CN107271956A - The localization method based on arrival time of unknown initial time in nlos environment - Google Patents

The localization method based on arrival time of unknown initial time in nlos environment Download PDF

Info

Publication number
CN107271956A
CN107271956A CN201710269269.3A CN201710269269A CN107271956A CN 107271956 A CN107271956 A CN 107271956A CN 201710269269 A CN201710269269 A CN 201710269269A CN 107271956 A CN107271956 A CN 107271956A
Authority
CN
China
Prior art keywords
msub
mrow
msubsup
msup
target source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710269269.3A
Other languages
Chinese (zh)
Other versions
CN107271956B (en
Inventor
王刚
高尚超
王伟
李有明
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ningbo University
Original Assignee
Ningbo University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ningbo University filed Critical Ningbo University
Priority to CN201710269269.3A priority Critical patent/CN107271956B/en
Publication of CN107271956A publication Critical patent/CN107271956A/en
Application granted granted Critical
Publication of CN107271956B publication Critical patent/CN107271956B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/06Position of source determined by co-ordinating a plurality of position lines defined by path-difference measurements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S5/00Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations
    • G01S5/02Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves
    • G01S5/0273Position-fixing by co-ordinating two or more direction or position line determinations; Position-fixing by co-ordinating two or more distance determinations using radio waves using multipath or indirect path propagation signals in position determination

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

本发明公开了一种非视距环境中未知起始时间的基于到达时间的定位方法,其先建立目标源与每个传感器之间的信号传输距离的模型;然后根据模型得到测量噪声的描述;接着根据测量噪声的描述,并采用最坏情况下的鲁棒加权最小二乘方法,得到在未知信号发射起始时间和存在非视距误差的环境中的定位问题,再转变为非凸的定位问题;之后通过引入辅助变量,并采用二阶锥松弛方法,得到二阶锥规划问题;最后利用内点法对二阶锥规划问题进行求解,得到目标源在参考坐标系中的坐标位置的最终估计值;优点是能够同时解决存在的未知信号发射起始时间和非视距误差的存在问题,从而能够提高定位精度。

The invention discloses a time-of-arrival positioning method based on an unknown start time in a non-line-of-sight environment, which first establishes a model of the signal transmission distance between a target source and each sensor; then obtains a description of measurement noise according to the model; Then, according to the description of the measurement noise, and using the worst-case robust weighted least squares method, the positioning problem in an environment with unknown signal transmission start time and non-line-of-sight errors is obtained, and then transformed into a non-convex positioning problem; then by introducing auxiliary variables and using the second-order cone relaxation method, the second-order cone programming problem is obtained; finally, the interior point method is used to solve the second-order cone programming problem, and the final coordinate position of the target source in the reference coordinate system is obtained Estimated value; the advantage is that it can solve the existing problems of unknown signal transmission start time and non-line-of-sight error at the same time, thereby improving positioning accuracy.

Description

非视距环境中未知起始时间的基于到达时间的定位方法Time-of-arrival-based localization method with unknown origin time in non-line-of-sight environment

技术领域technical field

本发明涉及一种目标定位方法,尤其是涉及一种非视距环境中未知起始时间的基于到达时间的定位方法。The invention relates to a target positioning method, in particular to a time-of-arrival positioning method with unknown starting time in a non-line-of-sight environment.

背景技术Background technique

近些年,无线传感器网络定位技术在诸多领域得到了广泛的应用,可以便捷快速地实现定位导航、环境监测、智能家居、工业控制等。随着技术的发展与社会的进步,高精度的定位技术在各个领域展现出了广泛的应用前景。因此,对无线传感器网络中高精度的目标定位方法的研究十分有必要。In recent years, wireless sensor network positioning technology has been widely used in many fields, which can conveniently and quickly realize positioning navigation, environmental monitoring, smart home, industrial control, etc. With the development of technology and the progress of society, high-precision positioning technology has shown a wide range of application prospects in various fields. Therefore, it is very necessary to research on high-precision target localization methods in wireless sensor networks.

目前,实现目标定位的基本方法有很多。使用最为广泛的是基于到达时间(Timeof Arrival)的时间测量方法,基本的网络结构如图1所示。该方法的优点是时间测量系统的复杂度低,可实现高精度的目标定位。因此,大多数目标定位方法的研究都是基于到达时间测量进行的。At present, there are many basic methods to achieve target positioning. The most widely used is the time measurement method based on Time of Arrival (TimeofArrival). The basic network structure is shown in Figure 1. The advantage of this method is that the complexity of the time measurement system is low, and it can achieve high-precision target positioning. Therefore, most studies on object localization methods are performed based on time-of-arrival measurements.

目标的精确定位是目标定位方法设计的关键。然而,现实的无线传感器网络中会存在很多影响定位精度的因素,主要的问题有无线传感器网络的时钟非同步问题和非视距误差问题,如图1中所示。所谓的时钟非同步问题主要是指未知目标发射信号的准确的起始时间,造成信号在目标和传感器之间的传输时间测量不准确,使测量距离与真实距离产生偏差,进而影响定位精度。所谓的非视距误差是指信号的传输在目标与传感器之间受阻挡而产生传播时延,使测量时间变长,产生较大的距离测量误差,使定位精度降低。事实上,如果不能有效的处理未知信号发射起始时间和非视距误差的存在问题,则定位精度将不会得到有效的大幅度提升。The precise location of the target is the key to the design of the target location method. However, there are many factors that affect the positioning accuracy in the actual wireless sensor network. The main problems are the clock asynchronous problem and the non-line-of-sight error problem in the wireless sensor network, as shown in Figure 1. The so-called clock asynchronous problem mainly refers to the accurate start time of the unknown target transmitting signal, resulting in inaccurate measurement of the transmission time of the signal between the target and the sensor, causing a deviation between the measured distance and the real distance, and thus affecting the positioning accuracy. The so-called non-line-of-sight error means that the transmission of the signal is blocked between the target and the sensor, resulting in a propagation delay, which makes the measurement time longer, produces a large distance measurement error, and reduces the positioning accuracy. In fact, if the problems of unknown signal transmission start time and non-line-of-sight error cannot be effectively dealt with, the positioning accuracy will not be greatly improved effectively.

为了解决基于到达时间的定位方法中同时存在的未知信号发射起始时间和非视距误差的存在问题,需要设计一种方法联合消除时钟非同步和非视距误差对定位精度的不利影响。目前,联合处理两种误差的方法较少,但单独针对未知起始时间和非视距误差的方法的研究已经非常广泛。例如,利用凸松弛技术进行有效的非视距误差处理;利用一些方法联合估计信号发射的未知起始时间和目标位置。然而,在实际应用中,同时未知起始时间和非视距误差的存在是非常普遍的情况,单独的误差处理将很难应用到实际生活中,因此,多误差的联合处理将是一个必然的趋势。In order to solve the problem of unknown signal transmission start time and non-line-of-sight error in the time-of-arrival positioning method, it is necessary to design a method to jointly eliminate the adverse effects of clock asynchrony and non-line-of-sight error on positioning accuracy. At present, there are few methods to jointly deal with the two kinds of errors, but the research on the methods for unknown start time and non-line-of-sight errors alone has been very extensive. For example, use convex relaxation techniques for efficient non-line-of-sight error processing; use some methods to jointly estimate the unknown start time and target position of signal emission. However, in practical applications, the existence of unknown start time and non-line-of-sight errors at the same time is very common, and it is difficult to apply individual error processing to real life. Therefore, joint processing of multiple errors will be an inevitable trend.

发明内容Contents of the invention

本发明所要解决的技术问题是提供一种基于到达时间的定位方法,其能够同时解决存在的未知信号发射起始时间和非视距误差的存在问题,从而能够提高定位精度。The technical problem to be solved by the present invention is to provide a positioning method based on time of arrival, which can simultaneously solve the existing problems of unknown signal transmission start time and non-line-of-sight error, thereby improving positioning accuracy.

本发明解决上述技术问题所采用的技术方案为:一种非视距环境中未知起始时间的基于到达时间的定位方法,其特征在于包括以下步骤:The technical scheme adopted by the present invention to solve the above-mentioned technical problems is: a positioning method based on arrival time with unknown start time in a non-line-of-sight environment, characterized in that it includes the following steps:

①在无线传感器网络中建立一个平面坐标系或空间坐标系作为参考坐标系;设定无线传感器网络中存在一个用于发射测量信号的目标源和N个用于接收测量信号的传感器,且设定N个传感器的时钟同步,而目标源的时钟与传感器的时钟不同步;将N个传感器在参考坐标系中的坐标位置对应记为s1,…,sN,将目标源在参考坐标系中的坐标位置记为x;其中,N≥3,s1表示第1个传感器在参考坐标系中的坐标位置,sN表示第N个传感器在参考坐标系中的坐标位置;① Establish a plane coordinate system or space coordinate system as a reference coordinate system in the wireless sensor network; set a target source for transmitting measurement signals and N sensors for receiving measurement signals in the wireless sensor network, and set The clocks of the N sensors are synchronized, but the clocks of the target source are not synchronized with the clocks of the sensors; the coordinate positions of the N sensors in the reference coordinate system are correspondingly recorded as s 1 ,…,s N , and the target source is in the reference coordinate system The coordinate position of is denoted as x; among them, N≥3, s 1 represents the coordinate position of the first sensor in the reference coordinate system, and s N represents the coordinate position of the Nth sensor in the reference coordinate system;

②计算目标源与每个传感器之间的信号传输距离,将目标源与第i个传感器之间的信号传输距离记为di,di=c×ti,其中,1≤i≤N,c表示光速,ti表示测量信号从目标源发出到第i个传感器接收所经历的时间;② Calculate the signal transmission distance between the target source and each sensor, record the signal transmission distance between the target source and the i-th sensor as d i , d i =c×t i , where, 1≤i≤N, c represents the speed of light, t i represents the time elapsed from the measurement signal being sent from the target source to the i-th sensor receiving;

③将目标源与每个传感器之间的信号传输距离以模型方式进行描述,将di的模型表示为:di=d0+||x-si||+ei+ni,其中,d0表示未知信号发射起始时间造成的信号传输距离偏差,d0=c×Δt,d0≥0,Δt表示目标源的时钟与传感器的时钟的差值,符号“|| ||”为求欧几里德范数符号,si表示第i个传感器在参考坐标系中的坐标位置,ei表示测量信号从目标源发出到第i个传感器接收所经历的路径上存在的非视距误差,ni表示测量信号从目标源发出到第i个传感器接收所经历的路径上存在的测量噪声,ni服从零均值的高斯分布 表示ni的功率,0≤|ni|<<ei≤ρi,符号“||”为取绝对值符号,ρi表示测量信号从目标源发出到第i个传感器接收所经历的路径上存在的非视距误差的上限;③Describe the signal transmission distance between the target source and each sensor in a model, and express the model of d i as: d i =d 0 +||xs i ||+e i +n i , where d 0 represents the signal transmission distance deviation caused by the unknown signal transmission start time, d 0 =c×Δt, d 0 ≥ 0, Δt represents the difference between the clock of the target source and the clock of the sensor, and the symbol "|| ||" is Euclidean norm symbol, s i represents the coordinate position of the i-th sensor in the reference coordinate system, e i represents the non-line-of-sight error existing on the path from the target source to the i-th sensor receiving the measurement signal , n i represents the measurement noise that exists on the path from the target source to the i-th sensor receiving the measurement signal, and n i obeys a Gaussian distribution with zero mean Indicates the power of n i , 0≤|n i |<<e i ≤ρ i , the symbol "||" is the absolute value symbol, and ρ i represents the path that the measurement signal goes through from the target source to the i-th sensor receiving The upper limit of the non-line-of-sight error existing on ;

④将di=d0+||x-si||+ei+ni转变为di-ei=(d0+||x-si||)+ni;然后对di-ei=(d0+||x-si||)+ni的等式两边进行平方,得到接着忽略中的得到(di-ei)2≈(d0+||x-si||)2+2ni(d0+||x-si||);再将(di-ei)2≈(d0+||x-si||)2+2ni(d0+||x-si||)转变为 ④ Transform d i =d 0 +||xs i ||+e i +n i into d i -e i =(d 0 +||xs i ||)+n i ; then d i -e i =(d 0 +||xs i ||)+n i is squared on both sides to get then ignore middle Get (d i -e i ) 2 ≈(d 0 +||xs i ||) 2 +2n i (d 0 +||xs i ||); then (d i -e i )2≈(d 0 +||xs i ||) 2 +2n i (d 0 +||xs i ||) becomes

⑤根据并采用最坏情况下的鲁棒加权最小二乘方法,得到在未知信号发射起始时间和存在非视距误差的环境中的定位问题,描述为:然后令转变为接着将转变为之后在区间[0,ρi]内确定f(ei)的最大值,当di≤ρi时有当dii时有最后将代入中,得到非凸的定位问题,⑤ According to And using the worst-case robust weighted least squares method, the positioning problem in an environment with unknown signal transmission start time and non-line-of-sight errors is obtained, which is described as: Then order Will Into Next will Into Then determine the maximum value of f(e i ) in the interval [0,ρ i ], when d i ≤ρ i has When d ii , there is Finally will with substitute In , the non-convex localization problem is obtained,

描述为:如果di≤ρidescribed as: if d i ≤ ρ i ;

如果dii If d ii

其中,min()为取最小值函数,max()为取最大值函数,Among them, min() is the minimum value function, max() is the maximum value function,

“s.t.”表示“受约束于……”; "st" means "subject to";

⑥在非凸的定位问题中引入辅助变量η12,…,ηi,…ηN,将⑥Introduce auxiliary variables η 1 , η 2 ,…,η i ,…η N in the non-convex positioning problem, the

如果di≤ρi等价描述为: If d i ≤ ρ i is equivalently described as:

如果dii If d ii

;然后将f(0),f(ρi),f(di)代入 ; Then substitute f(0), f(ρ i ), f(d i ) into

如果di≤ρi If d i ≤ ρ i

并引入辅助变量b1,b2,…bi,…bN、r和y,得到 And introduce auxiliary variables b 1 , b 2 ,…b i ,…b N , r and y to get

如果di≤ρi If d i ≤ ρ i

如果di≤ρi;接着采用二阶锥松弛 If d i ≤ ρ i ; then use second-order cone relaxation

A[x,y,d0,r]T≤fA[x,y,d 0 ,r] T ≤ f

bi=2d0||x-si||b i =2d 0 ||xs i ||

方法将method will

如果di≤ρi If d i ≤ ρ i

A[x,y,d0,r]T≤fA[x,y,d 0 ,r] T ≤ f

bi=2d0||x-si||b i =2d 0 ||xs i ||

中的y=||x||2松驰为||x||2≤y、松弛为得到二阶锥规划问题,描述为:The y=||x|| 2 in slack is ||x|| 2 ≤y, relax to The second-order cone programming problem is obtained, which is described as:

如果di≤ρi if d i ≤ ρ i ;

A[x,y,d0,r]T≤fA[x,y,d 0 ,r] T ≤ f

其中,η12,…,ηi,…ηN对应表示非凸的定位问题中引入的第1个辅助变量、第2个辅助变量、…、第i个辅助变量、…、第N个辅助变量,b1,b2,…bi,…bN对应表示Among them, η 1 , η 2 ,...,η i ,...η N correspond to the first auxiliary variable introduced in the non-convex positioning problem, the second auxiliary variable, ..., the i-th auxiliary variable, ..., the Nth Auxiliary variables, b 1 ,b 2 ,… bi ,…b N correspond to

中引入的第1个辅助变量、第2个辅助变量、…、第如果di≤ρi The first auxiliary variable, the second auxiliary variable, ..., the first auxiliary variable introduced in If d i ≤ ρ i

i个辅助变量、…、第N个辅助变量,r和y对应表示 The i auxiliary variable, ..., the Nth auxiliary variable, r and y correspond to represent

如果di≤ρi中引入的额外两个辅助变量,为si的转置, 为s1的转置,为sN的转置,d1表示目标源与第1个传感器之间的信号传输距离,dN表示目标源与第N个传感器之间的信号传输距离,[x,y,d0,r]T为[x,y,d0,r]的转置, The additional two auxiliary variables introduced in if d i ≤ ρ i , is the transpose of si , is the transpose of s 1 , is the transpose of s N , d 1 represents the signal transmission distance between the target source and the first sensor, d N represents the signal transmission distance between the target source and the Nth sensor, [x,y,d 0 ,r ] T is the transpose of [x,y,d 0 ,r],

⑦利用内点法对二阶锥规划问题进行求解,得到全局最优解,记为x*,x*即为目标源在参考坐标系中的坐标位置的最终估计值。⑦ Use the interior point method to solve the second-order cone programming problem, and obtain the global optimal solution, denoted as x * , x * is the final estimated value of the coordinate position of the target source in the reference coordinate system.

所述的步骤⑥中的约束条件A[x,y,d0,r]T≤f的确定过程为:根据一般情况下测量噪声远小于非视距误差的结论,得到di≥d0+||x-si||;然后将di≥d0+||x-si||转变为di-d0≥||x-si||,并对di-d0≥||x-si||两边进行平方展开,得到接着根据y=||x||2转变为最后将以向量形式进行描述,描述为:A[x,y,d0,r]T≤f, The determination process of the constraint condition A[x,y,d 0 ,r] T ≤ f in the step ⑥ is as follows: According to the conclusion that the measurement noise is much smaller than the non-line-of-sight error in general, it is obtained that d i ≥d 0 + ||xs i || ; then transform d i ≥d 0 +||xs i || into d i -d 0 ≥|| xs i || Square expansion on both sides, we get Then according to y=||x|| 2 and Will Into Finally will Described in vector form, described as: A[x,y,d 0 ,r] T ≤f,

所述的步骤⑥中的约束条件的确定过程为:The constraints in the step ⑥ The determination process is:

⑥_1、根据松弛前的约束条件bi=2d0||x-si||,利用平方和不等式得到接着将中的平方项展开,得到然后将y=||x||2代入中,得到关于时钟误差的约束条件再根据已知条件d0≥0,得到bi≥0;⑥_1. According to the constraints before relaxation b i =2d 0 ||xs i ||, use the square sum inequality to get Next will Expanding the square term in , we get Then y=||x|| 2 and substitute , get the constraints on the clock error Then according to the known condition d 0 ≥0, get b i ≥0;

⑥_2、对松弛前的约束条件bi=2d0||x-si||的等式两边平方展开,得到然后将y=||x||2代入中,得到接着将松弛为凸约束条件再将代入中,得到 ⑥_2. For the constraint condition before relaxation, b i =2d 0 ||xs i || Then substitute y=||x|| 2 into in, get Next will Relax to Convex Constraints then substitute in, get

与现有技术相比,本发明的优点在于:Compared with the prior art, the present invention has the advantages of:

1)本发明方法在建立目标源与每个传感器之间的信号传输距离的模型的过程中,全面的考虑了非视距误差和时钟非同步产生的误差,以联合处理非视距误差的存在问题和目标源的时钟不同步的问题,更加接近实际应用。1) In the process of establishing the model of the signal transmission distance between the target source and each sensor, the method of the present invention fully considers the non-line-of-sight error and the error caused by clock asynchrony, so as to jointly deal with the existence of the non-line-of-sight error The problem that the clock of the problem and the target source are not synchronized is closer to the actual application.

2)本发明方法根据测量噪声,并采用最坏情况下的鲁棒加权最小二乘方法,来获得在未知信号发射起始时间和存在非视距误差的环境中的定位问题,再转变为非凸的定位问题,对非视距误差进行鲁棒处理,充分利用了非视距误差的上限来提高定位性能,即使在非视距路径较多的恶劣情况下,也具有充足的性能优势,使得本发明方法更加贴近于实际应用。2) According to the measurement noise, the method of the present invention adopts the worst-case robust weighted least squares method to obtain the positioning problem in the environment where the unknown signal transmission start time and the non-line-of-sight error exist, and then converts it into a non-line-of-sight error. Convex positioning problem, robust processing of non-line-of-sight errors, making full use of the upper limit of non-line-of-sight errors to improve positioning performance, even in harsh conditions with many non-line-of-sight paths, it has sufficient performance advantages, making The method of the present invention is closer to practical application.

3)本发明方法通过引入辅助变量,并采用二阶锥松弛方法得到二阶锥规划问题,由于在二阶锥规划问题中增加了有关于时钟误差的合理的约束条件,使本发明方法可以较为准确的估算时钟误差,减少了时钟误差对定位性能的影响,因此有效的增加了本发明方法的针对时钟误差的稳健性,具有更强的抗干扰能力。3) the method of the present invention obtains the second-order cone programming problem by introducing auxiliary variables and adopting the second-order cone relaxation method, because the reasonable constraints about the clock error are added in the second-order cone programming problem, the method of the present invention can be compared Accurately estimating the clock error reduces the influence of the clock error on the positioning performance, thus effectively increasing the robustness against the clock error of the method of the present invention and having stronger anti-interference ability.

附图说明Description of drawings

图1为非视距环境中未知起始时间的条件下基于到达时间(TOA)的定位环境的示意图;FIG. 1 is a schematic diagram of a time-of-arrival (TOA)-based positioning environment under the condition of an unknown start time in a non-line-of-sight environment;

图2为本发明方法的总体流程框图;Fig. 2 is the overall flow chart of the inventive method;

图3为在非视距路径较多的情况下本发明方法与现有的鲁棒半正定松弛方法和现有的鲁棒二阶锥松弛方法的坐标估计值与坐标真实值的均方根误差随测量噪声增加的变化图;Fig. 3 is the root mean square error between the estimated value of the coordinates and the real value of the coordinates of the method of the present invention, the existing robust positive semi-definite relaxation method and the existing robust second-order cone relaxation method in the case of many non-line-of-sight paths Variation plot with increasing measurement noise;

图4为在非视距路径较少的情况下本发明方法与现有的鲁棒半正定松弛方法和现有的鲁棒二阶锥松弛方法的坐标估计值与坐标真实值的均方根误差随测量噪声增加的变化图;Fig. 4 shows the root mean square error between the estimated value of the coordinates and the real value of the coordinates of the method of the present invention, the existing robust positive semi-definite relaxation method and the existing robust second-order cone relaxation method in the case of fewer non-line-of-sight paths Variation plot with increasing measurement noise;

图5为本发明方法与现有的鲁棒半正定松弛方法和现有的鲁棒二阶锥松弛方法的坐标估计值与坐标真实值的均方根误差随非视距路径数目增加的变化图。Fig. 5 is the change graph of the root mean square error between the estimated value of the coordinates and the real value of the coordinates of the method of the present invention, the existing robust positive semi-definite relaxation method and the existing robust second-order cone relaxation method as the number of non-line-of-sight paths increases .

具体实施方式detailed description

以下结合附图实施例对本发明作进一步详细描述。The present invention will be further described in detail below in conjunction with the accompanying drawings and embodiments.

本发明提出的一种非视距环境中未知起始时间的基于到达时间的定位方法,其总体流程框图如图2所示,其包括以下步骤:A time-of-arrival positioning method based on an unknown start time in a non-line-of-sight environment proposed by the present invention, its overall flow diagram is shown in Figure 2, and it includes the following steps:

①在无线传感器网络中建立一个平面坐标系或空间坐标系作为参考坐标系;设定无线传感器网络中存在一个用于发射测量信号的目标源和N个用于接收测量信号的传感器,且设定N个传感器的时钟同步,而目标源的时钟与传感器的时钟不同步;将N个传感器在参考坐标系中的坐标位置对应记为s1,…,sN,将目标源在参考坐标系中的坐标位置记为x;其中,N≥3,在本实施例中取N=8,s1表示第1个传感器在参考坐标系中的坐标位置,sN表示第N个传感器在参考坐标系中的坐标位置。① Establish a plane coordinate system or space coordinate system as a reference coordinate system in the wireless sensor network; set a target source for transmitting measurement signals and N sensors for receiving measurement signals in the wireless sensor network, and set The clocks of the N sensors are synchronized, but the clocks of the target source are not synchronized with the clocks of the sensors; the coordinate positions of the N sensors in the reference coordinate system are correspondingly recorded as s 1 ,…,s N , and the target source is in the reference coordinate system The coordinate position of is denoted as x; wherein, N≥3, N=8 in this embodiment, s 1 represents the coordinate position of the first sensor in the reference coordinate system, s N represents the Nth sensor in the reference coordinate system The coordinate position in .

②计算目标源与每个传感器之间的信号传输距离,将目标源与第i个传感器之间的信号传输距离记为di,di=c×ti,其中,1≤i≤N,c表示光速,ti表示测量信号从目标源发出到第i个传感器接收所经历的时间。② Calculate the signal transmission distance between the target source and each sensor, record the signal transmission distance between the target source and the i-th sensor as d i , d i =c×t i , where, 1≤i≤N, c represents the speed of light, and t i represents the time elapsed from the measurement signal being sent from the target source to the i-th sensor receiving it.

③将目标源与每个传感器之间的信号传输距离以模型方式进行描述,将di的模型表示为:di=d0+||x-si||+ei+ni,其中,d0表示未知信号发射起始时间造成的信号传输距离偏差,d0=c×Δt,d0≥0,Δt表示目标源的时钟与传感器的时钟的差值,符号“||||”为求欧几里德范数符号,si表示第i个传感器在参考坐标系中的坐标位置,ei表示测量信号从目标源发出到第i个传感器接收所经历的路径上存在的非视距误差,ni表示测量信号从目标源发出到第i个传感器接收所经历的路径上存在的测量噪声,ni服从零均值的高斯分布 表示ni的功率,一般情况下,0≤|ni|<<ei≤ρi,符号“||”为取绝对值符号,ρi表示测量信号从目标源发出到第i个传感器接收所经历的路径上存在的非视距误差的上限,ρi的值在进行目标定位之前已经测量完成,ρi为常量。③Describe the signal transmission distance between the target source and each sensor in a model, and express the model of d i as: d i =d 0 +||xs i ||+e i +n i , where d 0 represents the signal transmission distance deviation caused by the unknown signal transmission start time, d 0 =c×Δt, d 0 ≥ 0, Δt represents the difference between the clock of the target source and the clock of the sensor, and the symbol "||||" is the Euclidean norm symbol, s i represents the coordinate position of the i-th sensor in the reference coordinate system, e i represents the non-line-of-sight error existing on the path from the target source to the i-th sensor receiving the measurement signal , n i represents the measurement noise that exists on the path from the target source to the i-th sensor receiving the measurement signal, and n i obeys a Gaussian distribution with zero mean Indicates the power of n i , in general, 0≤|n i |<<e i ≤ρ i , the symbol "||" is an absolute value symbol, and ρ i indicates that the measurement signal is sent from the target source to the i-th sensor to receive The upper limit of the non-line-of-sight error existing on the path experienced, the value of ρ i has been measured before target positioning, and ρ i is a constant.

④将di=d0+||x-si||+ei+ni转变为di-ei=(d0+||x-si||)+ni;然后对di-ei=(d0+||x-si||)+ni的等式两边进行平方,得到接着忽略中的得到(di-ei)2≈(d0+||x-si||)2+2ni(d0+||x-si||);再将(di-ei)2≈(d0+||x-si||)2+2ni(d0+||x-si||)转变为 ④ Transform d i =d 0 +||xs i ||+e i +n i into d i -e i =(d 0 +||xs i ||)+n i ; then d i -e i =(d 0 +||xs i ||)+n i is squared on both sides to get then ignore middle Get (d i -e i ) 2 ≈(d 0 +||xs i ||) 2 +2n i (d 0 +||xs i ||); then (d i -e i )2≈(d 0 +||xs i ||) 2 +2n i (d 0 +||xs i ||) becomes

⑤根据并采用最坏情况下的鲁棒加权最小二乘方法,得到在未知信号发射起始时间和存在非视距误差的环境中的定位问题,描述为:然后令转变为因为f(ei)始终为正数,因此接着将转变为之后在区间[0,ρi]内确定f(ei)的最大值,当di≤ρi时有当dii时有最后将代入中,得到非凸的定位问题,描述为:⑤ According to And using the worst-case robust weighted least squares method, the positioning problem in an environment with unknown signal transmission start time and non-line-of-sight errors is obtained, which is described as: Then order Will Into Since f(e i ) is always positive, then the Into Then determine the maximum value of f(e i ) in the interval [0,ρ i ], when d i ≤ρ i has When d ii , there is Finally will with substitute In , a non-convex positioning problem is obtained, which is described as:

如果di≤ρi if d i ≤ ρ i ;

如果dii If d ii

其中,min()为取最小值函数,max()为取最大值函数,Among them, min() is the minimum value function, max() is the maximum value function,

“s.t.”表示“受约束于……”。 "st" means "subject to...".

⑥在非凸的定位问题中引入辅助变量η12,…,ηi,…ηN,将⑥Introduce auxiliary variables η 1 , η 2 ,…,η i ,…η N in the non-convex positioning problem, the

如果di≤ρi等价描述为: If d i ≤ ρ i is equivalently described as:

如果dii If d ii

然后将f(0),f(ρi),f(di)代入 Then substitute f(0), f(ρ i ), f(d i ) into

如果di≤ρi If d i ≤ ρ i

并引入辅助变量b1,b2,…bi,…bN、r和y,得到如果di≤ρi And introduce auxiliary variables b 1 , b 2 ,…b i ,…b N , r and y to get If d i ≤ ρ i

如果di≤ρi;接着采用二阶锥松弛 If d i ≤ ρ i ; then use second-order cone relaxation

A[x,y,d0,r]T≤fA[x,y,d 0 ,r] T ≤ f

bi=2d0||x-si||b i =2d 0 ||xs i ||

方法将method will

如果di≤ρi If d i ≤ ρ i

A[x,y,d0,r]T≤fA[x,y,d 0 ,r] T ≤ f

bi=2d0||x-si||b i =2d 0 ||xs i ||

中的y=||x||2松驰为||x||2≤y、松弛为得到二阶锥规划问题,描述为:The y=||x|| 2 in slack is ||x|| 2 ≤y, relax to The second-order cone programming problem is obtained, which is described as:

如果di≤ρi if d i ≤ ρ i ;

A[x,y,d0,r]T≤fA[x,y,d 0 ,r] T ≤ f

其中,η12,…,ηi,…ηN对应表示非凸的定位问题中引入的第1个辅助变量、第2个辅助变量、…、第i个辅助变量、…、第N个辅助变量,b1,b2,…bi,…bN对应表示Among them, η 1 , η 2 ,...,η i ,...η N correspond to the first auxiliary variable introduced in the non-convex positioning problem, the second auxiliary variable, ..., the i-th auxiliary variable, ..., the Nth Auxiliary variables, b 1 ,b 2 ,… bi ,…b N correspond to

中引入的第1个辅助变量、第2个辅助变量、…、第如果di≤ρi The first auxiliary variable, the second auxiliary variable, ..., the first auxiliary variable introduced in If d i ≤ ρ i

i个辅助变量、…、第N个辅助变量,r和y对应表示 如果di≤ρi中引入的额外两个辅助变量,为si的转置, 为s1的转置,为sN的转置,d1表示目标源与第1个传感器之间的信号传输距离,dN表示目标源与第N个传感器之间的信号传输距离,[x,y,d0,r]T为[x,y,d0,r]的转置, The i auxiliary variable, ..., the Nth auxiliary variable, r and y correspond to represent The additional two auxiliary variables introduced in if d i ≤ ρ i , is the transpose of si , is the transpose of s 1 , is the transpose of s N , d 1 represents the signal transmission distance between the target source and the first sensor, d N represents the signal transmission distance between the target source and the Nth sensor, [x,y,d 0 ,r ] T is the transpose of [x,y,d 0 ,r],

在此具体实施例中,步骤⑥中的约束条件A[x,y,d0,r]T≤f的确定过程为:根据一般情况下测量噪声远小于非视距误差的结论,得到di≥d0+||x-si||;然后将di≥d0+||x-si||转变为di-d0≥||x-si||,并对di-d0≥||x-si||两边进行平方展开,得到接着根据y=||x||2转变为最后将以向量形式进行描述,描述为:A[x,y,d0,r]T≤f, In this specific embodiment, the determination process of the constraint condition A[x,y,d 0 ,r] T ≤ f in step ⑥ is as follows: According to the conclusion that the measurement noise is much smaller than the non-line-of-sight error in general cases, d i ≥d 0 +||xs i || ; then transform d i ≥d 0 +||xs i || into d i -d 0 ≥||xs i || xs i || carry out square expansion on both sides to get Then according to y=||x|| 2 and Will Into Finally will Described in vector form, described as: A[x,y,d 0 ,r] T ≤f,

在此具体实施例中,步骤⑥中的约束条件In this specific embodiment, the constraints in step ⑥

的确定过程为: The determination process is:

⑥_1、根据松弛前的约束条件bi=2d0||x-si||,可以看出很难将此非凸约束松弛为凸约束,但可以利用相应的转换,因此利用平方和不等式可以得到接着将中的平方项展开,得到然后将y=||x||2代入中,得到关于时钟误差的约束条件再根据已知条件d0≥0,得到bi≥0。⑥_1. According to the constraint condition before relaxation b i =2d 0 ||xs i ||, it can be seen that it is difficult to relax this non-convex constraint into a convex constraint, but the corresponding conversion can be used, so the sum of squares inequality can be used to obtain Next will Expanding the square term in , we get Then y=||x|| 2 and substitute , get the constraints on the clock error Then according to the known condition d 0 ≥0, it is obtained that b i ≥0.

⑥_2、对松弛前的约束条件bi=2d0||x-si||的等式两边平方展开,得到然后将y=||x||2代入中,得到由于约束条件是非凸的,因此接着将松弛为凸约束条件再将代入中,得到 ⑥_2. For the constraint condition before relaxation, b i =2d 0 ||xs i || Then substitute y=||x|| 2 into in, get due to constraints is non-convex, so then the Relax to Convex Constraints then substitute in, get

⑦利用内点法对二阶锥规划问题进行求解,得到全局最优解,记为x*,x*即为目标源在参考坐标系中的坐标位置的最终估计值。⑦ Use the interior point method to solve the second-order cone programming problem, and obtain the global optimal solution, denoted as x * , x * is the final estimated value of the coordinate position of the target source in the reference coordinate system.

为验证本发明方法的可行性和有效性,对本发明方法进行仿真试验。In order to verify the feasibility and effectiveness of the method of the present invention, the method of the present invention is simulated.

假设有N=8个传感器,均匀分布在以原点(0,0)为中心的10×10m2的正方形边缘上,目标源的位置是在15×15m2的区域内随机选择。假设所有传感器的测量噪声的功率(方差)相同,即为非视距误差的上界相同即为ρ1=ρ2=…=ρN=ρ。Assume that there are N=8 sensors uniformly distributed on the edge of a square of 10×10m 2 centered on the origin (0,0), and the position of the target source is randomly selected within the area of 15×15m 2 . Assuming that the power (variance) of the measurement noise of all sensors is the same, that is, The upper bound of the non-line-of-sight error is the same, that is, ρ 12 =...=ρ N =ρ.

测试本发明方法的性能在不同的非视距路径数目的情况下随测量噪声的增加的变化情况。图3给出了在存在非视距的环境中,未知起始时间的条件下,非视距路径的数目为6条时,本发明方法与现有的鲁棒半正定松弛方法和现有的鲁棒二阶锥松弛方法的定位性能随测量噪声增大的变化情况;图4给出了在存在非视距的环境中,未知起始时间的条件下,非视距路径的数目为2条时,本发明方法与现有的鲁棒半正定松弛方法和现有的鲁棒二阶锥松弛方法的定位性能随测量噪声增大的变化情况。从图3和图4中可以看出,无论非视距路径较多还是较少时,本发明方法的性能始终优于现有的鲁棒半正定松弛方法和现有的鲁棒二阶锥松弛方法,足以说明本发明方法在定位精度方面有足够的优势。The variation of the performance of the method of the present invention with the increase of measurement noise is tested in the case of different numbers of non-line-of-sight paths. Fig. 3 has provided in the environment that exists non-line-of-sight, under the condition of unknown starting time, when the number of non-line-of-sight paths is 6, the method of the present invention and existing robust semi-definite relaxation method and existing The positioning performance of the robust second-order cone relaxation method changes with the increase of measurement noise; Figure 4 shows that in an environment with non-line-of-sight, the number of non-line-of-sight paths is 2 under the condition of unknown start time When, the positioning performance of the method of the present invention, the existing robust positive semi-definite relaxation method and the existing robust second-order cone relaxation method varies with the increase of measurement noise. It can be seen from Fig. 3 and Fig. 4 that no matter when there are many or few non-line-of-sight paths, the performance of the method of the present invention is always better than that of the existing robust positive semi-definite relaxation method and the existing robust second-order cone relaxation The method is enough to show that the method of the present invention has sufficient advantages in terms of positioning accuracy.

测试本发明方法的性能随非视距路径的数目的变化情况。图5给出了在存在非视距的环境中,未知起始时间的条件下,测量噪声的标准差σ在区间[0.2,1]中随机选择,本发明方法与现有的鲁棒半正定松弛方法和现有的鲁棒二阶锥松弛方法的定位性能随非视距路径的数目的变化情况。从图5中可以看出,本发明方法的性能始终优于现有的鲁棒半正定松弛方法和现有的鲁棒二阶锥松弛方法,足以说明本发明方法在定位精度方面有足够的优势。The performance of the method of the present invention was tested as a function of the number of non-line-of-sight paths. Figure 5 shows that in an environment with non-line-of-sight, under the condition of unknown start time, the standard deviation σ of the measurement noise is randomly selected in the interval [0.2,1]. The method of the present invention and the existing robust positive semi-definite Localization performance of the relaxation method and the existing robust second-order cone relaxation method as a function of the number of non-line-of-sight paths. It can be seen from Figure 5 that the performance of the method of the present invention is always better than the existing robust semi-definite relaxation method and the existing robust second-order cone relaxation method, which is enough to show that the method of the present invention has sufficient advantages in positioning accuracy .

在仿真图3、图4和图5中,“鲁棒半正定松弛方法”表示在时间同步和存在非视距误差的前提下,基于最大似然的半正定松弛的算法;“鲁棒二阶锥松弛方法”表示在时间同步和存在非视距误差的前提下,基于最小二乘的鲁棒二阶锥松弛算法;本发明方法即为在时钟非同步和存在非视距误差的条件下的方法。In the simulation figures 3, 4 and 5, "robust positive semi-definite relaxation method" means the algorithm based on maximum likelihood positive semi-definite relaxation under the premise of time synchronization and non-line-of-sight error; "robust second-order Cone relaxation method" means under the premise of time synchronization and non-line-of-sight error, a robust second-order cone relaxation algorithm based on least squares; the method of the present invention is under the condition of clock asynchrony and non-line-of-sight error method.

Claims (3)

1.一种非视距环境中未知起始时间的基于到达时间的定位方法,其特征在于包括以下步骤:1. a time-of-arrival positioning method based on an unknown starting time in a non-line-of-sight environment, characterized in that it may further comprise the steps: ①在无线传感器网络中建立一个平面坐标系或空间坐标系作为参考坐标系;设定无线传感器网络中存在一个用于发射测量信号的目标源和N个用于接收测量信号的传感器,且设定N个传感器的时钟同步,而目标源的时钟与传感器的时钟不同步;将N个传感器在参考坐标系中的坐标位置对应记为s1,…,sN,将目标源在参考坐标系中的坐标位置记为x;其中,N≥3,s1表示第1个传感器在参考坐标系中的坐标位置,sN表示第N个传感器在参考坐标系中的坐标位置;① Establish a plane coordinate system or space coordinate system as a reference coordinate system in the wireless sensor network; set a target source for transmitting measurement signals and N sensors for receiving measurement signals in the wireless sensor network, and set The clocks of the N sensors are synchronized, but the clocks of the target source are not synchronized with the clocks of the sensors; the coordinate positions of the N sensors in the reference coordinate system are correspondingly recorded as s 1 ,…,s N , and the target source is in the reference coordinate system The coordinate position of is denoted as x; among them, N≥3, s 1 represents the coordinate position of the first sensor in the reference coordinate system, and s N represents the coordinate position of the Nth sensor in the reference coordinate system; ②计算目标源与每个传感器之间的信号传输距离,将目标源与第i个传感器之间的信号传输距离记为di,di=c×ti,其中,1≤i≤N,c表示光速,ti表示测量信号从目标源发出到第i个传感器接收所经历的时间;② Calculate the signal transmission distance between the target source and each sensor, record the signal transmission distance between the target source and the i-th sensor as d i , d i =c×t i , where, 1≤i≤N, c represents the speed of light, t i represents the time elapsed from the measurement signal being sent from the target source to the i-th sensor receiving; ③将目标源与每个传感器之间的信号传输距离以模型方式进行描述,将di的模型表示为:di=d0+||x-si||+ei+ni,其中,d0表示未知信号发射起始时间造成的信号传输距离偏差,d0=c×Δt,d0≥0,Δt表示目标源的时钟与传感器的时钟的差值,符号“|| ||”为求欧几里德范数符号,si表示第i个传感器在参考坐标系中的坐标位置,ei表示测量信号从目标源发出到第i个传感器接收所经历的路径上存在的非视距误差,ni表示测量信号从目标源发出到第i个传感器接收所经历的路径上存在的测量噪声,ni服从零均值的高斯分布 表示ni的功率,0≤|ni|<<ei≤ρi,符号“| |”为取绝对值符号,ρi表示测量信号从目标源发出到第i个传感器接收所经历的路径上存在的非视距误差的上限;③Describe the signal transmission distance between the target source and each sensor in a model, and express the model of d i as: d i =d 0 +||xs i ||+e i +n i , where d 0 represents the signal transmission distance deviation caused by the unknown signal transmission start time, d 0 =c×Δt, d 0 ≥ 0, Δt represents the difference between the clock of the target source and the clock of the sensor, and the symbol "|| ||" is Euclidean norm symbol, s i represents the coordinate position of the i-th sensor in the reference coordinate system, e i represents the non-line-of-sight error existing on the path from the target source to the i-th sensor receiving the measurement signal , n i represents the measurement noise that exists on the path from the target source to the i-th sensor receiving the measurement signal, and n i obeys a Gaussian distribution with zero mean Indicates the power of n i , 0≤|n i |<<e i ≤ρ i , the symbol "| |" is the absolute value symbol, and ρ i represents the path that the measurement signal goes through from the target source to the i-th sensor receiving The upper limit of the non-line-of-sight error existing on ; ④将di=d0+||x-si||+ei+ni转变为di-ei=(d0+||x-si||)+ni;然后对di-ei=(d0+||x-si||)+ni的等式两边进行平方,得到④ Transform d i =d 0 +||xs i ||+e i +n i into d i -e i =(d 0 +||xs i ||)+n i ; then d i -e i =(d 0 +||xs i ||)+n i is squared on both sides to get 接着忽略 then ignore 中的得到 middle get (di-ei)2≈(d0+||x-si||)2+2ni(d0+||x-si||);再将(d i -e i ) 2 ≈(d 0 +||xs i ||) 2 +2n i (d 0 +||xs i ||); (di-ei)2≈(d0+||x-si||)2+2ni(d0+||x-si||)转变为 (d i -e i ) 2 ≈(d 0 +||xs i ||) 2 +2n i (d 0 +||xs i ||) becomes ⑤根据并采用最坏情况下的鲁棒加权最小二乘方法,得到在未知信号发射起始时间和存在非视距误差的环境中的定位问题,描述为:⑤ According to And using the worst-case robust weighted least squares method, the positioning problem in an environment with unknown signal transmission start time and non-line-of-sight errors is obtained, which is described as: 然后令转变为接着将转变为之后在区间[0,ρi]内确定f(ei)的最大值,当di≤ρi时有当dii时有最后将代入中,得到非凸的定位问题,描述为: Then order Will Into Next will Into Then determine the maximum value of f(e i ) in the interval [0,ρ i ], when d i ≤ρ i has When d ii , there is Finally will with substitute In , a non-convex positioning problem is obtained, which is described as: 其中,min()为取最小值函数,max()为取最大值函数,Among them, min() is the minimum value function, max() is the maximum value function, <mrow> <mi>f</mi> <mrow> <mo>(</mo> <mn>0</mn> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>0</mn> </msub> <mo>+</mo> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>|</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>|</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>0</mn> </msub> <mo>+</mo> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>|</mo> <mo>)</mo> </mrow> </mfrac> <mo>,</mo> <mi>f</mi> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfrac> <mrow> <mo>|</mo> <mo>-</mo> <msup> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>0</mn> </msub> <mo>+</mo> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>|</mo> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mo>|</mo> </mrow> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>0</mn> </msub> <mo>+</mo> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>|</mo> <mo>)</mo> </mrow> </mfrac> <mo>=</mo> <mrow> <mo>(</mo> <msub> <mi>d</mi> <mn>0</mn> </msub> <mo>+</mo> <mo>|</mo> <mo>|</mo> <mi>x</mi> <mo>-</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <mo>|</mo> <mo>)</mo> </mrow> <mo>,</mo> </mrow> <mrow><mi>f</mi><mrow><mo>(</mo><mn>0</mn><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mo>|</mo><msup><mrow><mo>(</mo><msub><mi>d</mi><mi>i</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mo>-</mo><msup><mrow><mo>(</mo><msub><mi>d</mi><mn>0</mn></msub><mo>+</mo><mo>|</mo><mo>|</mo><mi>x</mi><mo>-</mo><msub><mi>s</mi><mi>i</mi></msub><mo>|</mo><mo>|</mo><mo>)</mo></mrow><mn>2</mn></msup><mo>|</mo></mrow><mrow><mo>(</mo><msub><mi>d</mi><mn>0</mn></msub><mo>+</mo><mo>|</mo><mo>|</mo><mi>x</mi><mo>-</mo><msub><mi>s</mi><mi>i</mi></msub><mo>|</mo><mo>|</mo><mo>)</mo></mrow></mfrac><mo>,</mo><mi>f</mi><mrow><mo>(</mo><msub><mi>d</mi><mi>i</mi></msub><mo>)</mo></mrow><mo>=</mo><mfrac><mrow><mo>|</mo><mo>-</mo><msup><mrow><mo>(</mo><msub><mi>d</mi><mn>0</mn></msub><mo>+</mo><mo>|</mo><mo>|</mo><mi>x</mi><mo>-</mo><msub><mi>s</mi><mi>i</mi></msub><mo>|</mo><mo>|</mo><mo>)</mo></mrow><mn>2</mn></msup><mo>|</mo></mrow><mrow><mo>(</mo><msub><mi>d</mi><mn>0</mn></msub><mo>+</mo><mo>|</mo><mo>|</mo><mi>x</mi><mo>-</mo><msub><mi>s</mi><mi>i</mi></msub><mo>|</mo><mo>|</mo><mo>)</mo></mrow></mfrac><mo>=</mo><mrow><mo>(</mo><msub><mi>d</mi><mn>0</mn></msub><mo>+</mo><mo>|</mo><mo>|</mo><mi>x</mi><mo>-</mo><msub><mi>s</mi><mi>i</mi></msub><mo>|</mo><mo>|</mo><mo>)</mo></mrow><mo>,</mo></mrow> “s.t.”表示“受约束于……”; "st" means "subject to"; ⑥在非凸的定位问题中引入辅助变量η12,…,ηi,…ηN,将⑥Introduce auxiliary variables η 1 , η 2 ,…,η i ,…η N in the non-convex positioning problem, the 等价描述为: Equivalently described as: 然后将f(0),f(ρi),f(di)代入 Then substitute f(0), f(ρ i ), f(d i ) into 并引入辅助变量b1,b2,…bi,…bN、r和y,得到接着采用二阶锥松弛方法将 And introduce auxiliary variables b 1 , b 2 ,…b i ,…b N , r and y to get Then, the second-order cone relaxation method is used to <mrow> <munder> <mrow> <mi>m</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mi>x</mi> <mo>,</mo> <msub> <mi>d</mi> <mn>0</mn> </msub> <mo>,</mo> <mi>y</mi> <mo>,</mo> <mi>r</mi> <mo>,</mo> <mo>{</mo> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mo>,</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>}</mo> </mrow> </munder> <mrow> <mo>(</mo> <munderover> <mo>&amp;Sigma;</mo> <mrow> <mi>i</mi> <mo>=</mo> <mn>1</mn> </mrow> <mi>N</mi> </munderover> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> </mrow> <mrow><munder><mrow><mi>m</mi><mi>i</mi><mi>n</mi></mrow><mrow><mi>x</mi><mo>,</mo><msub><mi>d</mi><mn>0</mn></msub><mo>,</mo><mi>y</mi><mo>,</mo><mi>r</mi><mo>,</mo><mo>{</mo><msub><mi>&amp;eta;</mi><mi>i</mi></msub><mo>,</mo><msub><mi>b</mi><mi>i</mi></msub><mo>}</mo></mrow></munder><mrow><mo>(</mo><munderover><mo>&amp;Sigma;</mo><mrow><mi>i</mi><mo>=</mo><mn>1</mn></mrow><mi>N</mi></munderover><msub><mi>&amp;eta;</mi><mi>i</mi></msub><mo>)</mo></mrow></mrow> <mfenced open = "" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>s</mi> <mo>.</mo> <mi>t</mi> <mo>.</mo> </mrow> </mtd> <mtd> <mrow> <mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>d</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mi>r</mi> <mo>-</mo> <mi>y</mi> <mo>+</mo> <mn>2</mn> <msubsup> <mi>s</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mi>x</mi> <mo>-</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mi>r</mi> <mo>+</mo> <mi>y</mi> <mo>-</mo> <mn>2</mn> <msubsup> <mi>s</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mi>x</mi> <mo>+</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>&amp;le;</mo> <mn>4</mn> <msubsup> <mi>&amp;sigma;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mfenced open = "" close = ""><mtable><mtr><mtd><mrow><mi>s</mi><mo>.</mo><mi>t</mi><mo>.</mo></mrow></mtd><mtd><mrow><mfrac><msup><mrow><mo>(</mo><msubsup><mi>d</mi><mi>i</mi><mn>2</mn></msubsup><mo>-</mo><mi>r</mi><mo>-</mo><mi>y</mi><mo>+</mo><mn>2</mn><msubsup><mi>s</mi><mi>i</mi><mi>T</mi></msubsup><mi>x</mi><mo>-</mo><mo>|</mo><mo>|</mo><msub><mi>s</mi><mi>i</mi></msub><mo>|</mo><msup><mo>|</mo><mn>2</mn></msup><mo>-</mo><msub><mi>b</mi><mi>i</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mrow><mi>r</mi><mo>+</mo><mi>y</mi><mo>-</mo><mn>2</mn><msubsup><mi>s</mi><mi>i</mi><mi>T</mi></msubsup><mi>x</mi><mo>+</mo><mo>|</mo><mo>|</mo><msub><mi>s</mi><mi>i</mi></msub><mo>|</mo><msup><mo>|</mo><mn>2</mn></msup><mo>+</mo><msub><mi>b</mi><mi>i</mi></msub></mrow></mfrac><mo>&amp;le;</mo><mn>4</mn><msubsup><mi>&amp;sigma;</mi><mi>i</mi><mn>2</mn></msubsup><msub><mi>&amp;eta;</mi><mi>i</mi></msub></mrow></mtd></mtr></mtable></mfenced> <mrow> <mfrac> <msup> <mrow> <mo>(</mo> <msubsup> <mi>&amp;rho;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mn>2</mn> <msub> <mi>d</mi> <mi>i</mi> </msub> <msub> <mi>&amp;rho;</mi> <mi>i</mi> </msub> <mo>+</mo> <msubsup> <mi>d</mi> <mi>i</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mi>r</mi> <mo>-</mo> <mi>y</mi> <mo>+</mo> <mn>2</mn> <msubsup> <mi>s</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mi>x</mi> <mo>-</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>-</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <mi>r</mi> <mo>+</mo> <mi>y</mi> <mo>-</mo> <mn>2</mn> <msubsup> <mi>s</mi> <mi>i</mi> <mi>T</mi> </msubsup> <mi>x</mi> <mo>+</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>s</mi> <mi>i</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> <mo>+</mo> <msub> <mi>b</mi> <mi>i</mi> </msub> </mrow> </mfrac> <mo>&amp;le;</mo> <mn>4</mn> <msubsup> <mi>&amp;sigma;</mi> <mi>i</mi> <mn>2</mn> </msubsup> <msub> <mi>&amp;eta;</mi> <mi>i</mi> </msub> </mrow> 3 <mrow><mfrac><msup><mrow><mo>(</mo><msubsup><mi>&amp;rho;</mi><mi>i</mi><mn>2</mn></msubsup><mo>-</mo><mn>2</mn><msub><mi>d</mi><mi>i</mi></msub><msub><mi>&amp;rho;</mi><mi>i</mi></msub><mo>+</mo><msubsup><mi>d</mi><mi>i</mi><mn>2</mn></msubsup><mo>-</mo><mi>r</mi><mo>-</mo><mi>y</mi><mo>+</mo><mn>2</mn><msubsup><mi>s</mi><mi>i</mi><mi>T</mi></msubsup><mi>x</mi><mo>-</mo><mo>|</mo><mo>|</mo><msub><mi>s</mi><mi>i</mi></msub><mo>|</mo><msup><mo>|</mo><mn>2</mn></msup><mo>-</mo><msub><mi>b</mi><mi>i</mi></msub><mo>)</mo></mrow><mn>2</mn></msup><mrow><mi>r</mi><mo>+</mo><mi>y</mi><mo>-</mo><mn>2</mn><msubsup><mi>s</mi><mi>i</mi><mi>T</mi></msubsup><mi>x</mi><mo>+</mo><mo>|</mo><mo>|</mo><msub><mi>s</mi><mi>i</mi></msub><mo>|</mo><msup><mo>|</mo><mn>2</mn></msup><mo>+</mo><msub><mi>b</mi><mi>i</mi></msub></mrow></mfrac><mo>&amp;le;</mo><mn>4</mn><msubsup><mi>&amp;sigma;</mi><mi>i</mi><mn>2</mn></msubsup><msub><mi>&amp;eta;</mi><mi>i</mi></msub></mrow> 3 如果di≤ρi If d i ≤ ρ i A[x,y,d0,r]T≤fA[x, y, d 0 , r] T ≤ f y=||x||2 y=||x|| 2 , bi=2d0||x-si||b i =2d 0 ||xs i || 中的y=||x||2松驰为||x||2≤y、松弛为得到二阶锥规划问题,描述为:The y=||x|| 2 in slack is ||x|| 2 ≤y, relax to The second-order cone programming problem is obtained, which is described as: 其中,η12,…,ηi,…ηN对应表示非凸的定位问题中引入的第1个辅助变量、第2个辅助变量、…、第i个辅助变量、…、第N个辅助变量,b1,b2,…bi,…bN对应表示Among them, η 1 , η 2 ,...,η i ,...η N correspond to the first auxiliary variable introduced in the non-convex positioning problem, the second auxiliary variable, ..., the i-th auxiliary variable, ..., the Nth Auxiliary variables, b 1 ,b 2 ,… bi ,…b N correspond to 中引入的第1个辅助变量、第2个辅助变量、…、第i个 辅助变量、…、第N个辅助变量,r和y对应表示中引入的额 4 外两个辅助变量,为si的转置,为s1的转置,为sN的转置,d1 表示目标源与第1个传感器之间的信号传输距离,dN表示目标源与第N个传感器之间的信号 传输距离,[x,y,d0,r]T为[x,y,d0,r]的转置, <mrow> <mi>f</mi> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>s</mi> <mn>1</mn> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mo>.</mo> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>d</mi> <mi>N</mi> <mn>2</mn> </msubsup> <mo>-</mo> <mo>|</mo> <mo>|</mo> <msub> <mi>s</mi> <mi>N</mi> </msub> <mo>|</mo> <msup> <mo>|</mo> <mn>2</mn> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>;</mo> </mrow> The first auxiliary variable introduced in , the second auxiliary variable, ..., the i-th auxiliary variable, ..., the N-th auxiliary variable, r and y correspond to the additional two auxiliary variables introduced in the representation, which are si Transpose, which is the transpose of s1, which is the transpose of sN, d1 represents the signal transmission distance between the target source and the first sensor, dN represents the signal transmission distance between the target source and the Nth sensor, [x, y,d0,r]T is the transpose of [x,y,d0,r], <mrow><mi>f</mi><mo>=</mo><mfenced open = "[" close = "]"><mtable><mtr><mtd><mrow><msubsup><mi>d</mi><mn>1</mn><mn>2</mn></msubsup><mo>-</mo><mo>|</mo><mo>|</mo><msub><mi>s</mi><mn>1</mn></msub><mo>|</mo><msup><mo>|</mo><mn>2</mn></msup></mrow></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr><mtr><mtd><mo>.</mo></mtd></mtr>mtr><mtr><mtd><mrow><msubsup><mi>d</mi><mi>N</mi><mn>2</mn></msubsup><mo>-</mo><mo>|</mo><mo>|</mo><msub><mi>s</mi><mi>N</mi></msub><mo>|</mo><msup><mo>|</mo><mn>2</mn></msup></mrow></mtd></mtr></mtable></mfenced><mo>;</mo></mrow> ⑦利用内点法对二阶锥规划问题进行求解,得到全局最优解,记为x*,x*即为目标源在参考坐标系中的坐标位置的最终估计值。⑦ Use the interior point method to solve the second-order cone programming problem, and obtain the global optimal solution, denoted as x*, x* is the final estimated value of the coordinate position of the target source in the reference coordinate system. 2.根据权利要求1所述的非视距环境中未知起始时间的基于到达时间的定位方法,其特征在于所述的步骤⑥中的约束条件A[x,y,d0,r]T≤f的确定过程为:根据一般情况下测量噪声远小于非视距误差的结论,得到di≥d0+||x-si||;然后将di≥d0+||x-si||转变为di-d0≥||x-si||,并对di-d0≥||x-si||两边进行平方展开,得到接着根据y=||x||2转变为最后将以向量形式进行描述,描述为:A[x,y,d0,r]T≤f, 2. The time-of-arrival positioning method based on the unknown starting time in the non-line-of-sight environment according to claim 1, characterized in that the constraint condition A[x,y,d 0 ,r] T in the described step ⑥ The determination process of ≤f is: according to the conclusion that the measurement noise is much smaller than the non-line-of-sight error in general, it is obtained that d i ≥d 0 +||xs i ||; and then d i ≥d 0 +||xs i || Transform into d i -d 0 ≥||xs i ||, and perform square expansion on both sides of d i -d 0 ≥||xs i ||, get Then according to y=||x|| 2 and Will Into Finally will Described in vector form, described as: A[x,y,d 0 ,r] T ≤f, 3.根据权利要求1或2所述的非视距环境中未知起始时间的基于到达时间的定位方法,其特征在于所述的步骤⑥中的约束条件的确定过程为:3. The time-of-arrival positioning method based on the unknown starting time in the non-line-of-sight environment according to claim 1 or 2, characterized in that the constraints in the step ⑥ The determination process is: ⑥_1、根据松弛前的约束条件bi=2d0||x-si||,利用平方和不等式得到接着将中的平方项展开,得到然后将y=||x||2代入中,得到关于时钟误差的约束条件再根据已知条件d0≥0,得到bi≥0;⑥_1. According to the constraints before relaxation b i =2d 0 ||xs i ||, use the square sum inequality to get Next will Expanding the square term in , we get Then y=||x|| 2 and substitute , get the constraints on the clock error Then according to the known condition d 0 ≥0, get b i ≥0; ⑥_2、对松弛前的约束条件bi=2d0||x-si||的等式两边平方展开,得到然后将y=||x||2代入中,得到接着将松弛为凸约束条件再将代入中,得到 ⑥_2. For the constraint condition before relaxation, b i =2d 0 ||xs i || Then substitute y=||x|| 2 into in, get Next will Relax to Convex Constraints then substitute in, get
CN201710269269.3A 2017-04-24 2017-04-24 A time-of-arrival-based localization method with unknown starting time in non-line-of-sight environments Active CN107271956B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710269269.3A CN107271956B (en) 2017-04-24 2017-04-24 A time-of-arrival-based localization method with unknown starting time in non-line-of-sight environments

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710269269.3A CN107271956B (en) 2017-04-24 2017-04-24 A time-of-arrival-based localization method with unknown starting time in non-line-of-sight environments

Publications (2)

Publication Number Publication Date
CN107271956A true CN107271956A (en) 2017-10-20
CN107271956B CN107271956B (en) 2019-07-09

Family

ID=60073987

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710269269.3A Active CN107271956B (en) 2017-04-24 2017-04-24 A time-of-arrival-based localization method with unknown starting time in non-line-of-sight environments

Country Status (1)

Country Link
CN (1) CN107271956B (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108200547A (en) * 2017-11-30 2018-06-22 宁波大学 Rigid body localization method based on measurement distance
CN108872934A (en) * 2018-04-19 2018-11-23 南京邮电大学 A kind of indoor 3-D positioning method inhibited based on non-market value
CN108896959A (en) * 2018-08-02 2018-11-27 南京理工大学 A kind of mobile communication positioning method based on time of arrival (toa)
CN109061563A (en) * 2018-09-25 2018-12-21 宁波大学 Localization method based on fractional programming in a kind of nonsynchronous network
CN109597028A (en) * 2018-11-05 2019-04-09 宁波大学 Robust positioning method based on arrival time under the conditions of a kind of mixing sighting distance non line of sight
CN109597023A (en) * 2018-12-10 2019-04-09 中国人民解放军陆军工程大学 Semi-definite programming positioning method based on NLOS error elimination
CN110221245A (en) * 2019-05-28 2019-09-10 宁波大学 The robust TDOA localization method of Combined estimator target position and non-market value
CN110221244A (en) * 2019-05-24 2019-09-10 宁波大学 Based on the robust positioning method of reaching time-difference under the conditions of non line of sight
CN110658492A (en) * 2019-10-10 2020-01-07 重庆邮电大学 An Iterative Method for Position Optimization of Indoor Targets and Scatterers
CN110673088A (en) * 2019-08-23 2020-01-10 宁波大学 Time-of-arrival-based object localization in mixed line-of-sight and non-line-of-sight environments
CN110888111A (en) * 2019-11-08 2020-03-17 宁波大学 Robust non-line-of-sight target self-localization method based on TOA in asynchronous network
CN111007456A (en) * 2019-12-09 2020-04-14 西安邮电大学 Robust non-line-of-sight deviation elimination positioning method capable of realizing time domain combination
CN111505575A (en) * 2020-03-23 2020-08-07 宁波大学 Sensor selection method aiming at TDOA (time difference of arrival) location based on conversion TOA (time of arrival) model

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020094736A (en) * 2001-06-13 2002-12-18 주식회사 케이티 Method of correction NOLS error for wireless positioning system
CN105334495A (en) * 2015-11-04 2016-02-17 宁波大学 Non-line-of-sight stable positioning method based on signal arrival time in wireless network
CN105425206A (en) * 2015-11-04 2016-03-23 宁波大学 Steady least square positioning method in nonsynchronous wireless network
CN105607039A (en) * 2016-01-27 2016-05-25 宁波大学 Robust least square positioning method based on arrival time difference in non line of sight (NLOS) environment
WO2016179202A1 (en) * 2015-05-07 2016-11-10 Alcatel Lucent Method and apparatus for determining non-line of sight bias estimation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20020094736A (en) * 2001-06-13 2002-12-18 주식회사 케이티 Method of correction NOLS error for wireless positioning system
WO2016179202A1 (en) * 2015-05-07 2016-11-10 Alcatel Lucent Method and apparatus for determining non-line of sight bias estimation
CN105334495A (en) * 2015-11-04 2016-02-17 宁波大学 Non-line-of-sight stable positioning method based on signal arrival time in wireless network
CN105425206A (en) * 2015-11-04 2016-03-23 宁波大学 Steady least square positioning method in nonsynchronous wireless network
CN105607039A (en) * 2016-01-27 2016-05-25 宁波大学 Robust least square positioning method based on arrival time difference in non line of sight (NLOS) environment

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108200547A (en) * 2017-11-30 2018-06-22 宁波大学 Rigid body localization method based on measurement distance
CN108200547B (en) * 2017-11-30 2020-07-14 宁波大学 Rigid body localization method based on measured distance
CN108872934A (en) * 2018-04-19 2018-11-23 南京邮电大学 A kind of indoor 3-D positioning method inhibited based on non-market value
CN108872934B (en) * 2018-04-19 2022-05-17 南京邮电大学 An indoor 3D positioning method based on non-line-of-sight error suppression
CN108896959A (en) * 2018-08-02 2018-11-27 南京理工大学 A kind of mobile communication positioning method based on time of arrival (toa)
CN109061563A (en) * 2018-09-25 2018-12-21 宁波大学 Localization method based on fractional programming in a kind of nonsynchronous network
CN109597028A (en) * 2018-11-05 2019-04-09 宁波大学 Robust positioning method based on arrival time under the conditions of a kind of mixing sighting distance non line of sight
CN109597028B (en) * 2018-11-05 2022-11-29 宁波大学 A time-of-arrival based robust localization method under mixed line-of-sight and non-line-of-sight conditions
CN109597023A (en) * 2018-12-10 2019-04-09 中国人民解放军陆军工程大学 Semi-definite programming positioning method based on NLOS error elimination
CN110221244A (en) * 2019-05-24 2019-09-10 宁波大学 Based on the robust positioning method of reaching time-difference under the conditions of non line of sight
CN110221245A (en) * 2019-05-28 2019-09-10 宁波大学 The robust TDOA localization method of Combined estimator target position and non-market value
CN110221245B (en) * 2019-05-28 2022-04-19 宁波大学 Robust TDOA localization method for joint estimation of target position and non-line-of-sight error
CN110673088A (en) * 2019-08-23 2020-01-10 宁波大学 Time-of-arrival-based object localization in mixed line-of-sight and non-line-of-sight environments
CN110673088B (en) * 2019-08-23 2021-06-15 宁波大学 Time-of-arrival-based object localization in mixed line-of-sight and non-line-of-sight environments
CN110658492A (en) * 2019-10-10 2020-01-07 重庆邮电大学 An Iterative Method for Position Optimization of Indoor Targets and Scatterers
CN110888111A (en) * 2019-11-08 2020-03-17 宁波大学 Robust non-line-of-sight target self-localization method based on TOA in asynchronous network
CN111007456B (en) * 2019-12-09 2022-11-22 西安邮电大学 Robust non-line-of-sight bias elimination positioning method capable of time-domain joint
CN111007456A (en) * 2019-12-09 2020-04-14 西安邮电大学 Robust non-line-of-sight deviation elimination positioning method capable of realizing time domain combination
CN111505575B (en) * 2020-03-23 2022-02-11 宁波大学 Sensor selection method aiming at TDOA (time difference of arrival) location based on conversion TOA (time of arrival) model
CN111505575A (en) * 2020-03-23 2020-08-07 宁波大学 Sensor selection method aiming at TDOA (time difference of arrival) location based on conversion TOA (time of arrival) model

Also Published As

Publication number Publication date
CN107271956B (en) 2019-07-09

Similar Documents

Publication Publication Date Title
CN107271956A (en) The localization method based on arrival time of unknown initial time in nlos environment
CN105607039B (en) Robust least squares localization method based on reaching time-difference under nlos environment
CN110221244B (en) Robust positioning method based on arrival time difference under non-line-of-sight condition
CN105334495B (en) A kind of non line of sight robust position location method based on time of arrival (toa) in wireless network
CN108668358B (en) A time-of-arrival-based cooperative localization method for wireless sensor networks
CN109597028B (en) A time-of-arrival based robust localization method under mixed line-of-sight and non-line-of-sight conditions
CN109471061B (en) A Received Signal Strength Difference Location Method Robustly Handling Model Parameter Errors
CN104237849A (en) Bi-pentabasic cross-array passive acoustic location integrating method
CN109342993A (en) A wireless sensor network target localization method based on RSS-AoA hybrid measurement
CN106019217A (en) AOA-based two-dimensional wireless sensor network semi-definite programming positioning method
CN105425206B (en) A Robust Least Squares Localization Method in Unsynchronized Wireless Networks
CN108051779A (en) A kind of positioning node preferred method towards TDOA
CN110673089A (en) Positioning method based on arrival time under unknown line-of-sight and non-line-of-sight distribution condition
CN106842121A (en) Sighting distance and the robust position location method based on reaching time-difference in non line of sight hybird environment
CN111157943B (en) TOA-Based Sensor Position Error Suppression in Asynchronous Networks
CN112346014B (en) A positioning method of multistatic sonar based on signal arrival time difference
CN107942284A (en) Underwater Wave arrival direction estimating method and device based on two-dimensional quadrature Nonuniform Linear Array
CN107367709A (en) Arrival time robust weighted least-squares localization method is based in hybird environment
CN107356523B (en) Feedback force correction method for real-time hybrid simulation experiments based on discrete tangent stiffness estimation
CN110221245B (en) Robust TDOA localization method for joint estimation of target position and non-line-of-sight error
CN110673088B (en) Time-of-arrival-based object localization in mixed line-of-sight and non-line-of-sight environments
CN104391275A (en) Underwater acoustic network node mutual distance measurement method based on gamma distribution model
Dong et al. Research on TDOA based microphone array acoustic localization
CN112731534A (en) Method, system, electronic device and readable medium for joint positioning of double acoustic emission events by considering P-wave first-motion system errors
CN113923590B (en) A TOA positioning method under the condition of uncertain anchor node position

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant