CN107271454B - 微波与磁化等离子体相互作用装置 - Google Patents

微波与磁化等离子体相互作用装置 Download PDF

Info

Publication number
CN107271454B
CN107271454B CN201610210800.5A CN201610210800A CN107271454B CN 107271454 B CN107271454 B CN 107271454B CN 201610210800 A CN201610210800 A CN 201610210800A CN 107271454 B CN107271454 B CN 107271454B
Authority
CN
China
Prior art keywords
microwave
cylindrical resonator
plasma
waveguide
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN201610210800.5A
Other languages
English (en)
Other versions
CN107271454A (zh
Inventor
赵海龙
陈英才
林忠英
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taizhou University
Original Assignee
Taizhou University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taizhou University filed Critical Taizhou University
Priority to CN201610210800.5A priority Critical patent/CN107271454B/zh
Publication of CN107271454A publication Critical patent/CN107271454A/zh
Application granted granted Critical
Publication of CN107271454B publication Critical patent/CN107271454B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N22/00Investigating or analysing materials by the use of microwaves or radio waves, i.e. electromagnetic waves with a wavelength of one millimetre or more

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Plasma Technology (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Electron Sources, Ion Sources (AREA)

Abstract

一种微波与磁化等离子体相互作用装置。它包括热钨盘(1),圆柱形共振器(2),探测器(3),郎缪尔探针(4),高频探针(5),收集器(6),扫频仪(7)。热钨盘(1)与波导管相连,波导管置于圆柱形共振器(2)的腔中,圆柱形共振器(2)又处于探测器(3)中,同时圆柱形共振器(2)的一侧与扫频仪(7)相连。波导管(2)穿过圆柱形共振器(2)后,其上依次安置郎缪尔探针(4)与高频探针(5),最后与铜收集器(6)相连。本装置能使微波与磁化等离子体按照实验者预想的过程发生相互作用,并检测相互作用发生后,磁化等离子体与微波的参数。

Description

微波与磁化等离子体相互作用装置
技术领域
本发明涉及能够实现微波与被磁化的等离子体在在一定条件下相互作用,并检测相互作用发生后微波与磁化等离子体参数的实验装置,属于电磁场领域。
背景技术
等离子体是一种由自由电子和带电离子为主要成分的物质形态,如果对气体持续加热,使分子分解为原子并发生电离,就形成了由离子、电子和中性粒子组成的“气体”,这种状态称为等离子体。除加热外,也有其他方法能够产生等离子体。但本装置中用于产生等离子体的方法是使用热钨盘加热钾蒸汽,从而使之电离。
微波是指波长介于红外线和特高频之间的射频电磁波。本装置采用共振器产生实验所需的微波。等离子体的应用中,通常通过磁场来束缚并影响等离子体,因此磁化等离子体对于微波吸收及微波对粒子作用的研究十分重要。
当等离子与微波发生相互作用时,一方面等离子体对微波具有一定的吸收和反射的能力,另一方面,微波也会对等离子体发生加热等作用。但是,这些相互作用的强度与效率,以及是否有其他反应发生,我们对此的了解是不够的,因此需要一个能够令两者相遇并发生相互作用的装置,从而从中观测实验结果,并总结归纳两者相互作用的特性。
而普通的微波与等离子体相互作用的装置往往无法确保等离子体是否磁化,及其被磁化的程度,因此,需要特定装置,使得等离子体在确保被磁化的情况下,与微波的发生相互作用,并通过改变磁化程度,观察作用效果,检测实验数据。
发明内容
本发明是一个为提供能使微波与磁化等离子体按照实验者预想的过程发生相互作用,并检测相互作用发生后,磁化等离子体与微波的参数的装置。
本发明所述微波与磁化等离子体相互作用装置,它包括热钨盘(1),圆柱形共振器(2),探测器(3),郎缪尔探针(4),高频探针(5),收集器(6),扫频仪(7)。
热钨盘(1)与波导管相连,波导管置于圆柱形共振器(2)的腔中,圆柱形共振器(2)又处于探测器(3)中,同时圆柱形共振器(2)的一侧与扫频仪(7)相连。波导管穿过圆柱形共振器(2)后,其上依次安置郎缪尔探针(4)与高频探针(5),最后与收集器(6)相连。
所述波导管伸出圆柱形共振器(2)至收集器(6)的部分长度为80cm。
所述微波与磁化等离子体相互作用装置,置于附加的外磁场中。
本发明的优点:本发明中,共振器可以调节参与相互作用的微波的频率与强度,通过更换共振器,也可以改变共振器吸收等离子体的频率。可以通过调节射入热钨盘的钾蒸汽的密度,调节等离子体密度。调节外磁场的强度可实现对等离子体磁化程度的控制。整个实验过程的主要参数均可以控制,适用于观察各种不同初始条件下的微波与等离子体的相互作用过程。
本发明装置结构非常简单,且采用的设备多数为已经投产的设备,成本低廉,生产方便。
附图说明
图1是本发明所述微波与磁化等离子体相互作用装置沿轴向切开的结构示意图。
具体实施方式
具体实施方式一:下面结合图1说明本实施方式,本发明所述矩形波导微波与等离子体相互作用装置,它包括热钨盘(1),圆柱形共振器(2),探测器(3),郎缪尔探针(4),高频探针(5),收集器(6),扫频仪(7)。
热钨盘(1)与波导管相连,波导管置于圆柱形共振器(2)的腔中,圆柱形共振器(2)又处于探测器(3)中,同时圆柱形共振器(2)的一侧与扫频仪(7)相连。波导管穿过圆柱形共振器(2)后,其上依次安置郎缪尔探针(4)与高频探针(5),最后与收集器(6)相连。
本实施方式在使用中,首先将整个装置置于外磁场中,且外磁场的方向如图中B0所示。然后向热钨盘喷射密度一定的钾蒸汽(8)使之受热电离为等离子体。等离子体由于受到磁场力的作用而沿波导向收集器(6)运动并被磁化,在进入圆柱形共振器(2)后与微波发生相互作用。郎缪尔探针(4)可以探测发生相互作用后等离子束流中电子的径向密度与能量分布,而高频探针(5)则可以探测等离子体束流中电子的轴向密度与能量分布。最终等离子体在收集器(6)被收集。
所述矩形波导微波与等离子体相互作用装置为轴对称结构。
具体实施方式二:本实施方式为对实施方式一的进一步说明,本实施方式所述波导管伸出圆柱形共振器(2)至铜收集器(6)的部分长度为80cm。

Claims (3)

1.一种微波与磁化等离子体相互作用装置,它包括热钨盘(1),圆柱形共振器(2),探测器(3),郎缪尔探针(4),高频探针(5),收集器(6),扫频仪(7),热钨盘(1)与波导管相连,波导管置于圆柱形共振器(2)的腔中,圆柱形共振器(2)又处于探测器(3)中,同时圆柱形共振器(2)的一侧与扫频仪(7)相连,波导管穿过圆柱形共振器(2)后,其上依次安置郎缪尔探针(4)与高频探针(5),最后与收集器(6)相连。
2.根据权利要求1所述的微波与磁化等离子体相互作用装置,其特征在于,该装置为轴对称结构。
3.根据权利要求1所述的微波与磁化等离子体相互作用装置,其特征在于,该装置波导管伸出圆柱形共振器(2)至收集器(6)的部分长度为80cm。
CN201610210800.5A 2016-04-07 2016-04-07 微波与磁化等离子体相互作用装置 Expired - Fee Related CN107271454B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610210800.5A CN107271454B (zh) 2016-04-07 2016-04-07 微波与磁化等离子体相互作用装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610210800.5A CN107271454B (zh) 2016-04-07 2016-04-07 微波与磁化等离子体相互作用装置

Publications (2)

Publication Number Publication Date
CN107271454A CN107271454A (zh) 2017-10-20
CN107271454B true CN107271454B (zh) 2020-04-21

Family

ID=60051663

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610210800.5A Expired - Fee Related CN107271454B (zh) 2016-04-07 2016-04-07 微波与磁化等离子体相互作用装置

Country Status (1)

Country Link
CN (1) CN107271454B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108872267B (zh) * 2018-07-06 2021-03-30 电子科技大学 一种等离子体复介电常数瞬态微波反射测量方法及装置
CN112235930B (zh) * 2020-10-10 2022-09-23 哈尔滨工业大学 一种辉光放电等离子体与微波波导相互作用的测量装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103945625B (zh) * 2014-05-12 2016-05-11 哈尔滨工业大学 圆形波导内h01模式电磁波对等离子体的加热装置
CN103974516B (zh) * 2014-05-22 2016-08-24 哈尔滨工业大学 磁场与电场相互垂直条件下磁化等离子体中微波和等离子体相互作用装置
CN103983861B (zh) * 2014-05-22 2017-03-22 哈尔滨工业大学 微波与等离子体相互作用装置
CN103968882B (zh) * 2014-05-22 2016-05-18 哈尔滨工业大学 微波与弱磁等离子体相互作用的测试装置

Also Published As

Publication number Publication date
CN107271454A (zh) 2017-10-20

Similar Documents

Publication Publication Date Title
Torrezan et al. Operation of a continuously frequency-tunable second-harmonic CW 330-GHz gyrotron for dynamic nuclear polarization
Dang et al. Experimental demonstration of a Ku-band radial-line relativistic klystron oscillator based on transition radiation
CA2905931A1 (en) Microwave plasma spectrometer using dielectric resonator
CN107271454B (zh) 微波与磁化等离子体相互作用装置
Reale Coaxial ferrimagnetic based gyromagnetic nonlinear transmission lines as compact high power microwave sources
Xue et al. Microwave-frequency effects on microplasma
Magori et al. Experimental study on G-band oversized backward wave oscillator driven by weakly relativistic electron beam
Mehmood et al. Generation and applications of plasma (an academic review)
Wang et al. Controllable far-infrared electromagnetic radiation from plasmas applied by dc or ac bias electric fields
Huang et al. Repetitive Operation of an $ S $-Band 1-GW Relativistic Klystron Amplifier
Wang et al. Non-perturbing THz generation at the Tsinghua university accelerator laboratory 31 MeV electron beamline
San et al. Experimental Study on W-Band (75-110 GHz) Oversized Surface Wave Oscillator Driven by Weakly Relativistic Electron Beams
Li et al. Surface effect investigation on multipactor in microwave components using the EM-PIC method
Zhang et al. Development of a helicon-wave excited plasma facility with high magnetic field for plasma–wall interactions studies
Mattei et al. Kinetic simulations and photometry measurements of the EH transition in cylindrical inductively coupled plasmas
Zhu et al. Numerical simulation on the production mechanism of surface-wave plasmas sustained along a metal rod
Zhong et al. A novel two‐dimensional atmospheric pressure plasma jet device
Fiala Pulse-powered virtual cathode oscillator
Xiao et al. A novel high-efficiency stable atmospheric microwave plasma device for fluid processing based on ridged waveguide
Yamazaki et al. Cherenkov and slow cyclotron instability in periodically corrugated cylindrical waveguide with low magnetic field region
Gasparini Development and validation of suitable models (of power supply systems) in support of the SPIDER integrated tests and first operation
Petrik et al. 3D simulation of electron beam squeezed-state generation in a two-section drift tube and analysis of its characteristics
Zhang et al. A D-band backward-wave oscillator based on quasi-parallel-plate slow-wave structure
Ikram et al. Microwave transmission efficiency and simulations of electron plasma in ELTRAP device
Li et al. Study on the stability and reliability of Clinotron at Y-band

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhao Hailong

Inventor after: Chen Yingcai

Inventor after: Lin Zhongying

Inventor before: Lin Zhongying

Inventor before: Zhao Hailong

Inventor before: Sun Zhigang

Inventor before: Fu Guangjie

Inventor before: Zhao Kun

Inventor before: Peng Weisong

TA01 Transfer of patent application right
TA01 Transfer of patent application right

Effective date of registration: 20180202

Address after: No. 605, Dayang street, Dongfang Road, Linghai City, Taizhou City, Zhejiang Province, Zhejiang

Applicant after: Taizhou University

Address before: 150040 Xiangfang District, Heilongjiang, and Hing Road, No. 26, Harbin

Applicant before: Northeast Forestry University

Applicant before: Lin Zhongying

GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20200421