CN1072677C - Method for synthesizing disaccharide and trisaccharide ortho-esters - Google Patents

Method for synthesizing disaccharide and trisaccharide ortho-esters Download PDF

Info

Publication number
CN1072677C
CN1072677C CN98103242A CN98103242A CN1072677C CN 1072677 C CN1072677 C CN 1072677C CN 98103242 A CN98103242 A CN 98103242A CN 98103242 A CN98103242 A CN 98103242A CN 1072677 C CN1072677 C CN 1072677C
Authority
CN
China
Prior art keywords
glycosyl
sugar
bromo
ortho ester
acceptor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN98103242A
Other languages
Chinese (zh)
Other versions
CN1242372A (en
Inventor
孔繁祚
王为
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Center for Eco Environmental Sciences of CAS
Original Assignee
Research Center for Eco Environmental Sciences of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Center for Eco Environmental Sciences of CAS filed Critical Research Center for Eco Environmental Sciences of CAS
Priority to CN98103242A priority Critical patent/CN1072677C/en
Publication of CN1242372A publication Critical patent/CN1242372A/en
Application granted granted Critical
Publication of CN1072677C publication Critical patent/CN1072677C/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

The present invention particularly relates to a disaccharide ortho ester and a trisaccharide ortho ester of an important intermediate compound used in oligosaccharide synthesis and a synthesizing method thereof. The present invention has the technical scheme that bromo acyl glucose, bromo acyl mannose and bromo acyl galactose are used as a glycosyl donor, 1, 2-O-ethylidene protected glucose, 1, 2-O-ethylidene protected mannose, 1, 2-O-ethylidene protected galactose, alkyl glycoside of glucose, mannose or galactose, and alcohol ortho esters of the glucose, the mannose or the galactose are used as a glycosyl acceptor; a disaccharide ortho ester connected to the 6-bit of the acceptor is obtained under the action of silver salt and organic alkali when the molar ratio of the donor and the acceptor is 1/1; a trisaccharide ortho ester connected to the 3-bit and the 6-bit of the acceptor is obtained under the action of the silver salt and the organic alkali when the molar ratio of the donor and the acceptor is 2/1. The disaccharide ortho ester and the trisaccharide ortho ester are important raw materials for preparing oligosaccharide.

Description

Disaccharides and trisaccharide ortho-esters and synthetic method thereof
The invention relates to the synthetic field of bioactive oligosaccharides, particularly relate to disaccharides and the trisaccharide ortho-esters and the synthetic method thereof of oligosaccharides synthetic important intermediate.
Oligosaccharides, polysaccharide and glycoconjugate (glycoprotein, glycolipid) is important information substance in the organism, participates in the contact process of all cells, the communication of the oligosaccharides of cell surface between cell, identification and interaction, the embryo is taken place, and shifts, in the signal transmission, cell movement with stick, and the interaction aspect of cause of disease and host cell plays an important role.Up-to-date studies show that, oligosaccharides not only with they conjugate in action, a lot of oligosaccharides itself just have the important physical function, the oligosaccharides that has can excite the immunity system of plant, the oligosaccharides that has can be induced the nitrogen fixation of root nodule bacterium; The oligosaccharides that has can combine with the glycoprotein on the microorganism of invading and stop the invasion and attack of these microorganisms to the human normal cell, some oligosaccharides then have the function of heparin (haparin), the medicine of the anti-curing cancers that blood group decision family oligosaccharides gets a good chance of especially.Oligosaccharides is in agricultural, and the pharmaceutical sector aspect has wide practical use.And oligosaccharides and polysaccharide are removed disease directly as drug use, improve health, and will cause the renewal of disease preventing and treating idea, also are that of life science makes progress greatly.Emerging " sugared engineering " (based on drug development of carbohydrate) is in flourish ground zero.
Can adopt several different methods to the synthetic of oligosaccharides; K-K method as classics is seen " chemistry summary " (Chcm.Rev.) 1993; 93; 1503; and improved K-K method is seen " chemistry of sugar and biological chemistry progress " (Adv.Carbohydr.Chem.Biochem.) 1994; 50; 21. in these methods; for guaranteeing that glycosyl donor is connected in certain location with glycosyl acceptor; used glycosyl acceptor generally all only contains a free hydroxyl group, when the oligosaccharides of synthetic complexity, will protect with different protecting groups glycosyl acceptor like this; complex steps wastes time and energy.Do not see report up to now as yet with the glycosyl acceptor of not protecting.
Ortho ester with sugar is a key intermediate; reset synthesis of oligose [Chinese patent application number 97125788.4] by it; can adopt the sugar of not protecting or protecting less is raw material; thereby save time greatly, raw material; making manyly has the synthesis step of the active oligosaccharides of important biomolecule greatly to simplify, and can produce in batches.
The object of the present invention is to provide a kind of step simple, save time, labour-saving, synthetic disaccharides and trisaccharide ortho-esters and the synthetic method thereof that can be used as the important intermediate of oligosaccharides preparation.
The invention relates to a kind of disaccharides and trisaccharide ortho-esters, it has following structure:
Figure C9810324200091
Glu in the formula, Man, the glycosyl of Gal representative is:
Figure C9810324200102
Described non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group.
The present invention is a glycosyl donor with the simplest bromo acyl group sugar; with 1; the sugar of 2-O-ethylideneization; or sugar alkylglycoside, or sugar pure ortho ester be glycosyl acceptor, under alkaline condition and silver catalyst agent effect; when donor and acceptor mol ratio are 1: 1; obtain the ortho ester of disaccharides, when donor and acceptor mol ratio are 2: 1, obtain the ortho ester of trisaccharide.With bromo acyl group sugar is glycosyl donor, is glycosyl acceptor with the disaccharide ortho ester, can prepare the trisaccharide ortho-esters of various different structures.
The synthetic method of disaccharides of the present invention and trisaccharide ortho-esters:
(1) be glycosyl donor with bromo ethanoyl glucose 1 or bromo ethanoyl seminose 2 or bromo ethanoyl semi-lactosi 3; with 1; the glucose 4,1 of 2-O-ethidine protection; the seminose 5,1 of 2-O-ethidine protection; semi-lactosi 6, the alkylglycoside 7 of glucose, the pure ortho ester 8 of glucose, the alkylglycoside 9 of seminose, the pure ortho ester 10 of seminose, the alkylglycoside 11 of semi-lactosi or the pure ortho ester 12 of semi-lactosi of the protection of 2-O-ethidine are glycosyl acceptor, and its structure is: Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group in the formula;
With etc. a kind of glycosyl donor of mol ratio be dissolved in the organic solvent with glycosyl acceptor with a kind of sugar identical with glycosyl donor, and with the silver salt and organic bases effect of mol ratios such as glycosyl donor or acceptor under, react under the room temperature, finally collect respective components, prepare the ortho ester 13,14,15,16,17,18,19,20 or 21 of the disaccharides of forming by identical sugar with ordinary method; Its structure is: Formula is Glu, Man, and the glycosyl of Gal representative is:
Figure C9810324200112
Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group;
A kind of glycosyl donor that maybe will wait mol ratio is dissolved in the organic solvent with a kind of glycosyl acceptor of the sugar different with glycosyl donor, and with the silver salt and organic bases effect of mol ratios such as glycosyl donor or acceptor under, react under the room temperature, finally collect respective components, prepare the ortho ester 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38 or 39 of the disaccharides of forming by identical sugar with ordinary method; Its structure is: Formula is Glu, Man, and the glycosyl of Gal representative is:
Figure C9810324200121
Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group;
(2) be glycosyl donor with bromo ethanoyl glucose 1 or bromo ethanoyl seminose 2 or bromo ethanoyl semi-lactosi 3; with 1; the glucose 4,1 of 2-O-ethidine protection; the seminose 5,1 of 2-O-ethidine protection; semi-lactosi 6, the alkylglycoside 7 of glucose, the pure ortho ester 8 of glucose, the alkylglycoside 9 of seminose, the pure ortho ester 10 of seminose, the alkylglycoside 11 of semi-lactosi or the pure ortho ester 12 of semi-lactosi of the protection of 2-O-ethidine are glycosyl acceptor, and its structure is: Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group in the formula;
With a kind of 2 moles glycosyl donor with a kind of 1 mole with glycosyl donor the glycosyl acceptor of identical sugar, be dissolved in the organic solvent, and under 2 moles silver salt and organic bases effect, react under the room temperature, finally collect respective components, prepare the ortho ester 40,41,42,43,44,45,46,47 or 48 of the trisaccharide of forming by identical sugar with ordinary method; Its structure is:
Figure C9810324200131
Formula is Glu, Man, and the glycosyl of Gal representative is: Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group;
Or with a kind of 2 moles glycosyl donor with a kind of 1 mole with glycosyl donor the glycosyl acceptor of identical sugar, be dissolved in the organic solvent, under 2 moles silver salt and organic bases effect, react under the room temperature, finally collect respective components, prepare the ortho ester 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 or 66 of the trisaccharide of forming by two kinds of different sugar with ordinary method; Its structure is:
Figure C9810324200133
Formula is Glu, Man, and the glycosyl of Gal representative is: Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group;
Maybe will wait glycosyl donor and a kind of disaccharide ortho ester of being made up of two kinds of different sugars of the sugar that is different from glycosyl donor of mol ratio is that glycosyl acceptor is dissolved in the organic solvent, with its etc. under the silver salt and organic bases effect of mol ratio, react under the room temperature, finally collect respective components, prepare the ortho ester of forming by three different sugar 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 or 84 with ordinary method; Its structure is:
Figure C9810324200142
Formula is Glu, Man, and the glycosyl of Gal representative is: Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group;
Described silver salt is a silver trifluoromethanesulfonate, silver suboxide, silver carbonate, silver perchlorate; Described bromo acyl group sugar is the full ethanoyl sugar of bromo, the full benzoyl sugar of bromo, bromo perchloro-ethanoyl sugar and bromo part acetyl-part benzoyl sugar, bromo part acetyl-part chloracetyl sugar, bromo part acetyl-part benzoyl-part chloracetyl sugar; Described organic bases is 2,4-lutidine, 2,6-lutidine; Described organic solvent is a methylene dichloride, trichloromethane, dimethyl formamide.
Disaccharides of the present invention and trisaccharide ortho-esters can be used as synthetic plant immunization system activating agent and other has the intermediate of the active oligosaccharides of important biomolecule, and it need not glycosyl acceptor is done complicated protection when synthetic.In the presence of lewis acid catalyst, these sugared ortho ester transform and obtain corresponding 1 → 6 disaccharide that connects, or obtain 1 → 6,1 → 3 trisaccharide that connects, and this synthetic method is simple, practical, is that the synthetic method of the present oligosaccharides of using always is incomparable.
Below in conjunction with embodiment the present invention is described in detail.
The preparation of embodiment 1 two hepatin acid esters 13:
Figure C9810324200151
Bromo acetyl glucosamine 1 (411 milligrams, 1 mmole) is dissolved in 20 milliliters of methylene dichloride, gets solution A, 1,2-O-ethidine glucose 4 (206 milligrams, 1 mmole) is dissolved in 10 milliliters of methylene dichloride, solution B, with B mix with A solution C, in C, add 2, the 4-lutidine, (0.115 milliliter, 1 mmole), under agitation add (256 milligrams of silver trifluoromethanesulfonates, 1 mmole), after two hours, thin-layer chromatographic analysis shows to react to be finished at room temperature reaction.Reaction solution is diluted with 10 milliliters of methylene dichloride, wash solution with water, aqueous phase discarded, organic phase is drained under vacuum, the hepatin acid ester crude product that contains free hydroxyl group that obtains is refining with silica gel column chromatography, as leacheate drip washing, collects respective components with ethyl acetate/petroleum ether (1/2), obtain the pure hepatin acid ester that contains free hydroxyl group 13, productive rate: 85%.
The preparation of embodiment 2 two hepatin acid esters 16:
Bromo acetyl glucosamine 1 (411 milligrams, 1 mmole) is dissolved in 20 milliliters of methylene dichloride, gets solution A, glucose allyl group glycosides 7 (220 milligrams, 1 mmole) is dissolved in 10 milliliters of dimethyl formyl alkane, gets solution B, with B mix with A solution C, in C, add 2, the 4-lutidine, (0.115 milliliter, 1 mmole), under agitation add silver suboxide (232 milligrams, 1 mmole), after four hours, thin-layer chromatographic analysis shows to react to be finished at room temperature reaction.Reaction solution is diluted with 10 milliliters of methylene dichloride, wash solution with water, aqueous phase discarded, organic phase is drained under vacuum, the hepatin acid ester crude product that contains free hydroxyl group that obtains is refining with silica gel column chromatography, as leacheate drip washing, collects respective components with ethyl acetate/petroleum ether (1/2), obtain the pure hepatin acid ester that contains free hydroxyl group 16, productive rate: 65%.
The preparation of embodiment 3 two hepatin acid esters 37:
Bromo acetyl semi-lactosi 3 (411 milligrams, 1 mmole) is dissolved in 20 milliliters of methylene dichloride, gets solution A, glucose vinyl carbinol ortho ester 8 (262 milligrams, 1 mmole) is dissolved in 10 milliliters of methylene dichloride, gets solution B, with B mix with A solution C, in C, add 2, the 4-lutidine, (0.115 milliliter, 1 mmole), under agitation add silver suboxide (232 milligrams, 1 mmole), after two hours, thin-layer chromatographic analysis shows to react to be finished at room temperature reaction.Reaction solution is diluted with 10 milliliters of methylene dichloride, wash solution with water, aqueous phase discarded, organic phase is drained under vacuum, the hepatin acid ester crude product that obtains is refining with silica gel column chromatography, as leacheate drip washing, collects respective components with ethyl acetate/petroleum ether (1/2), obtain the pure hepatin acid ester that contains free hydroxyl group 37, productive rate: 45%.
The preparation of embodiment 4 trisaccharide ortho-esters 40:
Figure C9810324200171
Bromo acetyl glucosamine 1 (822 milligrams, 2 mmoles) is dissolved in 20 milliliters of methylene dichloride, gets solution A, 1,2-O-ethidine glucose 4 (206 milligrams, 1 mmole) is dissolved in 10 milliliters of dimethylmethanes, solution B, with B mix with A solution C, in C, add 2, the 4-lutidine, (0.23 milliliter, 2 mmoles), under agitation add (464 milligrams of silver suboxides, 2 mmoles), after two hours, thin-layer chromatographic analysis shows to react to be finished at room temperature reaction.Reaction solution is diluted with 10 milliliters of methylene dichloride, wash solution with water, aqueous phase discarded, organic phase is drained under vacuum, the hepatin acid ester crude product that obtains is refining with silica gel column chromatography, as leacheate drip washing, collects respective components with ethyl acetate/petroleum ether (1/2), obtain the pure hepatin acid ester that contains free hydroxyl group 40, productive rate: 86%.
The preparation of embodiment 5 trisaccharide ortho-esters 51:
Figure C9810324200172
Bromo acetylated mannan sugar 2 (822 milligrams, 2 mmoles) is dissolved in 20 milliliters of methylene dichloride, gets solution A, 1,2-O-ethidine glucose 4 (206 milligrams, 1 mmole) is dissolved in 10 milliliters of methylene dichloride, solution B, with B mix with A solution C, in C, add 2, the 4-lutidine, (0.23 milliliter, 2 mmoles), under agitation add (464 milligrams of silver suboxides, 2 mmoles), after two hours, thin-layer chromatographic analysis shows to react to be finished at room temperature reaction.Reaction solution is diluted with 10 milliliters of methylene dichloride, wash solution with water, aqueous phase discarded, organic phase is drained under vacuum, the hepatin acid ester crude product that obtains is refining with silica gel column chromatography, as leacheate drip washing, collects respective components with ethyl acetate/petroleum ether (1/2), obtain the pure hepatin acid ester that contains free hydroxyl group 51, productive rate: 76%.
The preparation of embodiment 6 trisaccharide ortho-esters 67:
Bromo acetylated mannan sugar 2 (411 milligrams, 1 mmole) is dissolved in 10 milliliters of methylene dichloride, gets solution A, disaccharide ortho ester 24 (536 milligrams, 1 mmole) is dissolved in 15 milliliters of methylene dichloride, gets solution B, with B mix with A solution C, in C, add 2, the 4-lutidine, (0.115 milliliter, 1 mmole), under agitation add silver suboxide (232 milligrams, 1 mmole), after two hours, thin-layer chromatographic analysis shows to react to be finished at room temperature reaction.Reaction solution is diluted with 10 milliliters of methylene dichloride, wash solution with water, aqueous phase discarded, organic phase is drained under vacuum, the hepatin acid ester crude product that obtains is refining with silica gel column chromatography, as leacheate drip washing, collects respective components with ethyl acetate/petroleum ether (1/2), obtain trisaccharide ortho-esters 67, productive rate: 68%.

Claims (3)

1. disaccharides and trisaccharide ortho-esters, it has following structure:
Figure C9810324200021
Glu in the formula, Man, the glycosyl of Gal representative is:
Figure C9810324200032
Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group.
2. the synthetic method of disaccharides and trisaccharide ortho-esters is characterized in that:
(1) be glycosyl donor with bromo ethanoyl glucose 1 or bromo ethanoyl seminose 2 or bromo ethanoyl semi-lactosi 3; with 1; the glucose 4,1 of 2-O-ethidine protection; the seminose 5,1 of 2-O-ethidine protection; semi-lactosi 6, the alkylglycoside 7 of glucose, the pure ortho ester 8 of glucose, the alkylglycoside 9 of seminose, the pure ortho ester 10 of seminose, the alkylglycoside 11 of semi-lactosi or the pure ortho ester 12 of semi-lactosi of the protection of 2-O-ethidine are glycosyl acceptor, and its structure is: Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group in the formula;
With etc. a kind of glycosyl donor of mol ratio be dissolved in the organic solvent with glycosyl acceptor with a kind of sugar identical with glycosyl donor, and with the silver salt and organic bases effect of mol ratios such as glycosyl donor or acceptor under, react under the room temperature, finally collect respective components, prepare the ortho ester 13,14,15,16,17,18,19,20 or 21 of the disaccharides of forming by identical sugar; Its structure is:
Figure C9810324200041
Glu in the formula, Man, the glycosyl of Gal representative is: Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group;
A kind of glycosyl donor that maybe will wait mol ratio is dissolved in the organic solvent with a kind of glycosyl acceptor of the sugar different with glycosyl donor, and with the silver salt and organic bases effect of mol ratios such as glycosyl donor or acceptor under, react under the room temperature, finally collect respective components, prepare the ortho ester 22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38 or 39 of the disaccharides of forming by identical sugar; Its structure is:
Figure C9810324200043
Glu in the formula, Man, the glycosyl of Gal representative is:
Figure C9810324200051
Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group;
(2) be glycosyl donor with bromo ethanoyl glucose 1 or bromo ethanoyl seminose 2 or bromo ethanoyl semi-lactosi 3; with 1; the glucose 4,1 of 2-O-7 fork base protection; the seminose 5,1 of 2-O-7 fork base protection; semi-lactosi 6, the alkylglycoside 7 of glucose, the pure ortho ester 8 of glucose, the alkylglycoside 9 of seminose, the pure ortho ester 10 of seminose, the alkylglycoside 11 of semi-lactosi or the pure ortho ester 12 of semi-lactosi of the protection of 2-O-ethidine are glycosyl acceptor, and its structure is:
Figure C9810324200052
Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group in the formula;
With a kind of 2 moles glycosyl donor with a kind of 1 mole with glycosyl donor the glycosyl acceptor of identical sugar, be dissolved in the organic solvent, and under 2 moles silver salt and organic bases effect, react under the room temperature, finally collect respective components, prepare the ortho ester 40,41,42,43,44,45,46,47 or 48 of the trisaccharide of forming by identical sugar; Its structure is:
Figure C9810324200053
Glu in the formula, Man, the glycosyl of Gal representative is:
Figure C9810324200054
Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group;
Or with a kind of 2 moles glycosyl donor with a kind of 1 mole with glycosyl donor the glycosyl acceptor of different sugar, be dissolved in the organic solvent, under 2 moles silver salt and organic bases effect, react under the room temperature, finally collect respective components, prepare the ortho ester 49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65 or 66 of the trisaccharide of forming by two kinds of different sugar; Its structure is: Glu in the formula, Man, the glycosyl of Gal representative is: Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group;
Maybe will wait glycosyl donor and a kind of disaccharide ortho ester of being made up of two kinds of different sugars of the sugar that is different from glycosyl donor of mol ratio is that glycosyl acceptor is dissolved in the organic solvent, with its etc. under the silver salt and organic bases effect of mol ratio, react under the room temperature, the final respective components of collecting is prepared the ortho ester of being made up of three different sugar 67,68,69,70,71,72,73,74,75,76,77,78,79,80,81,82,83 or 84; Its structure is: Glu in the formula, Man, the glycosyl of Gal representative is:
Figure C9810324200071
Non-sugared body R partly is methyl, ethyl, propyl group, butyl, allyl group or alkene amyl group;
Described silver salt is a silver trifluoromethanesulfonate; Described organic bases is 2,4-lutidine or 2,6-lutidine; Described organic solvent is methylene dichloride, trichloromethane or dimethyl formamide.
3. the synthetic method of a kind of disaccharides as claimed in claim 2 and trisaccharide ortho-esters; it is characterized in that described bromo ethanoyl sugar is the full ethanoyl sugar of bromo; the full benzoyl sugar of bromo; bromo perchloro-ethanoyl sugar and bromo part acetyl-part benzoyl sugar; bromo part acetyl-part chloracetyl sugar, bromo part acetyl-part benzoyl-part chloracetyl sugar.
CN98103242A 1998-07-17 1998-07-17 Method for synthesizing disaccharide and trisaccharide ortho-esters Expired - Fee Related CN1072677C (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN98103242A CN1072677C (en) 1998-07-17 1998-07-17 Method for synthesizing disaccharide and trisaccharide ortho-esters

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN98103242A CN1072677C (en) 1998-07-17 1998-07-17 Method for synthesizing disaccharide and trisaccharide ortho-esters

Publications (2)

Publication Number Publication Date
CN1242372A CN1242372A (en) 2000-01-26
CN1072677C true CN1072677C (en) 2001-10-10

Family

ID=5217816

Family Applications (1)

Application Number Title Priority Date Filing Date
CN98103242A Expired - Fee Related CN1072677C (en) 1998-07-17 1998-07-17 Method for synthesizing disaccharide and trisaccharide ortho-esters

Country Status (1)

Country Link
CN (1) CN1072677C (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1136223C (en) * 1999-09-30 2004-01-28 中国科学院生态环境研究中心 Simple synthesis of hexa-saccharide as plant self defence system activating agent
CN101747386B (en) * 2008-11-28 2013-04-24 中国科学院成都生物研究所 Preparation method of hepatin acid ester
AU2010233770A1 (en) * 2009-04-07 2011-10-27 Glycom A/S Novel method for the synthesis of a trisaccharide

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134091A (en) * 1990-09-25 1992-05-07 Towa Kasei Kogyo Kk Production of trehalose isomer

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04134091A (en) * 1990-09-25 1992-05-07 Towa Kasei Kogyo Kk Production of trehalose isomer

Also Published As

Publication number Publication date
CN1242372A (en) 2000-01-26

Similar Documents

Publication Publication Date Title
Issa et al. A reagent-controlled SN2-glycosylation for the direct synthesis of β-linked 2-deoxy-sugars
Garegg Thioglycosides as glycosyl donors in oligosaccharide synthesis
Kong Recent studies on reaction pathways and applications of sugar orthoesters in synthesis of oligosaccharides
Wang et al. Assembly of a β-(1→ 3)-glucan laminarihexaose on ionic liquid support
CN1072677C (en) Method for synthesizing disaccharide and trisaccharide ortho-esters
Gorin et al. The chemical structure of the d-galacto-d-mannan component of trypanosoma cruzi: 13c-nmr shift dependence on structure of d-galactose to d-mannose linkage
de Jong et al. A Second‐Generation Tandem Ring‐Closing Metathesis Cleavable Linker for Solid‐Phase Oligosaccharide Synthesis
CN1054607C (en) Zone selection using saccharous ortho-ester as key intemediate and method for stereospecific synthesis of oligose
US9751906B2 (en) Selective oxidation of carbohydrates
Uryu Polysaccharides
CN1138783C (en) Synthesis of 1-hydroxy, 6 or 5-acetyl monosaccharide benzoylate
Nishimura et al. Chemical synthesis of cellulose derivatives by a convergent synthetic method and several of their properties
CN1129600C (en) Synthesis of lentinan core fragment trisaccharide, tetrasaccharide, hexasaccharide and heptasaccharide
CN1324798A (en) Synthesis of mannitose-glucose tetrasaccharide repeated unit with anti-tumor activity
Karakawa et al. The utility of a 3-O-allyl group as a protective group for ring-opening polymerization of α-D-glucopyranose 1, 2, 4-orthopivalate derivatives
JP3650409B2 (en) Process for producing low molecular weight branched β-1,3-glucan and branched laminary oligosaccharide
CN1290705A (en) Synthesizing method of 1-hydroxy monosaccharide benzoylate
CN1072676C (en) Method for synthesizing hexasaccharide and heptasaccharide used as plant immunological system activator using trisaccharid ortho-ester as key intermediate
Choi et al. Synthesis of sulfated octadecyl ribo-oligosaccharides with potent anti-AIDS virus activity by ring-opening polymerization of a 1, 4-anhydroribose derivative
CN1160363C (en) Prepn. method for mannosan antigen factor 4 and mannosan antigen factor 6
Kulkarni et al. lili io: 3
CN1141309C (en) Preparation method of pyranoligosaccharide with 1-6 connection and 1,2-trans glycosidic band
Gorin et al. EXTRACELLULAR ACIDIC POLYSACCHARIDES FROM C. INSIDIOSUM AND OTHER CORYNEBACTERIUM SPP.
JP3037445B2 (en) Production method of retinyl glucoside
CN1450075A (en) Group No.1 oligose and sulfated products, their preparation process and medicine composition containing said oligose

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C19 Lapse of patent right due to non-payment of the annual fee
CF01 Termination of patent right due to non-payment of annual fee