CN107263890B - Moment leveling control method and leveling device for composite material press - Google Patents
Moment leveling control method and leveling device for composite material press Download PDFInfo
- Publication number
- CN107263890B CN107263890B CN201710521828.5A CN201710521828A CN107263890B CN 107263890 B CN107263890 B CN 107263890B CN 201710521828 A CN201710521828 A CN 201710521828A CN 107263890 B CN107263890 B CN 107263890B
- Authority
- CN
- China
- Prior art keywords
- leveling
- hydraulic cylinder
- leveling hydraulic
- target
- slider
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C70/00—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
- B29C70/04—Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
- B29C70/28—Shaping operations therefor
- B29C70/54—Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/10—Geometric CAD
- G06F30/17—Mechanical parametric or variational design
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Geometry (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Mathematical Analysis (AREA)
- Computational Mathematics (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Mathematical Optimization (AREA)
- Pure & Applied Mathematics (AREA)
- Computer Hardware Design (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Composite Materials (AREA)
- Control Of Presses (AREA)
Abstract
Description
技术领域technical field
本发明涉及一种被动式力矩调平控制方法,特别涉及用于复合材料压机的力矩调平控制方法及调平装置。The invention relates to a passive torque leveling control method, in particular to a torque leveling control method and a leveling device for a composite material press.
背景技术Background technique
复合材料压机是制造新型复合材料制品的重要装备之一,其优点在于自动化程度强、工艺技术简单、成型精度高、成型质量好、可实现一次成型以及可连续压制,而广泛地应用于飞机、航天、潜艇、汽车等高新技术领域。然而液压机压制成型的过程中,由于主缸与回程缸的压力分布不均、复合材料制品的形状和温度的差别,导致系统具有较强的偏载特性,如不平衡上述原因所导致的偏载,将使得滑块发生倾斜,从而影响复合材料制品的精度甚至损坏模具。Composite material press is one of the important equipment for manufacturing new composite material products. It has the advantages of strong automation, simple process technology, high forming precision, good forming quality, one-time forming and continuous pressing, and is widely used in aircraft , aerospace, submarines, automobiles and other high-tech fields. However, during the press molding process of the hydraulic press, due to the uneven pressure distribution between the main cylinder and the return cylinder, and the difference in the shape and temperature of the composite material product, the system has a strong eccentric load characteristic, such as the unbalanced eccentric load caused by the above reasons , will cause the slider to tilt, which will affect the accuracy of the composite product and even damage the mold.
为保证制品精度以及保护模具,考虑到主缸、回程缸以及复合材料所造成的倾覆力矩对整个压机系统的影响,目前最常用的手段是设计四角调平系统以平衡倾覆力矩。其设计和改进由以下两方面构成:一方面为液压系统方面,另一方面为控制算法方面。(1)液压系统方面:通过主动式调平或者被动式调平来实现滑块的快速水平控制(参考专利200910070144.3、201010243672.7、201110183255.2);(2)算法优化方面:采用不同的控制策略进行同步位置控制(参考专利200910190950.4、201110182802.5、201210374508.9);或采用MIMO随动模糊控制方法与面调平方法相结合,实现多点解耦自动调平(参考专利200810055292.3);或采用调平调速双闭环的控制算法实现高精度控制(参考专利201110278650.9)。现有专利设计有助于平衡系统的偏载特性的应用要求,但仍存在以下一些不足,主要表现为:In order to ensure the precision of the product and protect the mold, considering the impact of the overturning moment caused by the main cylinder, return cylinder and composite materials on the entire press system, the most commonly used method at present is to design a four-corner leveling system to balance the overturning moment. Its design and improvement are composed of the following two aspects: one is the hydraulic system, and the other is the control algorithm. (1) Hydraulic system: Realize rapid horizontal control of the slider through active leveling or passive leveling (refer to patents 200910070144.3, 201010243672.7, 201110183255.2); (2) Algorithm optimization: use different control strategies for synchronous position control (Refer to patents 200910190950.4, 201110182802.5, 201210374508.9); or use the combination of MIMO follow-up fuzzy control method and surface leveling method to realize multi-point decoupling automatic leveling (refer to patent 200810055292.3); or use a double closed-loop control algorithm for leveling and speed regulation Realize high-precision control (refer to patent 201110278650.9). The existing patented design helps to balance the application requirements of the partial load characteristics of the system, but there are still some shortcomings as follows, mainly as follows:
(1)现有的液压系统方面,主动式调平方式,虽然消耗的能量小,但是其安装较为复杂,且在高速调平的过程中,控制较难。被动式调平系统虽然安装简单,但是对滑块的运动有阻碍的作用,使得系统的调平效率不高。(1) In terms of the existing hydraulic system, although the active leveling method consumes less energy, its installation is relatively complicated, and it is difficult to control during the high-speed leveling process. Although the passive leveling system is easy to install, it hinders the movement of the slider, making the leveling efficiency of the system not high.
(2)现有的调平控制方法,大部分控制策略是采用以四个调平液压缸的位移的平均值为虚拟轴,四个调平液压缸跟随其虚拟轴,以实现四个调平液压缸对滑块进行调平,虽然能够进行自动调平,但是无法得到准确的调平输出力,其响应速度和调平效率较难满足快速调平的要求。(2) In the existing leveling control methods, most of the control strategies use the average value of the displacement of the four leveling hydraulic cylinders as the virtual axis, and the four leveling hydraulic cylinders follow their virtual axes to achieve four leveling The hydraulic cylinder levels the slider. Although it can perform automatic leveling, it cannot obtain accurate leveling output force, and its response speed and leveling efficiency are difficult to meet the requirements of fast leveling.
(3)在算法改进上,现有的调平控制方法多通过各个调平液压缸跟踪虚拟轴的同步位置PID控制算法进行调平控制。由于系统具有多输入多输出系统、耦合系统、过驱动系统特性,导致PID控制器的控制参数调节困难,且难以保证在快速调平工况下具有高精度的要求。对于一些改进的算法,虽然在控制器设计上考虑了系统特性,能够满足系统的调平要求,但是控制算法复杂,将其算法应用于工程实践中较难。(3) In terms of algorithm improvement, the existing leveling control methods mostly use the synchronous position PID control algorithm of each leveling hydraulic cylinder to track the virtual axis to perform leveling control. Because the system has the characteristics of multiple input and multiple output systems, coupling systems, and overdrive systems, it is difficult to adjust the control parameters of the PID controller, and it is difficult to ensure high precision requirements under fast leveling conditions. For some improved algorithms, although the system characteristics are considered in the design of the controller, it can meet the leveling requirements of the system, but the control algorithm is complex, and it is difficult to apply the algorithm to engineering practice.
发明内容Contents of the invention
为了解决上述技术问题,本发明提供用于复合材料压机的力矩调平控制方法及调平装置,以解决在高速调平系统中存在调平效率低,调平精度不高及抗干扰能力不强等问题。同时在压机快速压制过程中,通过设计基于双曲正割函数改进趋近律的最优滑模控制算法,以获得最优的目标输出调平力作用于滑块上,使滑块尽可能快速稳定的实现水平控制,改善在调平过程中,调平系统对主缸有较大的冲击与振动,提高系统的稳定性及调平精度。In order to solve the above technical problems, the present invention provides a torque leveling control method and a leveling device for a composite material press to solve the problems of low leveling efficiency, low leveling accuracy and low anti-interference ability in a high-speed leveling system Strong and other issues. At the same time, in the rapid pressing process of the press, by designing the optimal sliding mode control algorithm based on the hyperbolic secant function to improve the reaching law, the optimal target output leveling force acts on the slider to make the slider as possible Realize level control quickly and stably, improve the leveling system's large impact and vibration on the master cylinder during the leveling process, and improve the stability and leveling accuracy of the system.
本发明的技术方案如下:Technical scheme of the present invention is as follows:
用于复合材料压机的力矩调平控制方法,在滑块四角下方分别竖直设置调平液压缸;包括以下依序进行的步骤:A torque leveling control method for a composite material press, in which leveling hydraulic cylinders are vertically arranged under the four corners of the slide block; the following steps are performed in sequence:
步骤1:调平开始时,分别采集四个调平液压缸的位移值;Step 1: At the beginning of leveling, collect the displacement values of the four leveling hydraulic cylinders;
步骤2:将位移信号进行处理得到对角调平液压缸的位移差和速度差;Step 2: Process the displacement signal to obtain the displacement difference and speed difference of the diagonal leveling hydraulic cylinder;
步骤3:将步骤2中的位移差和速度差作为滑模变结构控制算法的输入,获得对角调平液压缸的目标调平力之差;Step 3: Use the displacement difference and velocity difference in
步骤4:根据最优力分配算法,分别获得四个调平液压缸的目标输出力;Step 4: Obtain the target output forces of the four leveling hydraulic cylinders respectively according to the optimal force distribution algorithm;
步骤5:重复步骤2到步骤4的过程,通过对滑块进行m次的调整,直至达到水平精度的要求。Step 5: Repeat the process from
其中,在步骤1之前首先创设一虚拟轴,所述虚拟轴为四个调平液压缸位移的平均值;四个调平液压缸分别跟踪所述虚拟轴。Wherein, before
其中,在步骤5中设置一判断程序,即各个调平液压缸与所述虚拟轴的位移之差在一定范围以内时,则自动调平结束。Wherein, a judgment procedure is set in
其中,在所述步骤3中,通过滑块的力矩平衡方程、四个调平液压缸之间的几何关系以及运动学方程建立滑块的数学模型并将其转换为状态空间方程,再结合虚拟轴,设计所述滑模变结构控制算法。Among them, in the
其中,所述滑模变结构控制系统的设计包括滑模面的设计和滑模变结构控制律的设计。Wherein, the design of the sliding mode variable structure control system includes the design of the sliding mode surface and the design of the sliding mode variable structure control law.
其中,最优滑模面为s1=x1+a·x3、s2=x2+b·x4,其中,a、b的取值决定了s1和s2的收敛速率;Among them, the optimal sliding mode surface is s 1 =x 1 +a·x 3 , s 2 =x 2 +b·x 4 , where the values of a and b determine the convergence rate of s 1 and s 2 ;
s1:滑模面1;s 1 : sliding
s2:滑模面2;s 2 : sliding
a:滑模面1的收敛系数;a: Convergence coefficient of sliding
b:滑模面1的收敛系数;b: Convergence coefficient of sliding
x1:第一调平液压缸与第三调平液压缸的位移差;x 1 : The displacement difference between the first leveling hydraulic cylinder and the third leveling hydraulic cylinder;
x2:第二调平液压缸与第四调平液压缸的位移差;x 2 : The displacement difference between the second leveling hydraulic cylinder and the fourth leveling hydraulic cylinder;
x3:第一调平液压缸与第三调平液压缸的速度差;x 3 : the speed difference between the first leveling hydraulic cylinder and the third leveling hydraulic cylinder;
x4:第二调平液压缸与第四调平液压缸的速度差。x 4 : Speed difference between the second leveling hydraulic cylinder and the fourth leveling hydraulic cylinder.
其中,所述滑模变结构控制律的改进趋近律为其中,k1、k2的取值决定趋近滑模面的程度;Wherein, the improved reaching law of the sliding mode variable structure control law is Among them, the values of k 1 and k 2 determine the degree of approaching the sliding mode surface;
k1:趋近律系数;k2:趋近律系数;s(t):滑模面。k 1 : reaching law coefficient; k 2 : reaching law coefficient; s (t) : sliding mode surface.
其中,步骤4所述的最优力分配算法的过程为:对角调平液压缸的目标调平输出力之中,始终有一个目标调平输出力为d,较小目标输出力的调平液压缸的目标调平输出力d,较大目标输出力的调平液压缸的目标调平输出力为d与该对角调平液压缸的目标输出调平力之差的和。Among them, the process of the optimal force distribution algorithm described in step 4 is: among the target leveling output forces of the diagonal leveling hydraulic cylinder, there is always a target leveling output force d, and the leveling with the smaller target output force The target leveling output force d of the hydraulic cylinder, the target leveling output force of the leveling hydraulic cylinder with a larger target output force is the sum of the difference between d and the target output leveling force of the diagonal leveling hydraulic cylinder.
其中,在步骤1之前判断滑块是否达到调平位,如果没有到达调平开始位,四个调平液压缸与滑块一起作位置闭环控制;直到滑块到达调平位置时,四个调平液压缸通过输出不同的调平力作调平控制。Among them, before
其中,四个调平液压缸跟踪虚拟轴的方式为使四个调平液压缸与虚拟轴位移的方差趋小,即对角调平液压缸的位移差快速收敛到零。Among them, the way for the four leveling hydraulic cylinders to track the virtual axis is to make the variance of the displacement between the four leveling hydraulic cylinders and the virtual axis tend to be small, that is, the displacement difference of the diagonal leveling hydraulic cylinders quickly converges to zero.
本发明具有如下有益效果:The present invention has following beneficial effects:
1、本发明采用基于双曲正割函数改进趋近律的滑模变结构控制方法对滑块进行水平控制,有效避免了调平控制中,调平系统对滑块运动具有较大的冲击与振动,同时提高系统的响应速度及调平精度。滑模变结构控制系统设计过程首先基于滑块系统建立数学模型并转换为状态空间方程。对多输入多输出系统进行解耦矩阵变换,从而得到解耦模型,然后结合最优控制进行最优滑模面的设计,使得系统对参数摄动及系统干扰具有良好的抑制作用,同时改进传统趋近律,设计基于双曲正割函数改进的趋近律,能削弱系统抖振,增强了算法的适应性,能够以较快的响应速度对滑块进行水平控制以及能对未知干扰以及参数摄动具有较好的抑制作用,提高了系统的鲁棒性。1. The present invention adopts the sliding mode variable structure control method based on the hyperbolic secant function to improve the reaching law to control the level of the slider, which effectively avoids the large impact and impact of the leveling system on the movement of the slider during the leveling control. vibration, while improving the response speed and leveling accuracy of the system. The sliding mode variable structure control system design process first establishes a mathematical model based on the slider system and converts it into a state space equation. The decoupling matrix transformation is performed on the multi-input and multi-output system to obtain the decoupling model, and then the optimal sliding mode surface is designed in combination with the optimal control, so that the system has a good inhibitory effect on parameter perturbation and system interference, and at the same time improves the traditional Reaching law, the design is based on the improved reaching law of hyperbolic secant function, which can weaken the chattering of the system, enhance the adaptability of the algorithm, and can control the level of the slider with a faster response speed and can control unknown disturbances and parameters. Perturbation has a better suppression effect and improves the robustness of the system.
2、本发明采用以各个调平液压缸的位移差和速度差为控制器输入的方式,有效的避免了直接通过倾角传感器测量滑块绕x轴的倾角和绕y轴的倾角,简化了安装倾角传感器的机械结构。以各对角液压缸的调平输出力之差作用于滑块上,从而使得滑块进行水平控制,有效的避免了各个调平液压缸输出调平力的稳态误差对滑块水平控制的影响。特别涉及到在高速调平的过程中,调平液压缸压力控制由于其系统的死区、滞环、泄漏等特性的影响,导致其无法实现精确的压力闭环控制,如果对角缸同时存在相同的稳态误差,其实际的控制输入没有改变,仍能到达较高的调平精度,提高了系统适应性。2. The present invention uses the displacement difference and speed difference of each leveling hydraulic cylinder as the controller input method, which effectively avoids measuring the inclination angle of the slider around the x-axis and the y-axis directly through the inclination sensor, and simplifies the installation The mechanical structure of the tilt sensor. The difference between the leveling output force of each diagonal hydraulic cylinder acts on the slider, so that the slider can be controlled horizontally, effectively avoiding the influence of the steady-state error of the output leveling force of each leveling hydraulic cylinder on the level control of the slider. Influence. Especially in the process of high-speed leveling, the pressure control of the leveling hydraulic cylinder cannot achieve accurate pressure closed-loop control due to the dead zone, hysteresis, leakage and other characteristics of the system. The steady-state error, the actual control input has not changed, and can still achieve a high leveling accuracy, which improves the system adaptability.
3、本发明采用四个调平液压缸的压力控制的方法,压力控制响应速度快,从而提高了系统的响应速度。同时,通过力矩调平的方法结合最优力分配原则,不仅有效的解决了四角调平的过驱动问题,而且能优化出各个调平液压缸的目标输出调平力,进而避免了系统较大的冲击与振动,提高了压机的使用寿命。3. The present invention adopts the pressure control method of four leveling hydraulic cylinders, and the pressure control response speed is fast, thereby improving the response speed of the system. At the same time, the method of torque leveling combined with the principle of optimal force distribution not only effectively solves the overdrive problem of four-corner leveling, but also optimizes the target output leveling force of each leveling hydraulic cylinder, thus avoiding large The impact and vibration of the machine increase the service life of the press.
附图说明Description of drawings
图1为本发明调平装置的示意图;Fig. 1 is the schematic diagram of leveling device of the present invention;
图2为本发明滑模变结构控制系统设计方法示意图;Fig. 2 is a schematic diagram of the sliding mode variable structure control system design method of the present invention;
图3本发明用于复合材料压机的力矩调平控制方法的运行流程图;Fig. 3 is the operation flow chart of the torque leveling control method used in the composite material press according to the present invention;
图4为本发明控制器和各传感器的示意图。Fig. 4 is a schematic diagram of the controller and various sensors of the present invention.
图中附图标记表示为:The reference signs in the figure represent:
1-主缸,11-第一位移传感器、2-滑块,3-回程缸、31-第一压力传感器、41-第二位移传感器、42-第二压力传感器、5-控制器、51-数据采集模块、52-数据处理模块、521-数据存储模块、522-比较模块、523-计算模块、53-数据输出模块、54-调控模块、6-第一调平液压缸,7-第二调平液压缸,8-第三调平液压缸,9-第四调平液压缸。1-master cylinder, 11-first displacement sensor, 2-slider, 3-return cylinder, 31-first pressure sensor, 41-second displacement sensor, 42-second pressure sensor, 5-controller, 51- Data acquisition module, 52-data processing module, 521-data storage module, 522-comparison module, 523-calculation module, 53-data output module, 54-regulation module, 6-first leveling hydraulic cylinder, 7-second Leveling hydraulic cylinder, 8-the third leveling hydraulic cylinder, 9-the fourth leveling hydraulic cylinder.
具体实施方式Detailed ways
下面结合附图和具体实施例来对本发明进行详细的说明。The present invention will be described in detail below in conjunction with the accompanying drawings and specific embodiments.
图1和图4表征一种复合材料压机调平装置,包括从上到下依次设置的主缸1、用于安装模具的滑块2、回程缸3以及控制器5;所述主缸1的液压杆固定在滑块2的上端面,所述回程缸3的液压杆固定在滑块2的下端面;所述滑块2下方四角还分别设置有调平液压缸;所述调平机构还包括采集主缸1位移信号的第一位移传感器11、采集回程缸3压力信号的第一压力传感器31以及采集调平液压缸位移信号的第二位移传感器41;所述控制器5包括依次电信号连接的数据采集模块51、数据处理模块52、数据输出模块53以及调控模块54;第一位移传感器11、第一压力传感器31和第二位移传感器41的信号经数据采集模块51采集后传输至数据处理模块52处理获得调平液压缸的目标输出力,目标输出力信号经数据输出模块53传输至调控模块54;调控模块54根据目标输出力调节调平液压缸的输出力。Figure 1 and Figure 4 represent a composite material press leveling device, including a master cylinder 1 arranged in sequence from top to bottom, a slide block 2 for installing a mold, a return cylinder 3 and a controller 5; the master cylinder 1 The hydraulic rod of the slider 2 is fixed on the upper end surface of the slider 2, and the hydraulic rod of the return cylinder 3 is fixed on the lower end surface of the slider 2; the four corners below the slider 2 are respectively provided with leveling hydraulic cylinders; the leveling mechanism It also includes the first displacement sensor 11 for collecting the displacement signal of the master cylinder 1, the first pressure sensor 31 for collecting the pressure signal of the return cylinder 3, and the second displacement sensor 41 for collecting the displacement signal of the leveling hydraulic cylinder; The data acquisition module 51, data processing module 52, data output module 53 and control module 54 of signal connection; The signal of the first displacement sensor 11, the first pressure sensor 31 and the second displacement sensor 41 is transmitted to The data processing module 52 processes and obtains the target output force of the leveling hydraulic cylinder, and the target output force signal is transmitted to the control module 54 through the data output module 53; the control module 54 adjusts the output force of the leveling hydraulic cylinder according to the target output force.
其中,所述数据处理模块52包括数据存储模块521、与滑块2的状态空间方程进行比较的比较模块522和计算调平液压缸输出调平力的计算模块523。Wherein, the
其中,所述调平液压缸为双作用单出杆腔式液压缸。Wherein, the leveling hydraulic cylinder is a double-acting single-rod cavity hydraulic cylinder.
其中,所述调平液压缸分别由一油泵(图中未示出)供油,所述调平液压缸内设置有第二压力传感器42;所述第二压力传感器42与数据采集模块51电信号连接。Wherein, the leveling hydraulic cylinders are respectively supplied with oil by an oil pump (not shown in the figure), and a
具体流程图如下:The specific flow chart is as follows:
步骤1:控制器5依据第一位移传感器11和第一压力传感器31的信号调节主缸1和回程缸3的压力,通过判断滑块2是否达到调平位,如果没有到达调平开始位,第一调平液压缸6、第二调平液压缸7、第三调平液压缸8、第四调平液压缸9与滑块一起作位置闭环控制。当滑块2到达调平位置时,四个调平液压缸通过输出不同的调平力作调平控制。Step 1: The
步骤2:当滑块到达调平位置时,系统会通过比较模块522比较判断各调平液压缸的调平精度是否满足要求,如果调平精度满足要求,即四个调平液压缸中各个调平液压缸与虚拟轴的位移之差在c mm以内,四角调平控制系统则会保持原来的调平输出力继续跟主缸往下一起做精确的位置闭环控制。如果调平精度不能满足要求,四角调平控制系统通过第二位移传感器41采集四个调平液压缸的位移信号输入计算模块523计算。Step 2: When the slider reaches the leveling position, the system will use the
步骤3:计算模块523的计算过程如下;通过位移对时间求导计算得到四个调平液压缸的瞬时速度,通过程序处理得到各对角缸的位移差和速度差,即第一调平液压缸6与第三调平液压缸8的位移差x1和速度差x3、第二调平液压缸7与第四调平液压缸9的位移差x2和速度差x4;得到各对角调平液压缸的位移差和速度差作为滑模变结构控制算法的输入,计算可得到所需各对角调平液压缸的目标调平输出力之差,即第一调平液压缸6目标调平输出力与第三调平液压缸8目标调平输出力之差u1,第二调平液压缸7目标调平输出力与第四调平液压缸9目标调平输出力之差u2。Step 3: The calculation process of the
步骤4:由步骤3所得各对角调平液压缸的目标调平输出力之差,由四缸调平力分配算法可得各个调平液压缸的目标调平输出力,即第一调平液压缸6目标调平输出力F1、第二调平液压缸7目标调平输出力F2、第三调平液压缸8目标调平输出力F3、第四调平液压缸9目标调平输出力F4,将其作用于滑块2的水平控制中,以提高调平过程的平稳性及响应速度。Step 4: From the difference in the target leveling output force of each diagonal leveling hydraulic cylinder obtained in
步骤5:判断是否达到调平结束位,如果没有到达,重复步骤2到步骤4的过程。反之,调平结束。Step 5: Determine whether the leveling end position has been reached, if not, repeat the process from
图2表征一种多输入多输出的被动式调平系统的滑模变结构控制系统设计方法。Figure 2 represents a sliding mode variable structure control system design method for a passive leveling system with multiple inputs and multiple outputs.
具体设计方法如下:The specific design method is as follows:
步骤1:首先对滑块进行数学建模,分别为与x轴和y轴的倾角;F1、F2、F3、F4分别为四个调平液压缸的目标输出调平力;Jx、Jy分别为滑块绕x轴和y轴的转动惯量;Fp为未知偏载力;四个调平液压缸距离x轴的距离为lx;距离y轴的距离ly;偏载力到x轴的距离为rx;偏载力到y轴的距离为ry。跟据刚体的定轴转动规律可得:Step 1: First mathematically model the slider, are the inclination angles with the x-axis and y-axis; F 1 , F 2 , F 3 , and F 4 are the target output leveling forces of the four leveling hydraulic cylinders; J x , J y are the sliders around the x-axis and the The moment of inertia of the y-axis; F p is the unknown eccentric load force; the distance from the four leveling hydraulic cylinders to the x-axis is l x ; the distance from the y-axis is l y ; the distance from the eccentric load to the x-axis is r x ; The distance from the load to the y-axis is r y . According to the law of fixed axis rotation of a rigid body, we can get:
根据四个调平液压缸的几何关系可得:According to the geometric relationship of the four leveling hydraulic cylinders:
联立式(1)和式(2)可以消去和可用四个调平液压缸的速度和位移去描述滑块绕x轴和y轴的倾角误差。结合运动学方程可得:Simultaneous formula (1) and formula (2) can be eliminated and The speed and displacement of the four leveling hydraulic cylinders can be used to describe the inclination error of the slider around the x-axis and y-axis. Combined with the kinematic equations:
yi分别为第i号调平液压缸的位移;vi分别为第i号调平液压缸的速度;y i are the displacements of the i-th leveling hydraulic cylinder; v i are the speeds of the i-th leveling hydraulic cylinder;
联立(1)式、(2)式和(3)式联立可得其数学模型,并将其转化为以对角调平液压缸的位移差和速度差为状态变量,以对角调平液压缸目标调平输出力之差为输出的状态空间方程;Combining formula (1), formula (2) and formula (3) can obtain its mathematical model, and transform it into a state variable with the displacement difference and speed difference of the diagonal leveling hydraulic cylinder, and the diagonal leveling hydraulic cylinder The difference between the target leveling output force of the leveling hydraulic cylinder is the output state space equation;
步骤2:基于步骤1所设计的状态空间方程,设计滑模变结构控制算法。滑模变结构控制系统的设计分为两部分:一部分为滑模面的设计,另一部分为滑模变结构控制律的设计。具体的设计过程如下:Step 2: Design a sliding mode variable structure control algorithm based on the state space equation designed in
步骤1:由于系统具有多输入多输出的系统特性,首先需要对状态空间方程进行解耦运算,即矩阵变换,得到相应的解耦模型。基于解耦的模型,结合最优控制原理设计最优滑模面,使所确定的滑动模态渐进稳定且具有良好的动态品质。所设计的最优滑模面为s1=x1+a·x3、s2=x2+b·x4,其中,a、b的取值决定了s1和s2的收敛速率;Step 1: Since the system has the system characteristics of multiple inputs and multiple outputs, it is first necessary to decouple the state space equation, that is, matrix transformation, to obtain the corresponding decoupling model. Based on the decoupled model, the optimal sliding mode surface is designed in combination with the optimal control principle, so that the determined sliding mode is asymptotically stable and has good dynamic quality. The designed optimal sliding mode surface is s 1 =x 1 +a·x 3 , s 2 =x 2 +b·x 4 , where the values of a and b determine the convergence rate of s 1 and s 2 ;
s1:滑模面1;s 1 : sliding
s2:滑模面2;s 2 : sliding
a:滑模面1的收敛系数;a: Convergence coefficient of sliding
b:滑模面1的收敛系数;b: Convergence coefficient of sliding
x1:第一调平液压缸与第三调平液压缸的位移差;x 1 : The displacement difference between the first leveling hydraulic cylinder and the third leveling hydraulic cylinder;
x2:第二调平液压缸与第四调平液压缸的位移差;x 2 : The displacement difference between the second leveling hydraulic cylinder and the fourth leveling hydraulic cylinder;
x3:第一调平液压缸与第三调平液压缸的速度差;x 3 : the speed difference between the first leveling hydraulic cylinder and the third leveling hydraulic cylinder;
x4:第二调平液压缸与第四调平液压缸的速度差。x 4 : Speed difference between the second leveling hydraulic cylinder and the fourth leveling hydraulic cylinder.
步骤2:设计了相应的最优滑模面后,需要设计滑模变结构控制算法的控制律,即如何选择滑动模态控制律u+和u-,使到达条件得到满足,从而在切换面上形成滑动模态区。为保证系统状态能以较好的运动状态趋向滑动模态切换面,设计了基于双曲正割函数改进趋近律的滑模变结构控制规律。改进的趋近律为其中,k1、k2的取值决定趋近滑模面的程度;Step 2: After designing the corresponding optimal sliding mode surface, it is necessary to design the control law of the sliding mode variable structure control algorithm, that is, how to select the sliding mode control law u + and u - so that the arrival condition is satisfied, so that on the switching surface A sliding mode region is formed on it. In order to ensure that the state of the system tends to the sliding mode switching surface with a better motion state, a sliding mode variable structure control law based on the improved reaching law of the hyperbolic secant function is designed. The improved reaching law is Among them, the values of k 1 and k 2 determine the degree of approaching the sliding mode surface;
k1:趋近律系数;k2:趋近律系数;s(t):滑模面。k 1 : reaching law coefficient; k 2 : reaching law coefficient; s (t) : sliding mode surface.
步骤3:针对步骤2所设计的基于双曲正割函数改进趋近律的滑模控制算法,根据四个调平液压缸的位移差和速度差作为控制器输入,即x1=y1-y3,x2=y2-y4,x3=v1-v3,x4=v2-v4,得到第一调平液压缸6与第三调平液压缸8的输出目标调平力之差u1和第二调平液压缸7与第四调平液压缸9的目标输出调平力之差u2,即u1=F1-F3、u2=F2-F4。Step 3: For the sliding mode control algorithm based on hyperbolic secant function improved reaching law designed in
步骤4:由步骤3可知,第一调平液压缸6调平输出力与第三调平液压缸8调平输出力之差u1,第二调平液压缸7调平输出力与第四调平液压缸9目标调平输出力之差u2。通过最优分配算法,第一调平液压缸6和第三调平液压缸8的目标调平输出力之中,始终有一个目标调平输出力为d kN,其对角调平液压缸目标调平输出力是通过所设计的控制器输出u1的正负判断,如果为正,则第三液压缸8的目标调平输出力F3=d kN,第一调平液压缸6的目标调平输出力F1=F3+u1,反之,则第一液压缸6给目标调平输出力F1=d kN,第三调平液压缸6的目标调平输出力F3=F1-u1;第二调平液压缸7和第四调平液压缸9的目标调平输出力之中,始终有一个目标调平力为d kN,其对角调平液压缸目标调平输出力是通过所设计的控制器输出u2的正负判断,如果为正,则第四液压缸9给目标调平输出力F4=d kN,第二调平液压缸7的目标调平输出力F2=F4+u1,反之,则第二液压缸7给目标调平输出力F2=d kN,第四调平液压缸9的目标调平输出力F4=F2-u2。将四个调平液压缸的目标调平力F1、F2、F3、F4作用于滑块上,实现滑块的水平控制。Step 4: From
图3示意性的表征了用于复合材料压机的力矩调平控制方法的运行流程图。Fig. 3 schematically represents the operation flowchart of the torque leveling control method for a composite material press.
具体流程图如下:The specific flow chart is as follows:
步骤1:首先通过判断滑块2是否达到调平位,如果没有到达调平开始位,第一调平液压缸6、第二调平液压缸7、第三调平液压缸8、第四调平液压缸9与滑块一起作位置闭环控制。当滑块2到达调平位置时,四个调平液压缸通过输出不同的调平力作调平控制。Step 1: First, by judging whether the
步骤2:当滑块到达调平位置时,系统会判断各调平液压缸的调平精度是否满足要求,如果调平精度满足要求,即四个调平液压缸中各个调平液压缸与虚拟轴的位移之差在cmm以内,四角调平控制系统则会保持原来的调平输出力继续跟主缸往下一起做精确的位置闭环控制。如果调平精度不能满足要求,四角调平控制系统通过位移传感器采集四个调平液压缸的位移信号,并通过位移对时间求导计算得到四个调平液压缸的瞬时速度,通过程序处理得到各对角缸的位移差和速度差,即第一调平液压缸6与第三调平液压缸8的位移差x1和速度差x3、第二调平液压缸7与第四调平液压缸9的位移差x2和速度差x4。Step 2: When the slider reaches the leveling position, the system will judge whether the leveling accuracy of each leveling hydraulic cylinder meets the requirements. If the leveling accuracy meets the requirements, that is, each leveling hydraulic cylinder of the four leveling hydraulic cylinders If the difference of shaft displacement is within cmm, the four-corner leveling control system will maintain the original leveling output force and continue to do precise position closed-loop control with the master cylinder down. If the leveling accuracy cannot meet the requirements, the four-corner leveling control system collects the displacement signals of the four leveling hydraulic cylinders through the displacement sensor, and calculates the instantaneous speed of the four leveling hydraulic cylinders by calculating the derivative of the displacement with respect to time, and obtains it through program processing The displacement difference and speed difference of each diagonal cylinder, that is, the displacement difference x 1 and the speed difference x 3 of the first leveling
步骤3:得到各对角调平液压缸的位移差和速度差作为滑模变结构控制算法的输入,计算可得到所需各对角调平液压缸的目标调平输出力之差,即第一调平液压缸6目标调平输出力与第三调平液压缸8目标调平输出力之差u1,第二调平液压缸7目标调平输出力与第四调平液压缸9目标调平输出力之差u2。Step 3: Get the displacement difference and velocity difference of each diagonal leveling hydraulic cylinder as the input of the sliding mode variable structure control algorithm, and calculate the target leveling output force difference of each diagonal leveling hydraulic cylinder, which is the first The difference u 1 between the target leveling output force of the first leveling
步骤4:由步骤3所得各对角调平液压缸的目标调平输出力之差,由四缸调平力分配算法可得各个调平液压缸的目标调平输出力,即第一调平液压缸6目标调平输出力F1、第二调平液压缸7目标调平输出力F2、第三调平液压缸8目标调平输出力F3、第四调平液压缸9目标调平输出力F4,将其作用于滑块2的水平控制中,以提高调平过程的平稳性及响应速度。Step 4: From the difference in the target leveling output force of each diagonal leveling hydraulic cylinder obtained in
步骤5:判断是否达到调平结束位,如果没有到达,重复步骤2到步骤4的过程。反之,调平结束。Step 5: Determine whether the leveling end position has been reached, if not, repeat the process from
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only an embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process transformation made by using the description of the present invention and the contents of the accompanying drawings, or directly or indirectly used in other related technologies fields, all of which are equally included in the scope of patent protection of the present invention.
Claims (9)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710521828.5A CN107263890B (en) | 2017-06-30 | 2017-06-30 | Moment leveling control method and leveling device for composite material press |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710521828.5A CN107263890B (en) | 2017-06-30 | 2017-06-30 | Moment leveling control method and leveling device for composite material press |
Publications (2)
Publication Number | Publication Date |
---|---|
CN107263890A CN107263890A (en) | 2017-10-20 |
CN107263890B true CN107263890B (en) | 2023-04-07 |
Family
ID=60070561
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710521828.5A Active CN107263890B (en) | 2017-06-30 | 2017-06-30 | Moment leveling control method and leveling device for composite material press |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107263890B (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108427290B (en) * | 2018-06-06 | 2023-06-23 | 南通锻压设备如皋有限公司 | Hydraulic press slide block parallel motion control system and control method |
CN108958041B (en) * | 2018-08-19 | 2021-04-16 | 台州学院 | A Discrete Bicycle Repetitive Control Method Based on Hyperbolic Secant Law of Attraction |
CN109986828B (en) * | 2019-05-13 | 2021-03-30 | 福州大学 | A four-corner leveling system for composite presses that realizes gross tonnage control |
CN110027243B (en) * | 2019-05-13 | 2021-06-08 | 天津市天锻压力机有限公司 | Active leveling electrical control system based on composite material press |
CN112976667B (en) * | 2021-02-07 | 2022-03-08 | 福州大学 | Control system and method for flexible butt joint of hydraulic press movable beam and leveling system |
CN114953510B (en) * | 2022-06-22 | 2025-03-14 | 南通锻压设备如皋有限公司 | Intelligent flexible composite material molding hydraulic press and control method thereof |
Family Cites Families (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AUPR801301A0 (en) * | 2001-09-28 | 2001-10-25 | Kinetic Pty Limited | Vehicle suspension system |
CN101985151B (en) * | 2010-08-02 | 2012-07-25 | 天津市天锻压力机有限公司 | Bidirectional couple four-corner levelling control system |
CN202242030U (en) * | 2011-06-30 | 2012-05-30 | 天津市天锻压力机有限公司 | High speed hydraulic press for composite material products |
CN202239424U (en) * | 2011-09-20 | 2012-05-30 | 天津市天锻压力机有限公司 | Bidirectional couple four-corner leveling control system for forging press sliding block |
CN102500735B (en) * | 2011-09-20 | 2015-05-13 | 天津市天锻压力机有限公司 | Strain rate control and multi-point leveling control method for multi-cylinder hydraulic system |
CN103346676B (en) * | 2013-06-05 | 2016-08-10 | 西安理工大学 | The control system of Cz monocrystal stove high frequency switch power and control method |
CN103660359B (en) * | 2013-11-19 | 2015-06-17 | 浙江大学 | Hydraulic control system and method for passive type four-corner-leveling hydraulic press |
US9822507B2 (en) * | 2014-12-02 | 2017-11-21 | Cnh Industrial America Llc | Work vehicle with enhanced implement position control and bi-directional self-leveling functionality |
CN207105676U (en) * | 2017-06-30 | 2018-03-16 | 福建海源自动化机械股份有限公司 | A kind of composite press levelling device |
-
2017
- 2017-06-30 CN CN201710521828.5A patent/CN107263890B/en active Active
Also Published As
Publication number | Publication date |
---|---|
CN107263890A (en) | 2017-10-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107263890B (en) | Moment leveling control method and leveling device for composite material press | |
CN108181813A (en) | A kind of fractional order sliding-mode control of flexible joint mechanical arm | |
CN104879335B (en) | A kind of multi-hydraulic-cylinder synchronous control system and its control method | |
CN103611861B (en) | Zero pressure sensor control device and method of servo pressure machine | |
CN102385342A (en) | Self-adaptation dynamic sliding mode controlling method controlled by virtual axis lathe parallel connection mechanism motion | |
CN207105676U (en) | A kind of composite press levelling device | |
CN112976667B (en) | Control system and method for flexible butt joint of hydraulic press movable beam and leveling system | |
CN102721390A (en) | Speed optimization method for complex curved surface contact type tracking scan and measurement | |
CN105867301B (en) | A kind of numerical control machine temperature compensation method adapted to based on error | |
CN1903476A (en) | Compensation synchronous balancing control system for large die forging hydraupress | |
CN109177240A (en) | A kind of the four-corner leveling system and control method of composite material hydraulic machine | |
Wang et al. | Anti-swing control of overhead crane based on double fuzzy controllers | |
CN110143009B (en) | Multi-point non-linear predictive control system of press | |
CN115126733B (en) | Multi-cylinder dynamic coordination control system and control method of hydraulic forging press | |
CN106227138B (en) | Fan blade mould tilting device synchronous control system and method | |
CN104847715B (en) | A Control Method of Asymmetric Electro-hydraulic Proportional System Based on Model Transformation | |
CN106339008A (en) | Freedom-degree-based six-freedom-degree motion simulator controlling method | |
CN105117598B (en) | Forecast control method, the apparatus and system of liquid precision hydrostatic slideway | |
CN112976668B (en) | Feedforward compensation control system and method for improving passive leveling system of hydraulic machine | |
CN116197294A (en) | Jaw body positioning method and skin stretching equipment based on temperature detection matrix | |
CN208351263U (en) | A kind of slider of hydraulic press parallel motion control system | |
CN102183956A (en) | Lateral control method of horizontal walking of under-actuated two-foot walking robot | |
Yu et al. | Research status of hydrostatic bearing technology in machine tool | |
CN115291510B (en) | Intelligent leveling control method and system for hydraulic forging press | |
CN115903504B (en) | An adaptive control method for electro-hydrostatic actuator with guaranteed parameter estimation |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
CB02 | Change of applicant information |
Address after: 338000 room 388, floor 3, administrative service center, Xincheng Avenue, high tech Development Zone, Xinyu City, Jiangxi Province Applicant after: Jiangxi Haiyuan composite material technology Co.,Ltd. Address before: 350101 No. 2 Tieling North Road, Jingxi Town, Minhou County, Fuzhou City, Fujian Province Applicant before: Fujian Haiyuan Composite Materials Technology Co.,Ltd. Address after: 350101 No. 2 Tieling North Road, Jingxi Town, Minhou County, Fuzhou City, Fujian Province Applicant after: Fujian Haiyuan Composite Materials Technology Co.,Ltd. Address before: 350101 No. 2 Tieling North Road, Jingxi Town, Minhou County, Fuzhou City, Fujian Province Applicant before: FUJIAN HAIYUAN AUTOMATIC EQUIPMENTS Co.,Ltd. |
|
CB02 | Change of applicant information | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20250429 Address after: 350100 No. 2 Tieling North Road, Jingxi Town, Minhou, Fuzhou, Fujian Patentee after: Fujian Haiyuan Intelligent Equipment Co.,Ltd. Country or region after: China Address before: 338000 room 388, floor 3, administrative service center, Xincheng Avenue, high tech Development Zone, Xinyu City, Jiangxi Province Patentee before: Jiangxi Haiyuan composite material technology Co.,Ltd. Country or region before: China |
|
TR01 | Transfer of patent right |