CN107272165A - Imaging lens system group - Google Patents

Imaging lens system group Download PDF

Info

Publication number
CN107272165A
CN107272165A CN201710695396.XA CN201710695396A CN107272165A CN 107272165 A CN107272165 A CN 107272165A CN 201710695396 A CN201710695396 A CN 201710695396A CN 107272165 A CN107272165 A CN 107272165A
Authority
CN
China
Prior art keywords
lens
system group
imaging
lens system
imaging lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710695396.XA
Other languages
Chinese (zh)
Other versions
CN107272165B (en
Inventor
贾远林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang Sunny Optics Co Ltd
Original Assignee
Zhejiang Sunny Optics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang Sunny Optics Co Ltd filed Critical Zhejiang Sunny Optics Co Ltd
Priority to CN201710695396.XA priority Critical patent/CN107272165B/en
Publication of CN107272165A publication Critical patent/CN107272165A/en
Priority to PCT/CN2018/080109 priority patent/WO2019033755A1/en
Priority to US16/231,114 priority patent/US11226471B2/en
Application granted granted Critical
Publication of CN107272165B publication Critical patent/CN107272165B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/06Panoramic objectives; So-called "sky lenses" including panoramic objectives having reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B13/00Optical objectives specially designed for the purposes specified below
    • G02B13/18Optical objectives specially designed for the purposes specified below with lenses having one or more non-spherical faces, e.g. for reducing geometrical aberration

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Lenses (AREA)

Abstract

This application discloses a kind of imaging lens system group, the imaging lens system group is sequentially included along optical axis by thing side to image side:First lens, the second lens, the 3rd lens, the 4th lens and the 5th lens.First lens have negative power, and its image side surface is concave surface;Second lens have positive light coke, and its image side surface is convex surface;3rd lens, the 4th lens and the 5th lens are respectively provided with positive light coke or negative power;And total effective focal length f of imaging lens system group and the Entry pupil diameters EPD of imaging lens system group meet 0.8 < f/EPD < 1.6.

Description

Imaging lens system group
Technical field
The application is related to a kind of imaging lens system group, more specifically, the application be related to it is a kind of including five lens have it is big Visual field, the imaging lens system group of large aperture.
Background technology
At present, three dimensional depth measurement typically has three kinds of technical schemes, be respectively pair take the photograph, structure light and TOF, wherein TOF It is the abbreviation of flight time (Time of Flight) technology, that is, calculates the time of light flight.TOF technologies have response because of it Speed is fast, depth information precision is high, physical dimension is small and is not susceptible to the advantages of ambient light is disturbed, and is widely used.
With the development of science and technology, the forward position such as VR/AR (virtual reality/augmented reality), robot, security protection, automatic Pilot is led Domain development is swift and violent.In these areas, it usually needs the depth information of surrounding subject is obtained by pick-up lens, wrap Include three-dimensional position and dimension information, thus to matching used pick-up lens propose higher requirement, it is necessary to using can Carry out the three dimensional depth camera of three dimensional depth measurement.
Three dimensional depth camera is generally wide-angle lens, with characteristics such as the short, depth of field length of focal length.Relatively short focal length is helped In realizing the lightening of imaging terminal.The relatively long depth of field helps to ensure that the thing in the front and rear certain depth of shot subject The blur-free imaging of body.In addition, three dimensional depth camera also has the big angle of visual field, the characteristic of large aperture.Under equal conditions, visual field Angle is bigger, and the information content that can be obtained is bigger;Aperture is bigger, can effectively improve image planes energy density, so that it is deep to improve measurement The precision of degree.
At present, general wide-angle lens overall length is longer, and image quality is general, it is impossible to preferably meet three dimensional depth camera Requirement.Accordingly, it is desirable to provide a kind of large aperture, the big angle of visual field, the imaging lens system group of high image quality.
The content of the invention
This application provides the shooting that can at least solve or partly solve at least one above-mentioned shortcoming of the prior art is saturating Microscope group, for example, big visual field, the imaging lens system group of large aperture.
On the one hand, this application provides a kind of imaging lens system group, the imaging lens system group along optical axis by thing side to image side sequentially Including:First lens, the second lens, the 3rd lens, the 4th lens and the 5th lens.First lens can have negative power, its Image side surface can be concave surface;Second lens can have positive light coke, and its image side surface can be convex surface;3rd lens, the 4th lens and Five lens can have positive light coke or negative power;And total effective focal length f of imaging lens system group and entering for imaging lens system group Pupil diameter EPD can meet 0.8 < f/EPD < 1.6.
In one embodiment, total effective focal length f of the effective focal length f1 of the first lens and imaging lens system group can meet- 2.1 < f1/f < -1.5.
In one embodiment, the effective focal length f2 of the second lens and total effective focal length f of imaging lens system group can be met 1.4 < f2/f < 3.
In one embodiment, the combination focal power of the second lens, the 3rd lens, the 4th lens and the 5th lens is just Focal power, its combined focal length f2345 and total effective focal length f of imaging lens system group can meet 0.8 < f2345/f < 1.3.
In one embodiment, effective half bore DT11 of the first lens thing side and the Entry pupil diameters of imaging lens system group EPD can meet 1 < DT11/EPD < 1.6.
In one embodiment, effective half bore DT11 of the first lens thing side and the 5th lens image side surface is effective Half bore DT52 can meet 0.7 < DT11/DT52 < 1.3.
In one embodiment, the second lens are thick in the edge of the center thickness CT2 on optical axis and second lens Degree ET2 can meet 1.8 < CT2/ET2 < 3.5.
In one embodiment, the maximum angle of half field-of view HFOV of imaging lens system group can meet tan (HFOV/2) > 0.5.
In one embodiment, the first lens spacing distance on the countershaft of the lens of arbitrary neighborhood two into the 5th lens On thing side to the axle of the imaging surface of imaging lens system group of summation ∑ T and the first lens 0.1 < ∑s T/TTL can be met apart from TTL ≤0.3。
In one embodiment, imaging lens system group may also include the light being arranged between the first lens and the second lens Door screen.
In one embodiment, distance and the thing side of the first lens on diaphragm to the axle of the imaging surface of imaging lens system group On to the axle of the imaging surface of imaging lens system group 0.7 < SL/TTL < 1 can be met apart from TTL.
On the other hand, present invention also provides a kind of imaging lens system group, the imaging lens system group has total effective focal length f and edge Optical axis is sequentially included by thing side to image side:First lens, the second lens, the 3rd lens, the 4th lens and the 5th lens.First is saturating Mirror can have negative power;At least one in second lens, the 3rd lens, the 4th lens and the 5th lens can have positive light focus Degree.Wherein, the effective focal length f1 of the first lens and total effective focal length f of imaging lens system group can meet -2.1 < f1/f < -1.5, And wherein, the second lens, the 3rd lens, the combination focal power of the 4th lens and the 5th lens can be positive light coke.
On the other hand, present invention also provides a kind of imaging lens system group, the imaging lens system group is along optical axis by thing side to image side Sequentially include:First lens, the second lens, the 3rd lens, the 4th lens and the 5th lens.First lens can have negative light focus At least one in degree, its thing side and image side surface can be concave surface;Second lens can have positive light coke, its thing side and image side At least one in face can be convex surface;3rd lens, the 4th lens and the 5th lens can have positive light coke or negative power; And first the Entry pupil diameters EPD of effective half bore DT11 and imaging lens system group of lens thing side can meet 1 < DT11/EPD < 1.6.
On the other hand, present invention also provides a kind of imaging lens system group, the imaging lens system group is along optical axis by thing side to image side Sequentially include:First lens, the second lens, the 3rd lens, the 4th lens and the 5th lens.First lens can have negative light focus Degree, its image side surface can be concave surface;Second lens can have positive light coke, and its image side surface can be convex surface;3rd lens, the 4th lens Can have positive light coke or negative power with the 5th lens;And the maximum angle of half field-of view HFOV of imaging lens system group can be met Tan (HFOV/2) > 0.5.
On the other hand, present invention also provides a kind of imaging lens system group, the imaging lens system group is along optical axis by thing side to image side Sequentially include:First lens, the second lens, the 3rd lens, the 4th lens and the 5th lens.First lens can have negative light focus Degree, its image side surface can be concave surface;Second lens can have positive light coke, and its image side surface can be convex surface;3rd lens, the 4th lens Can have positive light coke or negative power with the 5th lens;And second lens, the 3rd lens, the 4th lens and The combined focal length f2345 of 5th lens and total effective focal length f of imaging lens system group can meet 0.8 < f2345/f < 1.3.
On the other hand, present invention also provides a kind of imaging lens system group, the imaging lens system group is along optical axis by thing side to image side Sequentially include:First lens, the second lens, the 3rd lens, the 4th lens and the 5th lens.First lens can have negative light focus Degree, its image side surface can be concave surface;Second lens can have positive light coke, and its image side surface can be convex surface;3rd lens, the 4th lens Can have positive light coke or negative power with the 5th lens;And second lens effective focal length f2 and the imaging lens system group Total effective focal length f can meet 1.4 < f2/f < 3.
On the other hand, present invention also provides a kind of imaging lens system group, the imaging lens system group is along optical axis by thing side to image side Sequentially include:First lens, the second lens, the 3rd lens, the 4th lens and the 5th lens.First lens can have negative light focus Degree, its image side surface can be concave surface;Second lens can have positive light coke, and its image side surface can be convex surface;3rd lens, the 4th lens Can have positive light coke or negative power with the 5th lens;And first lens into the 5th lens the lens of arbitrary neighborhood two it Can apart from TTL on thing side to the axle of the imaging surface of imaging lens system group of the summation ∑ T of spacing distance and the first lens on countershaft Meet 0.1 < ∑s T/TTL≤0.3.
On the other hand, present invention also provides a kind of imaging lens system group, the imaging lens system group is along optical axis by thing side to image side Sequentially include:First lens, the second lens, the 3rd lens, the 4th lens and the 5th lens.First lens can have negative light focus Degree, its image side surface can be concave surface;Second lens can have positive light coke, and its image side surface can be convex surface;3rd lens, the 4th lens Can have positive light coke or negative power with the 5th lens;And second lens in the center thickness CT2 on the optical axis with The edge thickness ET2 of second lens meets 1.8 < CT2/ET2 < 3.5.
On the other hand, present invention also provides a kind of imaging lens system group, the imaging lens system group is along optical axis by thing side to image side Sequentially include:First lens, the second lens, the 3rd lens, the 4th lens and the 5th lens.First lens can have negative light focus Degree, its image side surface can be concave surface;Second lens can have positive light coke, and its image side surface can be convex surface;3rd lens, the 4th lens Can have positive light coke or negative power with the 5th lens;And first lens thing side effective half bore DT11 and the 5th Effective half bore DT52 of lens image side surface can meet 0.7 < DT11/DT52 < 1.3.
On the other hand, present invention also provides a kind of imaging lens system group, the imaging lens system group is along optical axis by thing side to image side Sequentially include:First lens, the second lens, the 3rd lens, the 4th lens and the 5th lens.First lens can have negative light focus Degree, its image side surface can be concave surface;Second lens can have positive light coke, and its image side surface can be convex surface;3rd lens, the 4th lens Can have positive light coke or negative power with the 5th lens;And imaging lens system group also includes being arranged at the first lens and second Distance and the thing side of the first lens are saturating to imaging on diaphragm between lens, the axle of the diaphragm to the imaging surface of imaging lens system group On the axle of the imaging surface of microscope group 0.7 < SL/TTL < 1 can be met apart from TTL.
The big angle of visual field can be better achieved while image quality is ensured in imaging lens system group provided herein, big The characteristics such as aperture.
Brief description of the drawings
With reference to accompanying drawing, by the detailed description of following non-limiting embodiment, other features of the application, purpose and excellent Point will be apparent.In the accompanying drawings:
Fig. 1 shows the structural representation of the imaging lens system group according to the embodiment of the present application 1;
Fig. 2A to Fig. 2 D respectively illustrates chromatic curve on the axle of the imaging lens system group of embodiment 1, astigmatism curve, distortion song Line and ratio chromatism, curve;
Fig. 3 shows the structural representation of the imaging lens system group according to the embodiment of the present application 2;
Fig. 4 A to Fig. 4 D respectively illustrate chromatic curve on the axle of the imaging lens system group of embodiment 2, astigmatism curve, distortion song Line and ratio chromatism, curve;
Fig. 5 shows the structural representation of the imaging lens system group according to the embodiment of the present application 3;
Fig. 6 A to Fig. 6 D respectively illustrate chromatic curve on the axle of the imaging lens system group of embodiment 3, astigmatism curve, distortion song Line and ratio chromatism, curve;
Fig. 7 shows the structural representation of the imaging lens system group according to the embodiment of the present application 4;
Fig. 8 A to Fig. 8 D respectively illustrate chromatic curve on the axle of the imaging lens system group of embodiment 4, astigmatism curve, distortion song Line and ratio chromatism, curve;
Fig. 9 shows the structural representation of the imaging lens system group according to the embodiment of the present application 5;
Figure 10 A to Figure 10 D respectively illustrate chromatic curve on the axle of the imaging lens system group of embodiment 5, astigmatism curve, distortion Curve and ratio chromatism, curve;
Figure 11 shows the structural representation of the imaging lens system group according to the embodiment of the present application 6;
Figure 12 A to Figure 12 D respectively illustrate chromatic curve on the axle of the imaging lens system group of embodiment 6, astigmatism curve, distortion Curve and ratio chromatism, curve;
Figure 13 shows the structural representation of the imaging lens system group according to the embodiment of the present application 7;
Figure 14 A to Figure 14 D respectively illustrate chromatic curve on the axle of the imaging lens system group of embodiment 7, astigmatism curve, distortion Curve and ratio chromatism, curve.
Embodiment
In order to more fully understand the application, refer to the attached drawing is made into more detailed description to the various aspects of the application.Should Understand, these describe the description of illustrative embodiments simply to the application in detail, rather than limit the application in any way Scope.In the specification, identical reference numbers identical element.Stating "and/or" includes associated institute Any and all combinations of one or more of list of items.
It should be noted that in this manual, the statement of first, second, third, etc. is only used for a feature and another spy Levy and make a distinction, and do not indicate that any limitation to feature.Therefore, in the case of without departing substantially from teachings of the present application, hereinafter The first lens discussed are also known as the second lens or the 3rd lens.
In the accompanying drawings, for convenience of description, thickness, the size and dimension of lens are somewhat exaggerated.Specifically, accompanying drawing Shown in sphere or aspherical shape be illustrated by way of example.That is, sphere or aspherical shape is not limited to accompanying drawing In the sphere that shows or aspherical shape.Accompanying drawing is merely illustrative and simultaneously non-critical is drawn to scale.
Herein, near axis area refers to the region near optical axis.If lens surface is convex surface and does not define convex surface position When putting, then it represents that the lens surface is convex surface near axis area is less than;If lens surface is concave surface and does not define the concave surface position When, then it represents that the lens surface is concave surface near axis area is less than.It is referred to as thing side near the surface of object in each lens, It is referred to as image side surface near the surface of imaging surface in each lens.
It will also be appreciated that term " comprising ", " including ", " having ", "comprising" and/or " including ", when in this theory Represent there is stated feature, element and/or part when being used in bright book, but do not preclude the presence or addition of one or more Further feature, element, part and/or combinations thereof.In addition, ought the statement of such as " ... at least one " appear in institute When after the list of row feature, the whole listed feature of modification, rather than the individual component in modification list.In addition, working as description originally During the embodiment of application, represented " one or more embodiments of the application " using "available".Also, term " exemplary " It is intended to refer to example or illustration.
Unless otherwise defined, otherwise all terms (including technical terms and scientific words) used herein be respectively provided with The application one skilled in the art's is generally understood that identical implication.It will also be appreciated that term is (such as in everyday words Term defined in allusion quotation) implication consistent with their implications in the context of correlation technique should be interpreted as having, and It will not explained with idealization or excessively formal sense, unless clearly such herein limit.
It should be noted that in the case where not conflicting, the feature in embodiment and embodiment in the application can phase Mutually combination.Describe the application in detail below with reference to the accompanying drawings and in conjunction with the embodiments.
The feature of the application, principle and other aspects are described in detail below.
Such as five lens with focal power are included according to the imaging lens system group of the application illustrative embodiments, i.e. First lens, the second lens, the 3rd lens, the 4th lens and the 5th lens.This five lens are along optical axis from thing side to image side Sequential.
It can also be further comprised being arranged at the photosensitive of imaging surface according to the imaging lens system group of the application illustrative embodiments Element.Alternatively, the photo-sensitive cell for being arranged at imaging surface can be that photosensitive coupling element (CCD) or Complimentary Metal-Oxide are partly led Volume elements part (CMOS).
First lens can have negative power, and its image side surface can be concave surface;Second lens can have positive light coke, its image side Face can be convex surface;3rd lens have positive light coke or negative power;4th lens have positive light coke or negative power;5th Lens have positive light coke or negative power.
Alternatively, the 3rd lens can be meniscus lens, the radius of curvature that the radius of curvature R 5 of its thing side can be with image side surface R6 jack per lines.When R5 and R6 be on the occasion of when, the thing side of the 3rd lens is convex surface, and image side surface is concave surface, and the 3rd lens is are convex to The meniscus lens of thing side;When R5 and R6 are negative value, the thing side of the 3rd lens is concave surface, and image side surface is convex surface, and the 3rd is saturating Mirror is the meniscus lens for being convex to image side.
Alternatively, the 5th lens can have positive light coke, and its thing side can be convex surface at paraxial place, and image side surface is at paraxial place It can be concave surface.
Can be met between the effective focal length f1 of first lens and total effective focal length f of imaging lens system group -2.1 < f1/f < - 1.5, more specifically, f1 and f can further meet -2.07≤f1/f≤- 1.56.The power of lens of reasonable distribution first, has Beneficial to the bore of eyeglass is reduced on the basis of processing technology is ensured, while also helping the aberration correction of wide-angle lens, improve Image quality.
1.4 < f2/f < 3 can be met between the effective focal length f2 of second lens and total effective focal length f of imaging lens system group, More specifically, f2 and f can further meet 1.48≤f2/f≤2.82.Second lens have larger positive light coke, may be such that It has larger relative aperture, is conducive to aberration on correction axle.
Second lens, the 3rd lens, the 4th lens and the 5th combined focal length f2345 of lens and always having for imaging lens system group 0.8 < f2345/f < 1.3 can be met between effect focal length f, more specifically, f2345 and f can further meet 0.97≤f2345/f ≤1.17.First power of lens is negative power, the second lens, the 3rd lens, total light of the 4th lens and the 5th lens Focal power is positive light coke.Off-axis ray is saturating by second with the ray tilt substantially diminished after the diverging of the first lens Mirror makes the second lens, the 3rd lens, the 4th lens and the 5th lens undertake less visual field, so as to be conducive to the 5th lens The off-axis aberration correction of follow-up constituent element, correspondingly, the first lens undertake larger visual field.
0.8 < f/EPD can be met between total effective focal length f of imaging lens system group and the Entry pupil diameters EPD of imaging lens system group < 1.6, for example, f and EPD can meet 0.85≤f/EPD≤1.45, in another example, f and EPD can meet 0.90≤f/EPD≤ 1.30, more specifically, f and EPD can further meet 1.00≤f/EPD≤1.20.The < f/EPD < 1.6 of conditional 0.8 are met, The energy density of imaging surface can be effectively improved, is conducive to improving image space sensor output signal-noise ratio, that is, is conducive to improving The precision fathomed.
1 can be met between effective half bore DT11 of the thing side of first lens and the Entry pupil diameters EPD of imaging lens system group < DT11/EPD < 1.6, more specifically, DT11 and EPD can further meet 1.03≤DT11/EPD≤1.51.Meet conditional 1 < DT11/EPD < 1.6, the effective aperture of the first lens thing side is approached with the Entry pupil diameters size of imaging lens system group so that The aperture of lens of wide-angle lens is small, and processing cost is low and camera lens is compact.
Between effective half bore DT52 of effective half bore DT11 of first lens thing side and the image side surface of the 5th lens 0.7 < DT11/DT52 < 1.3 can be met, more specifically, DT11 and DT52 can further meet 0.81≤DT11/DT52≤ 1.20.Reasonable distribution DT11 and DT52, are conducive to reducing eyeglass bore, realize that camera lens is minimized, and improve assembly technology and reduce Cost.
Second lens can meet 1.8 < between the center thickness CT2 and the edge thickness ET2 of the second lens on optical axis CT2/ET2 < 3.5, more specifically, CT2 and ET2 can further meet 1.90≤CT2/ET2≤3.03.Meet the < of conditional 1.8 CT2/ET2 < 3.5, it is ensured that the good processing technology of the second lens, can effectively improve the machining accuracy of the second lens, meet Higher design tolerance requirement, is conducive to improving the image quality of lens group.
In each lens with focal power on the countershaft of the lens of arbitrary neighborhood two spacing distance summation ∑ T and imaging lens system Group optics total length TTL (that is, the distance from the center of the first lens thing side to the axle of the imaging surface of imaging lens system group) it Between can meet 0.1 < ∑s T/TTL≤0.3, more specifically, ∑ T and TTL can further meet 0.16≤∑ T/TTL≤0.30. Have including five in the imaging lens system group of lens of focal power, ∑ T=T12+T23+T34+T45.Wherein, T12 is first saturating Spacing distance on axle between mirror and the second lens, T23 is spacing distance, T34 on the axle between the second lens and the 3rd lens For spacing distance on the axle between the 3rd lens and the 4th lens, T45 is interval on the axle between the 4th lens and the 5th lens Distance.Reasonable disposition ∑ T and TTL, are conducive to shortening the entire length of imaging lens system group;Meanwhile, rationally increase between each lens Axle on spacing distance, advantageously reduce the tolerance sensitivity of system, the quality consistency of lifting camera lens batch production.
Imaging lens system group can also be arranged as required to an at least diaphragm, to lift the image quality of imaging lens system group.Light On door screen to the axle of the imaging surface of imaging lens system group 0.7 < can be met between SL and the optics total length TTL of imaging lens system group SL/TTL < 1, more specifically, SL and TTL can further meet 0.76≤SL/TTL≤0.85.Alternatively, diaphragm may be provided at Between first lens and the second lens.At the position that diaphragm is disposed adjacent to the first lens, be conducive to reducing the mouth of the first lens Footpath, and then reduce the cost of camera lens.In addition, when the first lens have more small-bore, imaging lens system group can be effectively realized An assembling (along the first lens to the direction of the 5th lens), can improve assembly technology from front to back.
The maximum angle of half field-of view HFOV of imaging lens system group can meet tan (HFOV/2) > 0.5, more specifically, HFOV enters one Step can meet 0.54≤tan (HFOV/2)≤0.78.The restriction with the angle of visual field is distributed by rational focal power so that system exists On the premise of good image quality, larger visual field is obtained.
Alternatively, above-mentioned optical imaging lens may also include optical filter for correcting color error ratio and/or for protecting The protective glass of photo-sensitive cell on imaging surface.
Multi-disc eyeglass, such as described above five can be used according to the optical imaging lens of the above-mentioned embodiment of the application Piece.Pass through spacing on the axle between each power of lens of reasonable distribution, face type, the center thickness of each lens and each lens Deng can be effectively reduced the susceptibility of camera lens and improve the processability of camera lens so that imaging lens system group is more beneficial for production and processing, And there can be the beneficial effect such as large aperture, the big angle of visual field, high image quality.
In presently filed embodiment, the thing side of each lens and image side surface can use aspherical mirror.It is aspherical The characteristics of lens is:From lens centre to lens perimeter, curvature is consecutive variations.With having from lens centre to lens perimeter The spherical lens of constant curvature is different, and non-spherical lens has more preferably radius of curvature characteristic, distorts aberration with improvement and changes The advantage of kind astigmatic image error.After non-spherical lens, the aberration occurred when imaging can be eliminated as much as possible, so that Improve image quality.
However, it will be understood by those of skill in the art that without departing from this application claims technical scheme situation Under, the lens numbers for constituting imaging lens system group can be changed, to obtain each result and the advantage described in this specification.For example, Although being described in embodiments by taking five lens as an example, the imaging lens system group is not limited to include five lens. If desired, the imaging lens system group may also include the lens of other quantity.
The specific embodiment for the imaging lens system group for being applicable to above-mentioned embodiment is further described with reference to the accompanying drawings.
Embodiment 1
The imaging lens system group according to the embodiment of the present application 1 is described referring to Fig. 1 to Fig. 2 D.Fig. 1 is shown according to this Shen Please embodiment 1 imaging lens system group structural representation.
As shown in figure 1, imaging lens system group sequentially includes the first lens L1, the second lens by thing side along optical axis into image side L2, the 3rd lens L3, the 4th lens L4, the 5th lens L5 and imaging surface S13.Imaging lens system group, which may also include, is arranged at imaging surface S13 photo-sensitive cell.
First lens L1 has negative power, and its thing side S1 is concave surface, and image side surface S2 is concave surface, and the first lens L1 Thing side S1 and image side surface S2 is aspherical.
Second lens L2 has positive light coke, and its thing side S3 is concave surface, and image side surface S4 is convex surface, and the second lens L2 Thing side S3 and image side surface S4 is aspherical.
3rd lens L3 has positive light coke, and its thing side S5 is convex surface, and image side surface S6 is concave surface, and the 3rd lens L3 Thing side S5 and image side surface S6 is aspherical.
4th lens L4 has positive light coke, and its thing side S7 is convex surface, and image side surface S8 is convex surface, and the 4th lens L4 Thing side S7 and image side surface S8 is aspherical.
5th lens L5 has positive light coke, and its thing side S9 is convex surface, and image side surface S10 is concave surface, and the 5th lens L5 Thing side S9 and image side surface S10 be aspherical.
Alternatively, imaging lens system group may also include the optical filter L6 with thing side S11 and image side surface S12.
Alternatively, the diaphragm STO of confine optical beam can be provided between the first lens L1 and the second lens L2, to be lifted The image quality of imaging lens system group.
Table 1 shows surface type, radius of curvature, thickness, material and the circle of each lens of the imaging lens system group of embodiment 1 Coefficient is bored, wherein, the unit of radius of curvature and thickness is millimeter (mm).
Table 1
In embodiment 1, each lens can use non-spherical lens, and each aspherical face type x is limited by below equation:
Wherein, x be it is aspherical along optical axis direction height be h position when, away from aspheric vertex of surface apart from rise;C is Aspherical paraxial curvature, c=1/R (that is, paraxial curvature c is the mean curvature radius R of upper table 1 inverse);K be circular cone coefficient ( Provided in table 1);Ai is the correction factor of aspherical i-th-th ranks.Table 2 below is given available for each aspherical in embodiment 1 Minute surface S1-S10 high order term coefficient A4、A6、A8、A10、A12、A14And A16
Face number A4 A6 A8 A10 A12 A14 A16
S1 1.1115E-01 -7.9213E-02 4.7038E-02 -2.0501E-02 5.6172E-03 -8.4995E-04 5.3751E-05
S2 1.8758E-01 -1.2520E-01 1.8374E-01 -1.8125E-01 1.1239E-01 -3.5806E-02 4.5041E-03
S3 3.5824E-03 -2.8801E-02 3.9615E-02 -2.9571E-02 8.1222E-03 2.4475E-04 -3.1358E-04
S4 -9.9343E-03 4.4336E-04 -2.8594E-04 -1.3540E-04 -6.4042E-04 2.8798E-04 -4.3410E-05
S5 -1.1646E-02 6.5259E-03 -1.3055E-03 -5.0274E-05 -7.0651E-06 9.1261E-06 -7.9786E-07
S6 -5.1780E-03 -1.7707E-02 1.4283E-02 -5.1595E-03 9.2800E-04 -8.4005E-05 3.1848E-06
S7 5.0212E-02 -3.8959E-02 1.7737E-02 -5.5525E-03 1.0104E-03 -8.5400E-05 1.8279E-06
S8 9.8791E-02 -1.0631E-01 6.3313E-02 -2.3878E-02 5.4211E-03 -6.6174E-04 3.3489E-05
S9 6.2817E-02 -1.2471E-01 6.6269E-02 -3.1648E-02 1.0151E-02 -1.6932E-03 1.1040E-04
S10 6.5161E-02 -8.1316E-02 2.2261E-02 -2.6454E-03 3.7063E-05 2.0784E-05 -1.6061E-06
Table 2
Table 3 below provides total effective focal length f of imaging lens system group, effective focal length f1 to f5, the optics of each lens in embodiment 1 Total length TTL (that is, from distance on the first lens L1 thing side S1 center to imaging surface S13 axle) and maximum half field-of-view Angle HFOV.
Table 3
In the present embodiment, met between the first lens L1 effective focal length f1 and total effective focal length f of imaging lens system group F1/f=-1.57;F2/f=is met between second lens L2 effective focal length f2 and total effective focal length f of imaging lens system group 1.83;Second lens L2, the 3rd lens L3, the 4th lens L4 and the 5th lens L5 combined focal length f2345 and imaging lens system group Total effective focal length f between meet f2345/f=0.97;Total effective focal length f of imaging lens system group and the entrance pupil of imaging lens system group F/EPD=1.20 is met between diameter EPD;First lens L1 thing side S1 effective half bore DT11 and imaging lens system group DT11/EPD=1.07 is met between Entry pupil diameters EPD;First lens L1 things side S1 effective half bore DT11 and the 5th is saturating DT11/DT52=0.81 is met between mirror L5 image side surface S10 effective half bore DT52;Second lens L2 is on optical axis CT2/ET2=2.99 is met between heart thickness CT2 and the second lens L2 edge thickness ET2;First lens L1 to the 5th lens Met on the countershaft of the lens of L5 arbitrary neighborhoods two between the summation ∑ T of spacing distance and the optics total length TTL of imaging lens system group ∑ T/TTL=0.29;Diaphragm STO between SL and the optics total length TTL of imaging lens system group to meeting on the axle of imaging surface SL/TTL=0.84;The maximum angle of half field-of view HFOV of imaging lens system group meets tan (HFOV/2)=0.57.
Fig. 2A shows chromatic curve on the axle of the imaging lens system group of embodiment 1, its represent different wave length light via Converging focal point after lens group deviates.Fig. 2 B show the astigmatism curve of the imaging lens system group of embodiment 1, and it represents meridianal image surface Bending and sagittal image surface bending.Fig. 2 C show the distortion curve of the imaging lens system group of embodiment 1, and it represents different visual angles situation Under distortion sizes values.Fig. 2 D show the ratio chromatism, curve of the imaging lens system group of embodiment 1, and it represents light via lens The deviation of different image heights after group on imaging surface.Understood according to Fig. 2A to Fig. 2 D, the imaging lens system group given by embodiment 1 Good image quality can be realized.
Embodiment 2
The imaging lens system group according to the embodiment of the present application 2 is described referring to Fig. 3 to Fig. 4 D.In the present embodiment and following reality Apply in example, for brevity, by clipped description similar to Example 1.Fig. 3 is shown according to the embodiment of the present application 2 The structural representation of imaging lens system group.
As shown in figure 3, imaging lens system group sequentially includes the first lens L1, the second lens by thing side along optical axis into image side L2, the 3rd lens L3, the 4th lens L4, the 5th lens L5 and imaging surface S13.Imaging lens system group, which may also include, is arranged at imaging surface S13 photo-sensitive cell.
First lens L1 has negative power, and its thing side S1 is concave surface, and image side surface S2 is concave surface, and the first lens L1 Thing side S1 and image side surface S2 is aspherical.
Second lens L2 has positive light coke, and its thing side S3 is convex surface, and image side surface S4 is convex surface, and the second lens L2 Thing side S3 and image side surface S4 is aspherical.
3rd lens L3 has positive light coke, and its thing side S5 is concave surface, and image side surface S6 is convex surface, and the 3rd lens L3 Thing side S5 and image side surface S6 is aspherical.
4th lens L4 has negative power, and its thing side S7 is concave surface, and image side surface S8 is concave surface, and the 4th lens L4 Thing side S7 and image side surface S8 is aspherical.
5th lens L5 has positive light coke, and its thing side S9 is convex surface, and image side surface S10 is concave surface, and the 5th lens L5 Thing side S9 and image side surface S10 be aspherical.
Alternatively, imaging lens system group may also include the optical filter L6 with thing side S11 and image side surface S12.
Alternatively, the diaphragm STO of confine optical beam can be provided between the first lens L1 and the second lens L2, to be lifted The image quality of imaging lens system group.
Table 4 shows surface type, radius of curvature, thickness, material and the circle of each lens of the imaging lens system group of embodiment 2 Coefficient is bored, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 5 is shown available for each aspherical in embodiment 2 The high order term coefficient of minute surface, wherein, the formula (1) that each aspherical face type can be provided in above-described embodiment 1 is limited.Table 6 is shown Total effective focal length f of imaging lens system group in embodiment 2, the effective focal length f1 to f5 of each lens, optics total length TTL and most Big angle of half field-of view HFOV.
Table 4
Face number A4 A6 A8 A10 A12 A14 A16
S1 9.9087E-02 -7.5992E-02 4.7000E-02 -2.0533E-02 5.6172E-03 -8.4995E-04 5.3751E-05
S2 1.6465E-01 -1.2285E-01 1.7774E-01 -1.7747E-01 1.1239E-01 -3.5806E-02 4.5041E-03
S3 -6.9844E-03 -2.7964E-02 3.9514E-02 -2.9646E-02 8.1222E-03 2.4475E-04 -3.1358E-04
S4 1.3885E-03 -2.9923E-03 -6.6168E-05 -1.1022E-04 -6.4042E-04 2.8798E-04 -4.3410E-05
S5 1.3711E-02 4.8909E-03 -1.7996E-03 -7.6668E-06 -7.0625E-06 9.1261E-06 -7.9786E-07
S6 1.3653E-02 -1.6733E-02 1.4097E-02 -5.1898E-03 9.2800E-04 -8.4005E-05 3.1848E-06
S7 6.4216E-02 -4.8051E-02 2.0303E-02 -5.7661E-03 1.0104E-03 -8.5400E-05 1.8279E-06
S8 6.7849E-02 -1.0331E-01 6.3245E-02 -2.3736E-02 5.4211E-03 -6.6174E-04 3.3489E-05
S9 4.0099E-03 -9.2323E-02 6.1038E-02 -3.1791E-02 1.0151E-02 -1.6932E-03 1.1040E-04
S10 4.6468E-02 -5.0418E-02 1.5252E-02 -3.5908E-03 7.7023E-04 -1.1027E-04 6.6280E-06
Table 5
Table 6
Fig. 4 A show chromatic curve on the axle of the imaging lens system group of embodiment 2, its represent different wave length light via Converging focal point after lens group deviates.Fig. 4 B show the astigmatism curve of the imaging lens system group of embodiment 2, and it represents meridianal image surface Bending and sagittal image surface bending.Fig. 4 C show the distortion curve of the imaging lens system group of embodiment 2, and it represents different visual angles situation Under distortion sizes values.Fig. 4 D show the ratio chromatism, curve of the imaging lens system group of embodiment 2, and it represents light via lens The deviation of different image heights after group on imaging surface.Understood according to Fig. 4 A to Fig. 4 D, the imaging lens system group given by embodiment 2 Good image quality can be realized.
Embodiment 3
The imaging lens system group according to the embodiment of the present application 3 is described referring to Fig. 5 to Fig. 6 D.Fig. 5 is shown according to this Apply for the structural representation of the imaging lens system group of embodiment 3.
As shown in figure 5, imaging lens system group sequentially includes the first lens L1, the second lens by thing side along optical axis into image side L2, the 3rd lens L3, the 4th lens L4, the 5th lens L5 and imaging surface S13.Imaging lens system group, which may also include, is arranged at imaging surface S13 photo-sensitive cell.
First lens L1 has negative power, and its thing side S1 is concave surface, and image side surface S2 is concave surface, and the first lens L1 Thing side S1 and image side surface S2 is aspherical.
Second lens L2 has positive light coke, and its thing side S3 is convex surface, and image side surface S4 is convex surface, and the second lens L2 Thing side S3 and image side surface S4 is aspherical.
3rd lens L3 has negative power, and its thing side S5 is convex surface, and image side surface S6 is concave surface, and the 3rd lens L3 Thing side S5 and image side surface S6 is aspherical.
4th lens L4 has positive light coke, and its thing side S7 is convex surface, and image side surface S8 is convex surface, and the 4th lens L4 Thing side S7 and image side surface S8 is aspherical.
5th lens L5 has positive light coke, and its thing side S9 is convex surface, and image side surface S10 is concave surface, and the 5th lens L5 Thing side S9 and image side surface S10 be aspherical.
Alternatively, imaging lens system group may also include the optical filter L6 with thing side S11 and image side surface S12.
Alternatively, the diaphragm STO of confine optical beam can be provided between the first lens L1 and the second lens L2, to be lifted The image quality of imaging lens system group.
Table 7 shows surface type, radius of curvature, thickness, material and the circle of each lens of the imaging lens system group of embodiment 3 Coefficient is bored, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 8 is shown available for each aspherical in embodiment 3 The high order term coefficient of minute surface, wherein, the formula (1) that each aspherical face type can be provided in above-described embodiment 1 is limited.Table 9 is shown Total effective focal length f of imaging lens system group in embodiment 3, the effective focal length f1 to f5 of each lens, optics total length TTL and most Big angle of half field-of view HFOV.
Table 7
Table 8
Table 9
Fig. 6 A show chromatic curve on the axle of the imaging lens system group of embodiment 3, its represent different wave length light via Converging focal point after lens group deviates.Fig. 6 B show the astigmatism curve of the imaging lens system group of embodiment 3, and it represents meridianal image surface Bending and sagittal image surface bending.Fig. 6 C show the distortion curve of the imaging lens system group of embodiment 3, and it represents different visual angles situation Under distortion sizes values.Fig. 6 D show the ratio chromatism, curve of the imaging lens system group of embodiment 3, and it represents light via lens The deviation of different image heights after group on imaging surface.Understood according to Fig. 6 A to Fig. 6 D, the imaging lens system group given by embodiment 3 Good image quality can be realized.
Embodiment 4
The imaging lens system group according to the embodiment of the present application 4 is described referring to Fig. 7 to Fig. 8 D.Fig. 7 is shown according to this Apply for the structural representation of the imaging lens system group of embodiment 4.
As shown in fig. 7, imaging lens system group sequentially includes the first lens L1, the second lens by thing side along optical axis into image side L2, the 3rd lens L3, the 4th lens L4, the 5th lens L5 and imaging surface S13.Imaging lens system group, which may also include, is arranged at imaging surface S13 photo-sensitive cell.
First lens L1 has negative power, and its thing side S1 is convex surface, and image side surface S2 is concave surface, and the first lens L1 Thing side S1 and image side surface S2 is aspherical.
Second lens L2 has positive light coke, and its thing side S3 is convex surface, and image side surface S4 is convex surface, and the second lens L2 Thing side S3 and image side surface S4 is aspherical.
3rd lens L3 has negative power, and its thing side S5 is convex surface, and image side surface S6 is convex surface, and the 3rd lens L3 Thing side S5 and image side surface S6 is aspherical.
4th lens L4 has positive light coke, and its thing side S7 is concave surface, and image side surface S8 is convex surface, and the 4th lens L4 Thing side S7 and image side surface S8 is aspherical.
5th lens L5 has positive light coke, and its thing side S9 is convex surface, and image side surface S10 is concave surface, and the 5th lens L5 Thing side S9 and image side surface S10 be aspherical.
Alternatively, imaging lens system group may also include the optical filter L6 with thing side S11 and image side surface S12.
Alternatively, the diaphragm STO of confine optical beam can be provided between the first lens L1 and the second lens L2, to be lifted The image quality of imaging lens system group.
Table 10 show the surface types of each lens of the imaging lens system group of embodiment 4, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 11 is shown available for each non-in embodiment 4 The high order term coefficient of spherical mirror surface, wherein, the formula (1) that each aspherical face type can be provided in above-described embodiment 1 is limited.Table 12 Show in embodiment 4 total effective focal length f of imaging lens system group, the effective focal length f1 to f5 of each lens, optics total length TTL with And maximum angle of half field-of view HFOV.
Table 10
Table 11
Table 12
Fig. 8 A show chromatic curve on the axle of the imaging lens system group of embodiment 4, its represent different wave length light via Converging focal point after lens group deviates.Fig. 8 B show the astigmatism curve of the imaging lens system group of embodiment 4, and it represents meridianal image surface Bending and sagittal image surface bending.Fig. 8 C show the distortion curve of the imaging lens system group of embodiment 4, and it represents different visual angles situation Under distortion sizes values.Fig. 8 D show the ratio chromatism, curve of the imaging lens system group of embodiment 4, and it represents light via lens The deviation of different image heights after group on imaging surface.Understood according to Fig. 8 A to Fig. 8 D, the imaging lens system group given by embodiment 4 Good image quality can be realized.
Embodiment 5
The imaging lens system group according to the embodiment of the present application 5 is described referring to Fig. 9 to Figure 10 D.Fig. 9 is shown according to this Apply for the structural representation of the imaging lens system group of embodiment 5.
As shown in figure 9, imaging lens system group sequentially includes the first lens L1, the second lens by thing side along optical axis into image side L2, the 3rd lens L3, the 4th lens L4, the 5th lens L5 and imaging surface S13.Imaging lens system group, which may also include, is arranged at imaging surface S13 photo-sensitive cell.
First lens L1 has negative power, and its thing side S1 is convex surface, and image side surface S2 is concave surface, and the first lens L1 Thing side S1 and image side surface S2 is sphere.
Second lens L2 has positive light coke, and its thing side S3 is convex surface, and image side surface S4 is convex surface, and the second lens L2 Thing side S3 and image side surface S4 is aspherical.
3rd lens L3 has positive light coke, and its thing side S5 is convex surface, and image side surface S6 is concave surface, and the 3rd lens L3 Thing side S5 and image side surface S6 is aspherical.
4th lens L4 has positive light coke, and its thing side S7 is convex surface, and image side surface S8 is convex surface, and the 4th lens L4 Thing side S7 and image side surface S8 is aspherical.
5th lens L5 has positive light coke, and its thing side S9 is convex surface, and image side surface S10 is concave surface, and the 5th lens L5 Thing side S9 and image side surface S10 be aspherical.
Alternatively, imaging lens system group may also include the optical filter L6 with thing side S11 and image side surface S12.
Alternatively, the diaphragm STO of confine optical beam can be provided between the first lens L1 and the second lens L2, to be lifted The image quality of imaging lens system group.
Table 13 show the surface types of each lens of the imaging lens system group of embodiment 5, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 14 is shown available for each non-in embodiment 5 The high order term coefficient of spherical mirror surface, wherein, the formula (1) that each aspherical face type can be provided in above-described embodiment 1 is limited.Table 15 Show in embodiment 5 total effective focal length f of imaging lens system group, the effective focal length f1 to f5 of each lens, optics total length TTL with And maximum angle of half field-of view HFOV.
Table 13
Table 14
Table 15
Figure 10 A show chromatic curve on the axle of the imaging lens system group of embodiment 5, its represent different wave length light via Converging focal point after lens group deviates.Figure 10 B show the astigmatism curve of the imaging lens system group of embodiment 5, and it represents meridian picture Face is bent and sagittal image surface bending.Figure 10 C show the distortion curve of the imaging lens system group of embodiment 5, and it represents different visual angles In the case of distortion sizes values.Figure 10 D show the ratio chromatism, curve of the imaging lens system group of embodiment 5, and it represents light warp The deviation of different image heights after lens group on imaging surface.Understood according to Figure 10 A to Figure 10 D, taking the photograph given by embodiment 5 As lens group can realize good image quality.
Embodiment 6
The imaging lens system group according to the embodiment of the present application 6 is described referring to Figure 11 to Figure 12 D.Figure 11 shows basis The structural representation of the imaging lens system group of the embodiment of the present application 6.
As shown in figure 11, imaging lens system group sequentially includes the first lens L1, the second lens by thing side along optical axis into image side L2, the 3rd lens L3, the 4th lens L4, the 5th lens L5 and imaging surface S13.Imaging lens system group, which may also include, is arranged at imaging surface S13 photo-sensitive cell.
First lens L1 has negative power, and its thing side S1 is concave surface, and image side surface S2 is concave surface, and the first lens L1 Thing side S1 and image side surface S2 is sphere.
Second lens L2 has positive light coke, and its thing side S3 is convex surface, and image side surface S4 is convex surface, and the second lens L2 Thing side S3 and image side surface S4 is aspherical.
3rd lens L3 has positive light coke, and its thing side S5 is convex surface, and image side surface S6 is concave surface, and the 3rd lens L3 Thing side S5 and image side surface S6 is aspherical.
4th lens L4 has positive light coke, and its thing side S7 is convex surface, and image side surface S8 is convex surface, and the 4th lens L4 Thing side S7 and image side surface S8 is aspherical.
5th lens L5 has positive light coke, and its thing side S9 is convex surface, and image side surface S10 is concave surface, and the 5th lens L5 Thing side S9 and image side surface S10 be aspherical.
Alternatively, imaging lens system group may also include the optical filter L6 with thing side S11 and image side surface S12.
Alternatively, the diaphragm STO of confine optical beam can be provided between the first lens L1 and the second lens L2, to be lifted The image quality of imaging lens system group.
Table 16 show the surface types of each lens of the imaging lens system group of embodiment 6, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 17 is shown available for each non-in embodiment 6 The high order term coefficient of spherical mirror surface, wherein, the formula (1) that each aspherical face type can be provided in above-described embodiment 1 is limited.Table 18 Show in embodiment 6 total effective focal length f of imaging lens system group, the effective focal length f1 to f5 of each lens, optics total length TTL with And maximum angle of half field-of view HFOV.
Table 16
Table 17
Table 18
Figure 12 A show chromatic curve on the axle of the imaging lens system group of embodiment 6, its represent different wave length light via Converging focal point after lens group deviates.Figure 12 B show the astigmatism curve of the imaging lens system group of embodiment 6, and it represents meridian picture Face is bent and sagittal image surface bending.Figure 12 C show the distortion curve of the imaging lens system group of embodiment 6, and it represents different visual angles In the case of distortion sizes values.Figure 12 D show the ratio chromatism, curve of the imaging lens system group of embodiment 6, and it represents light warp The deviation of different image heights after lens group on imaging surface.Understood according to Figure 12 A to Figure 12 D, taking the photograph given by embodiment 6 As lens group can realize good image quality.
Embodiment 7
The imaging lens system group according to the embodiment of the present application 7 is described referring to Figure 13 to Figure 14 D.Figure 13 shows basis The structural representation of the imaging lens system group of the embodiment of the present application 7.
As shown in figure 13, imaging lens system group sequentially includes the first lens L1, the second lens by thing side along optical axis into image side L2, the 3rd lens L3, the 4th lens L4, the 5th lens L5 and imaging surface S13.Imaging lens system group, which may also include, is arranged at imaging surface S13 photo-sensitive cell.
First lens L1 has negative power, and its thing side S1 is concave surface, and image side surface S2 is concave surface, and the first lens L1 Thing side S1 and image side surface S2 is sphere.
Second lens L2 has positive light coke, and its thing side S3 is concave surface, and image side surface S4 is convex surface, and the second lens L2 Thing side S3 and image side surface S4 is aspherical.
3rd lens L3 has positive light coke, and its thing side S5 is convex surface, and image side surface S6 is concave surface, and the 3rd lens L3 Thing side S5 and image side surface S6 is aspherical.
4th lens L4 has positive light coke, and its thing side S7 is convex surface, and image side surface S8 is convex surface, and the 4th lens L4 Thing side S7 and image side surface S8 is aspherical.
5th lens L5 has positive light coke, and its thing side S9 is convex surface, and image side surface S10 is concave surface, and the 5th lens L5 Thing side S9 and image side surface S10 be aspherical.
Alternatively, imaging lens system group may also include the optical filter L6 with thing side S11 and image side surface S12.
Alternatively, the diaphragm STO of confine optical beam can be provided between the first lens L1 and the second lens L2, to be lifted The image quality of imaging lens system group.
Table 19 show the surface types of each lens of the imaging lens system group of embodiment 7, radius of curvature, thickness, material and Circular cone coefficient, wherein, the unit of radius of curvature and thickness is millimeter (mm).Table 20 is shown available for each non-in embodiment 7 The high order term coefficient of spherical mirror surface, wherein, the formula (1) that each aspherical face type can be provided in above-described embodiment 1 is limited.Table 21 Show in embodiment 7 total effective focal length f of imaging lens system group, the effective focal length f1 to f5 of each lens, optics total length TTL with And maximum angle of half field-of view HFOV.
Table 19
Table 20
Table 21
Figure 14 A show chromatic curve on the axle of the imaging lens system group of embodiment 7, its represent different wave length light via Converging focal point after lens group deviates.Figure 14 B show the astigmatism curve of the imaging lens system group of embodiment 7, and it represents meridian picture Face is bent and sagittal image surface bending.Figure 14 C show the distortion curve of the imaging lens system group of embodiment 7, and it represents different visual angles In the case of distortion sizes values.Figure 14 D show the ratio chromatism, curve of the imaging lens system group of embodiment 7, and it represents light warp The deviation of different image heights after lens group on imaging surface.Understood according to Figure 14 A to Figure 14 D, taking the photograph given by embodiment 7 As lens group can realize good image quality.
To sum up, embodiment 1 to embodiment 7 meets the relation shown in table 22 below respectively.
Conditional embodiment 1 2 3 4 5 6 7
f/EPD 1.20 1.20 1.20 1.20 1.20 1.20 1.00
DT11/EPD 1.07 1.14 1.04 1.15 1.50 1.51 1.03
tan(HFOV/2) 0.57 0.56 0.55 0.54 0.56 0.78 0.59
f1/f -1.57 -1.56 -1.77 -2.07 -1.83 -1.88 -1.98
f2345/f 0.97 1.06 1.05 1.14 1.10 1.17 1.17
f2/f 1.83 1.48 1.48 2.67 2.82 2.27 2.05
∑T/TTL 0.29 0.24 0.24 0.30 0.23 0.16 0.26
CT2/ET2 2.99 3.02 2.28 3.03 1.90 3.00 2.48
DT11/DT52 0.81 0.90 0.83 0.85 1.20 0.85 0.84
SL/TTL 0.84 0.83 0.82 0.81 0.76 0.85 0.84
Table 22
Above description is only the preferred embodiment of the application and the explanation to institute's application technology principle.People in the art Member should be appreciated that invention scope involved in the application, however it is not limited to the technology of the particular combination of above-mentioned technical characteristic Scheme, while should also cover in the case where not departing from the inventive concept, is carried out by above-mentioned technical characteristic or its equivalent feature Other technical schemes formed by any combination.Such as features described above has similar work(with (but not limited to) disclosed herein The technical characteristic of energy carries out technical scheme formed by replacement mutually.

Claims (13)

1. imaging lens system group, is sequentially included along optical axis by thing side to image side:It is first lens, the second lens, the 3rd lens, the 4th saturating Mirror and the 5th lens, it is characterised in that
First lens have negative power, and its image side surface is concave surface;
Second lens have positive light coke, and its image side surface is convex surface;
3rd lens, the 4th lens and the 5th lens are respectively provided with positive light coke or negative power;And
Total effective focal length f of the imaging lens system group meets 0.8 < f/EPD < with the Entry pupil diameters EPD of the imaging lens system group 1.6。
2. imaging lens system group according to claim 1, it is characterised in that the effective focal length f1 of first lens with it is described Total effective focal length f of imaging lens system group meets -2.1 < f1/f < -1.5.
3. imaging lens system group according to claim 1, it is characterised in that the effective focal length f2 of second lens with it is described Total effective focal length f of imaging lens system group meets 1.4 < f2/f < 3.
4. imaging lens system group according to claim 1, it is characterised in that second lens, the 3rd lens, described The combination focal power of 4th lens and the 5th lens is positive light coke, its combined focal length f2345 and the imaging lens system group Total effective focal length f meet 0.8 < f2345/f < 1.3.
5. imaging lens system group according to claim 1, it is characterised in that effective half bore of the first lens thing side DT11 and the Entry pupil diameters EPD of the imaging lens system group meet 1 < DT11/EPD < 1.6.
6. imaging lens system group according to claim 1, it is characterised in that effective half bore of the first lens thing side DT11 and the 5th lens image side surface effective half bore DT52 meet 0.7 < DT11/DT52 < 1.3.
7. imaging lens system group according to claim 1, it is characterised in that second lens are in the center on the optical axis Thickness CT2 and second lens edge thickness ET2 meet 1.8 < CT2/ET2 < 3.5.
8. imaging lens system group according to any one of claim 1 to 7, it is characterised in that the imaging lens system group is most Big angle of half field-of view HFOV meets tan (HFOV/2) > 0.5.
9. imaging lens system group according to any one of claim 1 to 7, it is characterised in that first lens are to described In 5th lens on the countershaft of the lens of arbitrary neighborhood two the thing side of the summation ∑ T of spacing distance and first lens to described On the axle of the imaging surface of imaging lens system group 0.1 < ∑s T/TTL≤0.3 is met apart from TTL.
10. imaging lens system group according to any one of claim 1 to 7, it is characterised in that the imaging lens system group is also wrapped Include the diaphragm being arranged between first lens and second lens.
11. imaging lens system group according to claim 10, it is characterised in that the diaphragm to the imaging lens system group into Distance on thing side to the axle of the imaging surface of the imaging lens system group of first lens apart from TTL with meeting on the axle of image planes 0.7 < SL/TTL < 1.
12. imaging lens system group, with total effective focal length f, the imaging lens system group is sequentially included along optical axis by thing side to image side:The One lens, the second lens, the 3rd lens, the 4th lens and the 5th lens, it is characterised in that
First lens have negative power;
At least one in second lens, the 3rd lens, the 4th lens and the 5th lens has positive light Focal power,
Wherein, the effective focal length f1 of first lens meets -2.1 < f1/f < -1.5, and
Wherein, the combination focal power of second lens, the 3rd lens, the 4th lens and the 5th lens is just Focal power.
13. imaging lens system group, is sequentially included along optical axis by thing side to image side:First lens, the second lens, the 3rd lens, the 4th Lens and the 5th lens, it is characterised in that
First lens have negative power, and at least one in its thing side and image side surface is concave surface;
Second lens have positive light coke, and at least one in its thing side and image side surface is convex surface;
3rd lens, the 4th lens and the 5th lens are respectively provided with positive light coke or negative power;And
Effective half bore DT11 of the first lens thing side meets 1 < with the Entry pupil diameters EPD of the imaging lens system group DT11/EPD < 1.6.
CN201710695396.XA 2017-08-15 2017-08-15 Imaging lens system group Active CN107272165B (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201710695396.XA CN107272165B (en) 2017-08-15 2017-08-15 Imaging lens system group
PCT/CN2018/080109 WO2019033755A1 (en) 2017-08-15 2018-03-23 Image pickup lens group
US16/231,114 US11226471B2 (en) 2017-08-15 2018-12-21 Camera lens assembly

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710695396.XA CN107272165B (en) 2017-08-15 2017-08-15 Imaging lens system group

Publications (2)

Publication Number Publication Date
CN107272165A true CN107272165A (en) 2017-10-20
CN107272165B CN107272165B (en) 2019-05-03

Family

ID=60077728

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710695396.XA Active CN107272165B (en) 2017-08-15 2017-08-15 Imaging lens system group

Country Status (1)

Country Link
CN (1) CN107272165B (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108445608A (en) * 2018-05-25 2018-08-24 广东弘景光电科技股份有限公司 High-pixel wide-angle infrared optical system and its camera module of application
CN109358411A (en) * 2018-12-17 2019-02-19 浙江舜宇光学有限公司 Pick-up lens
CN109507784A (en) * 2018-12-12 2019-03-22 广东弘景光电科技股份有限公司 High pixel large aperture Depth Imaging optical system and its camera module of application
WO2021057347A1 (en) * 2019-09-27 2021-04-01 浙江舜宇光学有限公司 Optical imaging lens
WO2021174408A1 (en) * 2020-03-03 2021-09-10 江西晶超光学有限公司 Wide-angle lens, image-capturing device, and electronic device
US11226471B2 (en) 2017-08-15 2022-01-18 Zhejiang Sunny Optical Co., Ltd. Camera lens assembly
CN114509858A (en) * 2020-11-17 2022-05-17 宁波舜宇车载光学技术有限公司 Optical lens, optical imaging apparatus, and vehicle
CN115079386A (en) * 2022-08-22 2022-09-20 江西联益光学有限公司 Optical lens and imaging apparatus
WO2022236817A1 (en) * 2021-05-14 2022-11-17 欧菲光集团股份有限公司 Optical system, image capturing module, and electronic device
CN115437127A (en) * 2022-10-26 2022-12-06 江西联昊光电有限公司 Optical lens and near-to-eye display system
TWI792202B (en) * 2021-02-26 2023-02-11 大陸商信泰光學(深圳)有限公司 Lens assembly

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777322A (en) * 2013-09-30 2014-05-07 玉晶光电(厦门)有限公司 Portable electronic device and optical imaging lens thereof
CN103777323A (en) * 2013-09-30 2014-05-07 玉晶光电(厦门)有限公司 Optical imaging lens and electronic device applying optical imaging lens
CN207008164U (en) * 2017-08-15 2018-02-13 浙江舜宇光学有限公司 Imaging lens system group

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103777322A (en) * 2013-09-30 2014-05-07 玉晶光电(厦门)有限公司 Portable electronic device and optical imaging lens thereof
CN103777323A (en) * 2013-09-30 2014-05-07 玉晶光电(厦门)有限公司 Optical imaging lens and electronic device applying optical imaging lens
CN207008164U (en) * 2017-08-15 2018-02-13 浙江舜宇光学有限公司 Imaging lens system group

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11226471B2 (en) 2017-08-15 2022-01-18 Zhejiang Sunny Optical Co., Ltd. Camera lens assembly
CN108445608B (en) * 2018-05-25 2023-08-22 广东弘景光电科技股份有限公司 High-pixel wide-angle infrared optical system and camera module applying same
CN108445608A (en) * 2018-05-25 2018-08-24 广东弘景光电科技股份有限公司 High-pixel wide-angle infrared optical system and its camera module of application
CN109507784A (en) * 2018-12-12 2019-03-22 广东弘景光电科技股份有限公司 High pixel large aperture Depth Imaging optical system and its camera module of application
CN109507784B (en) * 2018-12-12 2023-10-27 广东弘景光电科技股份有限公司 High-pixel large-aperture-depth imaging optical system and camera module applying same
CN109358411A (en) * 2018-12-17 2019-02-19 浙江舜宇光学有限公司 Pick-up lens
WO2021057347A1 (en) * 2019-09-27 2021-04-01 浙江舜宇光学有限公司 Optical imaging lens
WO2021174408A1 (en) * 2020-03-03 2021-09-10 江西晶超光学有限公司 Wide-angle lens, image-capturing device, and electronic device
CN114509858A (en) * 2020-11-17 2022-05-17 宁波舜宇车载光学技术有限公司 Optical lens, optical imaging apparatus, and vehicle
TWI792202B (en) * 2021-02-26 2023-02-11 大陸商信泰光學(深圳)有限公司 Lens assembly
WO2022236817A1 (en) * 2021-05-14 2022-11-17 欧菲光集团股份有限公司 Optical system, image capturing module, and electronic device
CN115079386A (en) * 2022-08-22 2022-09-20 江西联益光学有限公司 Optical lens and imaging apparatus
CN115437127A (en) * 2022-10-26 2022-12-06 江西联昊光电有限公司 Optical lens and near-to-eye display system

Also Published As

Publication number Publication date
CN107272165B (en) 2019-05-03

Similar Documents

Publication Publication Date Title
CN107272165B (en) Imaging lens system group
CN107315236B (en) Imaging lens system group
CN207008164U (en) Imaging lens system group
CN109031629A (en) imaging optical system
CN108919464A (en) Optical imagery eyeglass group
CN108152934A (en) Optical imaging lens
CN109031628A (en) Optical imagery eyeglass group
CN108445609B (en) Imaging lens system group
CN208705549U (en) Optical imagery eyeglass group
CN208705559U (en) Optical imaging lens
CN109752826A (en) Optical imaging lens
CN108089317A (en) Optical imaging lens
CN108983401A (en) Optical lens group
CN209044159U (en) Imaging optical system
CN109298515A (en) Pick-up lens
CN109491047A (en) Optical imaging lens
CN109100854A (en) Pick-up lens
CN108919463A (en) Optical imaging lens
CN107121756A (en) Optical imaging system
CN207336905U (en) Pick-up lens
CN209215719U (en) Optical imaging lens
CN108802972A (en) Optical imaging system
CN108279483A (en) Pick-up lens group
CN109298513A (en) Optical imaging lens
CN206990889U (en) Optical imaging system

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant