力矩,升降舵偏转实现俯仰力矩,舵面协调设计为:5. according to claim 4, based on the hypersonic vehicle attitude motion coordination control method of coordination factor, it is characterized in that, when coordination strategy adopts aileron rudder and rudder coordination deflection to realize yaw moment and roll moment, elevator deflection realizes The pitching moment and rudder surface coordination design are: δcoe=δecoa=Eδrcor=δrδ coe = δ e , δ coa = Eδ r , δ cor = δ r .
CN201710514169.2A 2017-06-29 2017-06-29 Attitude-motion Coordinated Control Method for Hypersonic Vehicle Based on Coordination Factor Active CN107272719B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710514169.2A CN107272719B (en) 2017-06-29 2017-06-29 Attitude-motion Coordinated Control Method for Hypersonic Vehicle Based on Coordination Factor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710514169.2A CN107272719B (en) 2017-06-29 2017-06-29 Attitude-motion Coordinated Control Method for Hypersonic Vehicle Based on Coordination Factor

Publications (2)

Publication Number Publication Date
CN107272719A true CN107272719A (en) 2017-10-20
CN107272719B CN107272719B (en) 2019-09-20

Family

ID=60070864

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710514169.2A Active CN107272719B (en) 2017-06-29 2017-06-29 Attitude-motion Coordinated Control Method for Hypersonic Vehicle Based on Coordination Factor

Country Status (1)

Country Link
CN (1) CN107272719B (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110007683A (en) * 2019-03-13 2019-07-12 成都飞机工业(集团)有限责任公司 A kind of control method of the anti-cross wind landing of low aspect ratio all-wing aircraft unmanned plane
CN111176325A (en) * 2020-01-06 2020-05-19 南京航空航天大学 Air-breathing hypersonic unmanned aerial vehicle coordinated region analysis method
CN111290421A (en) * 2020-03-20 2020-06-16 湖南云顶智能科技有限公司 Hypersonic aircraft attitude control method considering input saturation
CN111427267A (en) * 2020-04-01 2020-07-17 山东创惠电子科技有限责任公司 High-speed aircraft attack angle tracking method adopting force and moment adaptive estimation
CN114003053A (en) * 2021-11-02 2022-02-01 东南大学 Fixed wing unmanned aerial vehicle autopilot adaptive control system based on ArduPilot
CN114281092A (en) * 2021-12-23 2022-04-05 北京航空航天大学 A Coordinated Attitude Control Method for Hypersonic Vehicles Based on Sliding Mode Interference Observer
CN114408162A (en) * 2022-01-26 2022-04-29 沃飞长空科技(成都)有限公司 Control surface reconstruction method and system and readable storage medium

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103425135A (en) * 2013-07-30 2013-12-04 南京航空航天大学 Near space vehicle robust control method with input saturation
CN103853157A (en) * 2014-03-19 2014-06-11 湖北蔚蓝国际航空学校有限公司 Aircraft attitude control method based on self-adaptive sliding mode
CN104155983A (en) * 2014-08-08 2014-11-19 北京航天自动控制研究所 Crosslinking impact assessment method for aerodynamic coupling property between aircraft attitude movement channels
CN106406096A (en) * 2016-10-26 2017-02-15 北京航空航天大学 Coupling utilization coordination control method suitable for transversal and lateral maneuvering of aircraft

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103425135A (en) * 2013-07-30 2013-12-04 南京航空航天大学 Near space vehicle robust control method with input saturation
CN103853157A (en) * 2014-03-19 2014-06-11 湖北蔚蓝国际航空学校有限公司 Aircraft attitude control method based on self-adaptive sliding mode
CN104155983A (en) * 2014-08-08 2014-11-19 北京航天自动控制研究所 Crosslinking impact assessment method for aerodynamic coupling property between aircraft attitude movement channels
CN106406096A (en) * 2016-10-26 2017-02-15 北京航空航天大学 Coupling utilization coordination control method suitable for transversal and lateral maneuvering of aircraft

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
程路: "近空间飞行器鲁棒自适应协调控制研究", 《信息科技辑》 *
鲍文等: "高超声速飞行器/超燃冲压发动机一体化协调控制方法研究", 《第三届高超声速科技学术会议》 *

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110007683A (en) * 2019-03-13 2019-07-12 成都飞机工业(集团)有限责任公司 A kind of control method of the anti-cross wind landing of low aspect ratio all-wing aircraft unmanned plane
CN110007683B (en) * 2019-03-13 2022-07-15 成都飞机工业(集团)有限责任公司 Control method for anti-crosswind landing of small-aspect-ratio flying-wing unmanned aerial vehicle
CN111176325A (en) * 2020-01-06 2020-05-19 南京航空航天大学 Air-breathing hypersonic unmanned aerial vehicle coordinated region analysis method
CN111176325B (en) * 2020-01-06 2021-05-28 南京航空航天大学 A method for analyzing coordination area of air-breathing hypersonic UAV
CN111290421A (en) * 2020-03-20 2020-06-16 湖南云顶智能科技有限公司 Hypersonic aircraft attitude control method considering input saturation
CN111427267A (en) * 2020-04-01 2020-07-17 山东创惠电子科技有限责任公司 High-speed aircraft attack angle tracking method adopting force and moment adaptive estimation
CN111427267B (en) * 2020-04-01 2022-08-30 山东创惠电子科技有限责任公司 High-speed aircraft attack angle tracking method adopting force and moment adaptive estimation
CN114003053A (en) * 2021-11-02 2022-02-01 东南大学 Fixed wing unmanned aerial vehicle autopilot adaptive control system based on ArduPilot
CN114003053B (en) * 2021-11-02 2023-12-01 东南大学 Fixed wing unmanned aerial vehicle autopilot self-adaptive control system based on ArduPilot
CN114281092A (en) * 2021-12-23 2022-04-05 北京航空航天大学 A Coordinated Attitude Control Method for Hypersonic Vehicles Based on Sliding Mode Interference Observer
CN114408162A (en) * 2022-01-26 2022-04-29 沃飞长空科技(成都)有限公司 Control surface reconstruction method and system and readable storage medium
CN114408162B (en) * 2022-01-26 2023-07-28 四川傲势科技有限公司 Control surface reconstruction method, control surface reconstruction system and readable storage medium

Also Published As

Publication number Publication date
CN107272719B (en) 2019-09-20

Similar Documents

Publication Publication Date Title
CN107272719B (en) Attitude-motion Coordinated Control Method for Hypersonic Vehicle Based on Coordination Factor
CN102591358B (en) Multi-UAV (unmanned aerial vehicle) dynamic formation control method
CN104199286B (en) Hierarchical dynamic inverse control method for flight vehicle based on sliding mode interference observer
CN102880060A (en) Self-adaptive index time varying slip form posture control method of reentry flight vehicle
Aghdam et al. Cooperative load transport with movable load center of mass using multiple quadrotor UAVs
CN103425135A (en) Near space vehicle robust control method with input saturation
No et al. Cascade-type guidance law design for multiple-UAV formation keeping
CN104238357A (en) Fault-tolerant sliding-mode control method for near-space vehicle
CN105278545A (en) Active-disturbance-rejection trajectory linearization control method suitable for hypersonic velocity maneuvering flight
CN107807663A (en) Unmanned plane based on Self Adaptive Control, which is formed into columns, keeps control method
CN104281155B (en) Three-dimensional flight path tracking method for unmanned airship
CN106325291A (en) Four-rotor aircraft attitude control method and system based on sliding-mode control law and ESO
CN104932514B (en) Attitude Nonlinear Adaptive Control Method for Small Unmanned Helicopter
CN107085435A (en) Attitude coordination control method for hypersonic vehicle based on coupling analysis
CN103592846A (en) Filtering backstepping ship movement control system based on self-adaption fuzzy estimator
CN107065847A (en) A kind of surface vessel Trajectory Tracking Control method of the asymmetric saturation of actuator
CN112148036B (en) Bilateral tracking control method for fixed-time estimators for networked robotic systems
CN111007877B (en) Global robust self-adaptive trajectory tracking control method of four-rotor aircraft
CN107817818B (en) Finite time control method for flight path tracking of uncertain model airship
CN106970646A (en) Quadrotor control method based on Adaptive Integral contragradience
CN116382332B (en) UDE-based fighter plane large maneuver robust flight control method
Yamasaki et al. Integrated guidance and autopilot for a path-following UAV via high-order sliding modes
CN111290278A (en) A robust attitude control method for hypersonic aircraft based on predictive sliding mode
CN107589674A (en) Hypersonic aircraft vertical coordination control method based on compensating for coupling with conversion
Prach et al. Development of a state dependent riccati equation based tracking flight controller for an unmanned aircraft

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant