CN107250446B - Oligonucleotides and uses thereof - Google Patents

Oligonucleotides and uses thereof Download PDF

Info

Publication number
CN107250446B
CN107250446B CN201580075708.6A CN201580075708A CN107250446B CN 107250446 B CN107250446 B CN 107250446B CN 201580075708 A CN201580075708 A CN 201580075708A CN 107250446 B CN107250446 B CN 107250446B
Authority
CN
China
Prior art keywords
primer binding
sequence
oligonucleotide
sorting
dna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201580075708.6A
Other languages
Chinese (zh)
Other versions
CN107250446A (en
Inventor
康康
陈世宏
沈玥
王云
徐讯
田埂
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BGI Shenzhen Co Ltd
Original Assignee
BGI Shenzhen Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BGI Shenzhen Co Ltd filed Critical BGI Shenzhen Co Ltd
Publication of CN107250446A publication Critical patent/CN107250446A/en
Application granted granted Critical
Publication of CN107250446B publication Critical patent/CN107250446B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • CCHEMISTRY; METALLURGY
    • C40COMBINATORIAL TECHNOLOGY
    • C40BCOMBINATORIAL CHEMISTRY; LIBRARIES, e.g. CHEMICAL LIBRARIES
    • C40B40/00Libraries per se, e.g. arrays, mixtures
    • C40B40/04Libraries containing only organic compounds
    • C40B40/06Libraries containing nucleotides or polynucleotides, or derivatives thereof

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Biochemistry (AREA)
  • Molecular Biology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

An oligonucleotide and application thereof. The oligonucleotides include: a gene coding region; the kit comprises a first flanking sequence formed at the 5 'end of a gene coding region and a second flanking sequence formed at the 3' end of the gene coding region, wherein a plate library sorting primer binding sequence, a component sub library sorting primer binding sequence and an enzyme cutting site are sequentially formed on the first flanking sequence from the 5 'end to the 3' end, and an enzyme cutting site, a component sub library sorting primer binding sequence and a plate library sorting primer binding sequence are sequentially formed on the second flanking sequence from the 5 'end to the 3' end.

Description

Oligonucleotides and uses thereof
Technical Field
The invention relates to the field of biotechnology, in particular to oligonucleotide and application thereof.
Background
With the development of genetic science and genetic engineering, DNA synthesis technology plays an increasingly important role in the field of life science. De novo synthesis of DNA elements, including regulatory sequences, complete genes, artificial metabolic pathways, and even complete artificial genomes, will revolutionize human life science research. Since the first synthesis of oligonucleotide chains by humans in 1961, techniques for DNA synthesis and assembly have been developed. Currently, the synthesis and assembly of long DNA fragments are assembled by oligonucleotide chains of 100bp or less due to technical limitations, and the cost is approximately stabilized at about 2.2 RMB per bp. Therefore, the conventional methods for DNA synthesis and assembly, which are cost-prohibitive, are difficult to apply to genomic DNA synthesis.
In 2004, Jingdong et al successfully synthesized 292 different oligonucleotide chains on a DNA chip and assembled them into 14.6kb DNA fragments using an oligonucleotide microarray chip, enabling efficient, low-cost, large-scale DNA long-fragment synthesis and assembly based on chip technology (Tian (2004) Nature 432: 1050). In 2010, Kosuri et al achieved the synthesis of hundreds of genes using commercial DNA microarray chips from agilent (kosuret al (2010) nat. biotech.28:1295) and provided a complete and complete technical route (eroschenkoe et al (2012) curr. protocol. in chem. biol.4: 1). Based on this related art, in 2012, GEN9 company established in the united states as the first commercial company providing DNA synthesis services worldwide, and its product price for DNA synthesis is about $ 0.26 per bp, which is lower than the market price for traditional DNA synthesis.
Two major challenges facing DNA synthesis technology are the high error rate of the oligonucleotide strands and the impact of the high complexity of the oligonucleotide library on assembly. How to further improve the synthesis accuracy of the DNA chip synthesis technology and reduce the assembly and screening costs plays a crucial role in the commercial application of the DNA chip synthesis technology.
Disclosure of Invention
The present invention is directed to solving, at least to some extent, one of the technical problems in the related art. To this end, an object of the present invention is to propose an oligonucleotide that can be effectively used for DNA synthesis and its applications.
The present invention has been completed based on the following findings of the inventors:
the longer the synthesis length of the oligonucleotide library synthesized on the DNA microarray chip, the lower the accuracy. At present, Agilent, a chip technology company, can provide an oligonucleotide library within 200nt, and most chip manufacturers recommend that the length of the oligonucleotide be controlled within 60nt or 120nt in order to ensure the product quality. According to the technical scheme provided by Kosuri et al (see FIG. 10 in the technical scheme), redundant flanking sequences are reserved at both ends of the oligonucleotide library for oligonucleotide screening of different assembly reactions, including 40nt primer binding sequences and 6nt cleavage site sequences, i.e., about 92nt of each oligonucleotide strand is not involved in DNA assembly. When the length of the oligonucleotide library is limited to 120nt, the effective synthesis length is only 28nt at the maximum, which is not enough to complete DNA assembly by bridge PCR; when the oligonucleotide library is limited to 160nt, the effective synthesis length is 68nt, and DNA assembly can be barely carried out. The shorter the effective synthesis length of the oligonucleotide chain, the more oligonucleotide chain species are involved in the assembly of each DNA fragment, and the assembly success rate is greatly reduced. Therefore, the method has obvious practical significance for reducing the length of flanking sequences of the oligonucleotide library, increasing the effective assembly length, further reducing the complexity of the oligonucleotide library and the complexity of an assembly mixture, greatly reducing the DNA synthesis cost and improving the power of synthesis and assembly.
Based on the above situation, the present invention aims to provide a design scheme of Oligonucleotide Library flanking primers for DNA Synthesis technology, so as to effectively increase the effective fragment length of Oligonucleotide chains on a DNA microarray chip when a large fragment of nucleic acid sequence is synthesized by Oligonucleotide Library Synthesis (OLS) strategy, thereby increasing the carrying amount of the chip on the synthesized sequence, i.e. one chip can synthesize more sequences, and further significantly reduce the Synthesis cost.
In a first aspect of the invention, the invention provides an oligonucleotide. According to an embodiment of the invention, the oligonucleotide comprises: a gene coding region; a first flanking sequence formed 5' of the coding region of the gene; and a second flanking sequence, wherein the second flanking sequence is formed at the 3' end of the gene coding region, the first flanking sequence sequentially forms a plate bank sorting primer binding sequence, a component sub-bank sorting primer binding sequence and an enzyme cutting site from the 5' end to the 3' end, the second flanking sequence sequentially forms an enzyme cutting site, a component sub-bank sorting primer binding sequence and a plate bank sorting primer binding sequence from the 5' end to the 3' end, and the plate bank sorting primer binding sequence, the component sub-bank sorting primer binding sequence and the enzyme cutting site meet at least one of the following conditions: (a) the plate bank sorting primer binding sequence and the component bank sorting primer binding sequence are public primer binding sequences; (b) at least one part of the enzyme cutting sites are formed inside the sorting primer binding sequences of the component sub-library, and the enzyme cutting sites are connected with the gene coding regions; (c) the plate sub-library sorting primer binding sequence shares a partial overlap sequence with the component sub-library sorting primer binding sequence. The inventor surprisingly finds that the oligonucleotide can be effectively used for DNA synthesis, and the effective segment length of the oligonucleotide can be effectively increased and the assembly difficulty can be greatly reduced by using the oligonucleotide for DNA synthesis, so that the carrying amount of the synthetic DNA of an oligonucleotide library can be greatly increased, and the DNA synthesis cost can be further reduced. According to the embodiment of the invention, the oligonucleotide can effectively reduce the DNA synthesis cost by 40-50%, greatly improve the flux of DNA products synthesized by each chip, and in addition, the primer synthesis cost can be reduced by about 50% by using a common primer.
According to an embodiment of the invention, the oligonucleotide is 100 to 300nt in length.
According to an embodiment of the invention, the cleavage site is 6-12nt in length.
According to an embodiment of the present invention, the cleavage site is a type II restriction enzyme cleavage site.
According to an embodiment of the invention, the length of the common primer binding sequence, the plate subpool sorting primer binding sequence, the component subpool sorting primer binding sequence is 15-25 nt.
According to an embodiment of the invention, the common primer binding sequence is a complementary sequence selected from SEQ ID No. 2825.
According to an embodiment of the invention, the plate library sorting primer binding sequence is a complementary sequence of at least one of SEQ ID No. 2815-SEQ ID No. 2824.
According to an embodiment of the invention, the modular sublibrary sorting primer binding sequence is a complementary sequence of at least one of SEQ ID No.1 to SEQ ID No. 2814.
According to an embodiment of the invention, the length of the overlapping sequence is not more than 10 nt.
In a second aspect of the invention, the invention provides the use of an oligonucleotide as hereinbefore described in DNA synthesis. The oligonucleotide is utilized to carry out DNA synthesis, the effective segment length of the oligonucleotide can be effectively increased, and the assembly difficulty is greatly reduced, so that the synthetic flux of an oligonucleotide library is greatly improved, and the synthetic cost is further reduced. According to the embodiment of the invention, the oligonucleotide can effectively reduce the DNA synthesis cost by 40-50%, greatly improve the flux of DNA products synthesized by each chip, and in addition, the primer synthesis cost can be reduced by about 50% by using a common primer.
In a third aspect of the invention, the invention provides a method of synthesizing DNA. According to an embodiment of the invention, the method comprises: synthesizing an oligonucleotide library using the DNA chip; and assembling based on the oligonucleotide library to obtain the target DNA, wherein the oligonucleotide library comprises a plurality of oligonucleotide chains, the oligonucleotide chains are the oligonucleotides, and specifically, the assembling based on the oligonucleotide library means that the plurality of oligonucleotide chains are subjected to enzyme digestion to cut off the primer binding sites to obtain DNA fragments, and then the obtained DNA fragments are assembled to obtain the target DNA. The method of the invention can be used for quickly and effectively synthesizing DNA, the effective segment length of the oligonucleotide is longer, the assembly difficulty is lower, and the cost of DNA synthesis can be reduced in a large scale. According to one embodiment of the invention, the method can effectively reduce the DNA synthesis cost by 40-50%, greatly improve the flux of DNA products synthesized by each chip, and in addition, the primer synthesis cost can be reduced by about 50% by using the common primer.
In a fourth aspect of the present invention, the present invention provides a DNA. According to an embodiment of the present invention, the DNA is synthesized by the method for synthesizing DNA described above. It should be noted that all the features and advantages of the oligonucleotide and the method for synthesizing DNA described above are applicable to the DNA and are not described in detail herein.
Drawings
FIG. 1 shows a schematic diagram of the structure of an oligonucleotide chain according to one embodiment of the present invention;
FIG. 2 shows a schematic diagram of the structure of an oligonucleotide chain according to one embodiment of the present invention;
FIG. 3 shows a schematic diagram of the structure of an oligonucleotide chain according to one embodiment of the present invention;
FIG. 4 shows a schematic diagram of the structure of an oligonucleotide chain according to one embodiment of the present invention;
FIG. 5 shows a schematic diagram of the structure of an oligonucleotide chain according to one embodiment of the present invention;
FIG. 6 shows a schematic diagram of the structure of an oligonucleotide chain according to one embodiment of the present invention;
FIG. 7 shows a schematic diagram of the structure of an oligonucleotide chain according to one embodiment of the present invention;
FIG. 8 shows a schematic diagram of the structure of an oligonucleotide chain according to one embodiment of the present invention;
FIG. 9 shows an electropherogram of successfully assembled DNA modules, according to one embodiment of the invention; and
FIG. 10 is a schematic diagram showing a process flow of a method for synthesizing DNA according to an embodiment of the present invention, wherein the left diagram is a DNA synthesis experiment operation flow, the right diagram is a schematic diagram of an oligonucleotide reaction, the horizontal line represents an oligonucleotide (single strand) or a DNA small molecule (double strand), the vertical line indicates the position of a sorting primer, F represents a plate library sorting primer of an F plate library, and 2 represents a module library sorting primer of module No.2 in the F plate library.
Detailed Description
The following describes embodiments of the present invention in detail. The following examples are illustrative only and are not to be construed as limiting the invention. The examples, where specific techniques or conditions are not indicated, are to be construed according to the techniques or conditions described in the literature in the art or according to the product specifications. The reagents or instruments used are not indicated by the manufacturer, and are all conventional products commercially available.
In a first aspect of the invention, the invention provides an oligonucleotide. According to an embodiment of the present invention, referring to fig. 1, the oligonucleotide includes: a gene coding region; a first flanking sequence formed 5' of the coding region of the gene; and a second flanking sequence formed 3' of the coding region of the gene. Wherein, a plate bank sorting primer binding sequence, a component sub-bank sorting primer binding sequence and an enzyme cutting site are sequentially formed on the first flanking sequence from a 5 'end to a 3' end, and an enzyme cutting site, a component sub-bank sorting primer binding sequence and a plate bank sorting primer binding sequence are sequentially formed on the second flanking sequence from a 5 'end to a 3' end, wherein the plate bank sorting primer binding sequence, the component sub-bank sorting primer binding sequence and the enzyme cutting site satisfy at least one of the following and combinations thereof: (a) the plate bank sorting primer binding sequence and the component bank sorting primer binding sequence are common primer binding sequences (namely, the plate bank sorting primer binding sequence and the component bank sorting primer binding sequence are replaced by the common primer binding sequence); (b) at least one part of the enzyme cutting sites are formed inside the sorting primer binding sequences of the component sub-library, and the enzyme cutting sites are connected with the gene coding regions; (c) the plate sub-library sorting primer binding sequence shares a partial overlap sequence with the component sub-library sorting primer binding sequence. The inventor surprisingly finds that the oligonucleotide can be effectively used for DNA synthesis, and the effective segment length of the oligonucleotide can be effectively increased and the assembly difficulty can be greatly reduced by using the oligonucleotide for DNA synthesis, so that the carrying amount of the synthetic DNA of an oligonucleotide library can be greatly increased, and the DNA synthesis cost can be further reduced. According to the embodiment of the invention, the oligonucleotide can effectively reduce the DNA synthesis cost by 40-50%, greatly improve the flux of DNA products synthesized by each chip, and in addition, the primer synthesis cost can be reduced by about 50% by using a common primer.
According to an embodiment of the invention, the oligonucleotide is 100 to 300nt in length.
According to the embodiment of the invention, the plate bank sorting primer binding sequence, the component bank sorting primer binding sequence and the enzyme cutting site in the first flanking sequence and the second flanking sequence are not affected with each other, and the specific sequences may be the same or different.
According to an embodiment of the invention, the cleavage site is 6-12nt in length.
According to an embodiment of the present invention, the cleavage site is a type II restriction enzyme cleavage site, for example, a Btsl cleavage site.
According to an embodiment of the invention, the length of the common primer binding sequence, the plate subpool sorting primer binding sequence, the component subpool sorting primer binding sequence is 15-25 nt.
According to an embodiment of the invention, the common primer binding sequence may be the complement of SEQ ID No. 2825.
According to an embodiment of the invention, the plate library sorting primer binding sequence is a complementary sequence of at least one of SEQ ID No. 2815-SEQ ID No. 2824.
According to an embodiment of the invention, the modular sublibrary sorting primer binding sequence is a complementary sequence of at least one of SEQ ID No.1 to SEQ ID No. 2814. Wherein, the sequences shown by SEQ ID NO. 1-2800 are shown in Table 1.
TABLE 1
Figure BDA0001373215720000051
Figure BDA0001373215720000061
Figure BDA0001373215720000071
Figure BDA0001373215720000081
Figure BDA0001373215720000091
Figure BDA0001373215720000101
Figure BDA0001373215720000111
Figure BDA0001373215720000121
Figure BDA0001373215720000131
Figure BDA0001373215720000141
Figure BDA0001373215720000151
Figure BDA0001373215720000161
Figure BDA0001373215720000171
Figure BDA0001373215720000181
Figure BDA0001373215720000191
Figure BDA0001373215720000201
Figure BDA0001373215720000211
Figure BDA0001373215720000221
Figure BDA0001373215720000231
Figure BDA0001373215720000241
Figure BDA0001373215720000251
Figure BDA0001373215720000261
Figure BDA0001373215720000271
Figure BDA0001373215720000281
Figure BDA0001373215720000291
Figure BDA0001373215720000301
Figure BDA0001373215720000311
Figure BDA0001373215720000321
Figure BDA0001373215720000331
Figure BDA0001373215720000341
Figure BDA0001373215720000351
Figure BDA0001373215720000361
Figure BDA0001373215720000371
Figure BDA0001373215720000381
Figure BDA0001373215720000391
Figure BDA0001373215720000401
Figure BDA0001373215720000411
Figure BDA0001373215720000421
Figure BDA0001373215720000431
Figure BDA0001373215720000441
Figure BDA0001373215720000451
Figure BDA0001373215720000461
Figure BDA0001373215720000471
Figure BDA0001373215720000481
Figure BDA0001373215720000491
Figure BDA0001373215720000501
Figure BDA0001373215720000511
Figure BDA0001373215720000521
According to an embodiment of the invention, the length of the overlapping sequence is not more than 10 nt. This is advantageous in maintaining the specificity of the sorting primer.
According to a specific example of the present invention, referring to fig. 2, the plate bank sorting primer binding sequence and the component bank sorting primer binding sequence satisfy the above condition (a), that is, the plate bank sorting primer binding sequence and the component bank sorting primer binding sequence are replaced with a common primer binding sequence. Therefore, the primer binding sequence with one end of 40nt is reduced into the common primer with 15-25nt, on one hand, the synthesis cost of the primer is reduced by nearly 50%, and on the other hand, the effective synthesis and extension length are prolonged by 15-25 nt. However, it should be noted that the common primer does not have a sorting function, and is used in combination with a slat sub-library sorting primer and an assembly sub-library sorting primer in the sorting process of the plate sub-library and the assembly sub-library to realize sorting. Since the 5 'end is of higher quality and the 3' end is of lower quality when the oligonucleotide is synthesized, it is recommended that the portion of lower quality fall as little as possible into the effective synthetic fragment requiring fidelity and relatively as much as possible into the flanking sequence, and therefore it is preferable to use a common primer at the 5 'end of the oligonucleotide strand and two sort primers at the 3' end, respectively.
According to a specific example of the present invention, referring to fig. 3, the enzyme cutting site and the assembly sub-library sorting primer binding sequence satisfy the condition (b) that at least a part of the enzyme cutting site is formed inside the assembly sub-library sorting primer binding sequence, and the enzyme cutting site is connected with the gene coding region. Thus, placing one end restriction endonuclease site inside the modular sublibrary sorting primer will effectively synthesize and extend a length by 6-12 nt. Since the 3 'end sequence of the primers determines the specificity of the PCR reaction, the use of a consensus cleavage site as the 3' end of the primers will reduce the specificity of the PCR to some extent, it is preferable not to use this optimization at both ends of the oligonucleotide library to avoid non-specific amplification. It should be noted that, in this example, since restriction enzyme sites are placed in the primer recognition sites, the versatility is reduced, and it is not recommended to synthesize a sequence containing such restriction enzyme sites.
According to a specific example of the present invention, referring to fig. 4, the plate bank sorting primer binding sequence and the component sub-bank sorting primer binding sequence satisfy the above condition (c), i.e., the plate bank sorting primer binding sequence shares a partially overlapping sequence with the component sub-bank sorting primer binding sequence. Thus, the modular subsublibrary sorting primer binding sequence shares a sequence (e.g., can be 10nt) with the plate library sorting primer binding sequence, which increases the effective synthesis and extension length by twice the length of the overlap region (e.g., 20 nt). In addition, to ensure that the two pairs of sorting primers retain their respective specificities, it is preferable that the overlapping region is not longer than 10 nt.
According to a specific example of the present invention, referring to fig. 5, the enzyme cleavage site, the plate subpool sorting primer binding sequence and the module subpool sorting primer binding sequence satisfy the above conditions (a) and (b) at the same time. Thus, the effective synthesis and extension length can be increased by 21-37 nt.
According to a specific example of the present invention, referring to fig. 6, the plate bank sorting primer binding sequence and the component bank sorting primer binding sequence satisfy both of the above conditions (a) and (c). Therefore, the effective synthesis and extension length can be increased by 15-35nt, the assembly difficulty of DNA synthesis is effectively reduced, and the cost is greatly reduced.
According to a specific example of the present invention, referring to fig. 7, the cleavage site, the plate subpool sorting primer binding sequence and the module subpool sorting primer binding sequence satisfy the above conditions (b) and (c) at the same time. Therefore, the effective synthesis and extension length can be increased by 6-32nt, the assembly difficulty of DNA synthesis is effectively reduced, and the cost is greatly reduced.
According to a specific example of the present invention, referring to fig. 8, the enzyme cleavage site, the plate subpool sorting primer binding sequence and the module subpool sorting primer binding sequence satisfy the above conditions (a), (b) and (c) at the same time. The effective synthesis and extension length can be increased by 21-47 nt. The inventor surprisingly finds that the oligonucleotide can be effectively used for DNA synthesis, and the effective segment length of the oligonucleotide can be effectively increased and the assembly difficulty can be greatly reduced by using the oligonucleotide for DNA synthesis, so that the flux of a DNA chip can be greatly improved and the DNA synthesis cost can be reduced. According to the embodiment of the invention, the oligonucleotide can effectively reduce the DNA synthesis cost by 40-50%, greatly improve the flux of DNA products synthesized by each chip, and in addition, the primer synthesis cost can be reduced by about 50% by using a common primer.
In a second aspect of the invention, the invention provides the use of an oligonucleotide as hereinbefore described in DNA synthesis. The oligonucleotide provided by the invention is used for DNA synthesis, so that the effective fragment length of the oligonucleotide can be effectively increased, the assembly difficulty is greatly reduced, and the cost for synthesizing an oligonucleotide library is reduced on a large scale. According to the embodiment of the invention, the oligonucleotide can effectively reduce the DNA synthesis cost by 40-50%, greatly improve the flux of DNA products synthesized by each chip, and in addition, the primer synthesis cost can be reduced by about 50% by using a common primer.
In a third aspect of the invention, the invention provides a method of synthesizing DNA. According to an embodiment of the invention, the method comprises: synthesizing an oligonucleotide library using the DNA chip; and assembling based on the oligonucleotide library to obtain the target DNA, wherein the oligonucleotide library comprises a plurality of oligonucleotide chains, the oligonucleotide chains are the oligonucleotides, and specifically, the assembling based on the oligonucleotide library means that the plurality of oligonucleotide chains are subjected to enzyme digestion to cut off the primer binding sites to obtain DNA fragments, and then the obtained DNA fragments are assembled to obtain the target DNA. The method of the invention can be used for quickly and effectively synthesizing DNA, the effective segment length of the oligonucleotide is longer, the assembly difficulty is lower, and the cost of DNA synthesis can be reduced in a large scale. According to one embodiment of the invention, the method can effectively reduce the DNA synthesis cost by 40-50%, greatly improve the flux of DNA products synthesized by each chip, and in addition, the primer synthesis cost can be reduced by about 50% by using the common primer.
In a fourth aspect of the present invention, the present invention provides a DNA. According to an embodiment of the present invention, the DNA is synthesized by the method for synthesizing DNA described above. It should be noted that all the features and advantages of the oligonucleotide and the method for synthesizing DNA described above are applicable to the DNA and are not described in detail herein.
To verify the effectiveness of the present invention, partial sequences in the artificial chromosome 2 and chromosome 7 of the SC #2.0 project (artificial yeast genome) were used for verification. All DNA components are artificially designed yeast genome fragments, and the length is 450-650 bp.
The sequence information of the 12 DNA modules and the corresponding primer sequence information and oligonucleotide (oligos) library sequence information designed according to different protocols are listed below. Synthesizing oligos on DNA chip according to designed sequence, amplifying and assembling according to corresponding primer, and completing test.
The experimental procedures in the following examples are described in the literature by Nikolai Eroshenko et al (Gene Assembly from Chip-Synthesized Oligonucleotides, Nikolai Eroshenko, Current Protocols in chemical Biology4:1-17, March 2012) (see FIG. 10 for a flow chart). The scheme adopted by the invention comprises the following steps and combinations thereof:
(a) the plate bank sorting primer binding sequence and the component bank sorting primer binding sequence are public primer binding sequences;
(b) at least one part of enzyme cutting sites are formed inside the sorting primer binding sequence of the assembly sublibrary, and the enzyme cutting sites are connected with the gene coding region;
(c) the plate bank sorting primer binding sequence shares a partial overlap sequence with the component bank sorting primer binding sequence.
Example 1
Name of DNA Module: BBK515
The experimental scheme is as follows: the original protocol (i.e., the prior art protocol disclosed in the literature by Nikolai Eroshenko) was used as a control for the present invention.
Length of DNA module: 581bp
DNA module sequence:
GGTCTCCTCGAGTACAGCTATCTTGGTTCAGACGTGAGAAGTGATGCACAGCAGCTGTATCCTTTATTTATTGGAGCTTCCGAAACTTCCCAAGAAAAGTGAAGAAAAAACCAGGAAAATCAAAAGACATGACGCATATAATGTACACCTTTTTTTTTTCGCGGCCAAAAATTTAACCTACTCATCTAGATCAGTGGTTGGTAGAGCAGTATTCCGTCATTTTTCATGTCCAGGTTCGAAGCTGACCTGGTATTATCCGGTTTTTTTTCTTGTTGACCAATAGGAAAAAAAAAAATTAAAATAAAGTCACAGAAATTCAATGAATATTATAAATTTTTCTTGTTTGTTTCCCTAGTTGTTATTTTTATAAAAAAAATTCTTGTAGACAATAAAATAAGAAATGCCCATTTTGTAACTTAGCGAAAGATGCCCAGTACATCCCTTTTACACCCGTGCATTAAAGGTGTTTGGGTTTAATAGGAGCTTTATCATATCTCTTTGATTTTTTTTCTGCTGTCCTCGGCTTGAGGGACTCACAGAGATCTGGAAATTTTCAGATTGTCAGTGCTTAGGATGAGACC
plate library sorting primers:
skpp-5-F TCCGACGGGGAGTATATACT(SEQ ID NO.2815)
skpp-5-R TACTAACTGCTTCAGGCCAA(SEQ ID NO.2816)
sorting primers of the component sub-library:
skpp-515-F ATAGTGCTGTAGTGGAACCG(SEQ ID NO.2801)
skpp-515-R TTCTTACTAGAGACTGCGCC(SEQ ID NO.2802)
assembling a primer:
skpp-115-F GAGCCATGTGAAATGTGTGT(SEQ ID NO.2826)
skpp-115-R CGGACTAAAGGATCGAGTCA(SEQ ID NO.2827)
example 2
Name of DNA Module: BBK516
The experimental scheme is as follows: the original protocol (i.e., the prior art protocol disclosed in the literature by Nikolai Eroshenko) was used as a control for the present invention.
Length of DNA module: 578bp
DNA module sequence:
GGTCTCTAGGATGGGTTGTCAGTAGACGGTGGCCGCCGTGGATGGGAAATCTCATACGTTTACACACATAGTGTTTGGAAATTAATAGTAGCAATAGCTATCTGGCTACTGTTTTAAAGTATTAGCCCGTTCTCAGTGCTTCTTTTTTAAGGAATAACAACGGCAAGACCAAAGATATATCAAATATGGCTAAGCAATCTCTAGGTATGTTTGGAGGATACGAATAACGATAGAAAACATGAGTGAATTTCCGTCCACGAAAAAATGTTAACATAAAATGCAAGAGAACAATTAATCGAATAATGTTAAATTATTGTAAAACAATGTGTATGATGAGGAGGAATGTACCTAAGCCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGAAACAGCTTTTGCATATTCAATCCAGGCATAGGGCGACTATTTAGCACTCAACGATTTTTAAGCTTGTGTATTGCTGACATAAATTCCGGCTTTAGAATCCAATATTGAAAAACGTGAGTACGCAGAGGAGATAGCGCGCCAGCACTACATCAACTGACTACTGACTACTGACTGCCACCTCGAGGAGACC
plate library sorting primers:
skpp-5-F TCCGACGGGGAGTATATACT(SEQ ID NO.2815)
skpp-5-R TACTAACTGCTTCAGGCCAA(SEQ ID NO.2816)
sorting primers of the component sub-library:
skpp-516-F CGTGTAGTGTGAATATGCGG(SEQ ID NO.2803)
skpp-516-R GAGTCAATGATTGAGCCTGC(SEQ ID NO.2804)
assembling a primer:
skpp-116-F CGTATACGTAAGGGTTCCGA(SEQ ID NO.2828)
skpp-116-R CATCGGATAACACAAAGCGT(SEQ ID NO.2829)
example 3
Name of DNA Module: BBK802
The experimental scheme is as follows: a is
Length of DNA module: 579bp
DNA module sequence:
GGTCTCAAGAAGGCGTTCTTCCAGCATAATTTCACATGTGGAACCGGAGACTTTTGAAGATGAAAATGACCAGCAACTTCTACCAAATATGAATGCTACTTGGGTAGACCAACGCGGCGCTTGGATTATTCATGTGGTCATTATCATACTGCTGAAACTATTTTATAATTTATTTCCTGGCGTCACTACCGAATGGAGCTGGACCTTAACTAATATGACATATGTTATTGGGTCCTATGTCATGTTCCATCTGATTAAGGGTACCCCTTTCGATTTCAATGGTGGTGCTTATGACAACTTGACGATGTGGGAACAAATTGACGACGAGACTTTATATACTCCTTCAAGAAAATTTTTGATTAGTGTCCCGATCGCCCTATTCTTAGTTAGTACTCATTATGCTCACTATGATTTGAAATTGTTTTCATGGAATTGTTTTTTGACAACCTTTGGTGCTGTTGTCCCAAAGTTACCTGTTACTCATAGATTAAGGATTTCTATCCCTGGCATTACCGGCAGAGCTCAAATCTCATGAACAATAACTTCGTATAATGTACATTATACGAAGTTATTGAGACC
5' common primer
skpp-1-F ATATAGATGCCGTCCTAGCG(SEQ ID NO.2825)
Plate library sorting primers:
skpp-8-R ATGATCCTATGCGTCTGTGT(SEQ ID NO.2817)
sorting primers of the component sub-library:
skpp-801-R GAACCATTCCTTTGCTGACC(SEQ ID NO.2805)
assembling a primer:
skpp-102-F TTTGCTTCAGTCAGATTCGC(SEQ ID NO.2830)
skpp-102-R GTTCAATCACTGAATCCCGG(SEQ ID NO.2831)
example 4
Name of DNA Module: BBK803
The experimental scheme is as follows: a is
Length of DNA module: 595bp
DNA module sequence:
GGTCTCGTTATTAGTTTATTTCAATCTTGTATCTAGATGTTTTTGCTATATTTATATTTTCTGGGCCAAATCACTAACGCTTTGAAATTTCAAAAGCCAACAACGGATTTCGGACTTCATTTATGTAAATGAAAAAGAATGTGAACAAAAATTGAAAAAATTCCATATTAATGCACCTTCTAAACCTATTTGTTGAAATTGTATTTAATTCATATAATCATATTCTATTCAAAAAGAATAACAGATAGTATTAGCACTATTTCACGTACTGCTTCTAATACTATTATCACAAAATAGACATCGGAAAACTCAAAAATAAATAACTTCGTATAATGTACATTATACGAAGTTATATAACTTCGTATAATGTACATTATACGAAGTTATGTATTTATGTTTTGTCATTCTTTTCTACATAATCTTGAAACTAGGTAGATCTACAATTGAAAAGTAAATACTAACATTATTTACTAAATTTAAGTTAGAAATCGGCACGAAAAAAATTTGACAGATTACGAGAGTCCAGCCAAAATATGAGTATATTACTATTTCCCCTTGGTGAAAGAAATGAAAGATGTTATTTTTTACCGAGACC
5' common primer
skpp-1-F ATATAGATGCCGTCCTAGCG(SEQ ID NO.2825)
Plate library sorting primers:
skpp-8-R ATGATCCTATGCGTCTGTGT(SEQ ID NO.2817)
sorting primers of the component sub-library:
skpp-803-R ACTGTGTTAGCCTCGTTTCA(SEQ ID NO.2806)
assembling a primer:
skpp-103-F GTCGAGTCCTATGTAACCGT(SEQ ID NO.2832)
skpp-103-R CAGGGGTCGTCATATCTTCA(SEQ ID NO.2833)
example 5
Name of DNA Module: BBK701
The experimental scheme is as follows: b
Length of DNA module: 632bp
DNA module sequence:
GGTCTCGGATCCTTCTTTTGCACGATGTCACATACTTTTTCGATTACCGTCGCTTTACACAGTAACTGTTTAAAACGAGCGTTCTTAATTAATAACTGTAGGAGAGCAGGCTTTCGGCTTTCTTTATGAGAAATAAGGACTACTCCAGCTTGCCAAGTTTTATCCAGTTACACAAACGCTCAAGATCGCCTCGCTAAAATAGATGAAAAAATAAGAAAAATGAAATGTTCATAACTTCGTATAATGTACATTATACGAAGTTATAACTTAATCCCTTTTGGATTTATCATTGAAAGATCGCTGATTTATTCTTTTCCAATACGCCTCGTAATTCTCTTTCAATGTCAAAGGCGCCAGATTGTAAGAATCTGTCATGTAAAATAATCTGACAATACGTAGTTTTAAAAACCAATTGATTAAACCAAGCTCTCTTATGATGCCAACTATAAAGAAGTACAAGCTACCGGTTAAAGCACCAACGCTGAATCCCACGATTACTTGATCTAAATTGTGGTAGTGCAAGTAAACTCTGGAAAAGCAAACGCAAAACGATAATAAAGCCAATGCACCAGAAAAAATGCATTTTTCTAAGAAGTTTAGATTCTTCCAGGAAGTGTATATCTTCAGAGACC
plate library sorting primers:
skpp-7-F GTACATGAAACGATGGACGG(SEQ ID NO.2818)
skpp-7-R CTGGTATAGTCTCCTCAGCG(SEQ ID NO.2819)
sorting primers of the component sub-library:
skpp-701-IN-F GATTGAAACGGTGAGCAGTG(SEQ ID NO.2807)
skpp-701-R CGTCTATGTTTGATCGACGC(SEQ ID NO.2808)
assembling a primer:
skpp-101-F GCTTATTCGTGCCGTGTTAT(SEQ ID NO.2834)
skpp-101-R TACTTTTGATTGCTGTGCCC(SEQ ID NO.2835)
example 6
Name of DNA Module: BBK702
The experimental scheme is as follows: b
Length of DNA module: 631bp
DNA module sequence:
GGTCTCTCTTCAGAGAGTTATAGGTAAAACAAAACCCCATGAATTGGGAGTGTGCACTGGGCATCCCGTAACCGGATCTTATAGTGTCATTTTGGAACGACGCACCGAACGATACGGGGCGTGGCTGTTTTATTATATTCTTGATCACGTTATTGAATATTTCGTTCATCAATTGGCCAAAAGCAACGATACAAGCTTCCAACTCACGGGTGATGATAAACCACGACAAATAAAAAGCTAGCACTAGGATGGGCATCAGCGAGAAATATGCACTAAGGAATGATAGAAAGTCATGCGAATCATAGAGAATGTATGTGTCATCGAATGGTATAACATTTGGATTTGGATTTATTGCAGCGGCGGTACTATTCATGATATGATCCGATTCAAAACAAATTTTGATGTAGATAAAATGCCTGGTATAATGAGTGGTAGAGAAGAAAATTAGACGAAAAGAATGAGAACGAAGAAATGATTTAAAGTGATCACAGTGGCAATCACTTTCCCCTTTTTAACGCGTGTTGAGCAATCGATTGATGTCTCTACCATATGTAGCATTTTCTCAGAAGGCAAACTTTTCTTTTTCTTTCTACTTTTCCAACAAGAAATTTTAAGTTTTCCCAGAGAGACC
plate library sorting primers:
skpp-7-F GTACATGAAACGATGGACGG(SEQ ID NO.2818)
skpp-7-R CTGGTATAGTCTCCTCAGCG(SEQ ID NO.2819)
sorting primers of the component sub-library:
skpp-702-IN-F GTTCCGTTAATTCGGCAGTG(SEQ ID NO.2809)
skpp-702-R TCAGAAGAAGCGGGAGAATG(SEQ ID NO.2810)
assembling a primer:
skpp-102-F TTTGCTTCAGTCAGATTCGC(SEQ ID NO.2830)
skpp-102-R GTTCAATCACTGAATCCCGG(SEQ ID NO.2831)
example 7
Name of DNA Module: BBK902
The experimental scheme is as follows: c. C
Length of DNA module: 523bp
DNA module sequence:
GGTCTCAATCAAAGAGGCGATATCAACACCTTTTATCCAGCACTATTCAACAGTGAATGGGCTCCCAAGTAAGTCTTGGCATTGTGCTTTCTATTCTTAAGTATTAAGTAGAAGTTTTGTTTACTGGGTTTGTTTATTCCTGGCTAGATGTTCGCATTCGTTTTCTAGTTGACCATATTTACCAAATATTCACAACTAATACCCAGCCAAGGTAGTCTAAAAGCTAATTTCTCTAAAAGGGAGAAAGTTGGTGATTTTTTATCTCGCATTATTATATATGCAAGAATAGTTAAGGTATAGTTATAAAGTTTTATCTTAATTGCCACATACGTACATTGACACGTAGAAGGACTCCATTATTTTTTTCATTCTAGCATACTATTATTCCTTGTAACGTCCCAGAGTATTCCATTTAATTGTCCTCCATTTCTTAACGGTGACGAAGGATCACCATACAACAACTACTAAAGATTATAGTACACTCTCACCTTGCAACTATTTATCTGACATTTGCCTTGAGACC
plate library sorting primers:
skpp-9-F GGCGAGAGGAGATATAGAGC(SEQ ID NO.2820)
skpp-9-R AATATCGAACAGCTGTGCAC(SEQ ID NO.2821)
overlapping element sublibrary sorting primers:
skpp-9-902-F GATATAGAGCCTCCGATTCG(SEQ ID NO.2811)
skpp-9-902-R AGCTGTGCACGTGTTCCGGC(SEQ ID NO.703)
assembling a primer:
skpp-102-F TTTGCTTCAGTCAGATTCGC(SEQ ID NO.2830)
skpp-102-R GTTCAATCACTGAATCCCGG(SEQ ID NO.2831)
example 8
Name of DNA Module: BBK903
The experimental scheme is as follows: c. C
Length of DNA module: 526bp
DNA module sequence:
GGTCTCTGCCTTACTTTTATCTCCAGCTTCCCCTCGATTTTATTTTTCAATTTGATTTCTAAAGCTTTTTGCTTAGGCATACCAAACCATCCACTCATTTAACACCTTATTTTTTTTTTCGAAGACAGCATCCAACTTTATACGTTCACTACCTTTTTTTTTACAACAATTTCATTCTTCATCCTATGAAATGACGAAAATAACCAGAGATGTTTCGATAACGACAGAAAATTCAAAATCCACATCTGGATCGGCAACGGCCTCTTCGGCCTCTTTACCTGAGAACGACCACCCAATATTCCATCAACCTAGAGCTCGTATCCGTAGCGGCAGCTTATTCATCGAAGGATCTGATTCATTTCCATCATCAGAAGTGAAGTCATACAATGTTTATATTGATGATAGCAAGTATAGTGAAATCCTCAAAGGAGATACAAATTCAAGTAGTACTGATGGTAAACAAGTCTTTGAAGATGCTAGAGATGACAATTTCCATCAGGAATCACATAGAGATCTAGAGGAGACC
plate library sorting primers:
skpp-9-F GGCGAGAGGAGATATAGAGC(SEQ ID NO.2820)
skpp-9-R AATATCGAACAGCTGTGCAC(SEQ ID NO.2821)
overlapping element sublibrary sorting primers:
skpp-9-903-F GATATAGAGCGTTTTGGTCG(SEQ ID NO.2812)
skpp-9-903-R AGCTGTGCACGATCTTATAC(SEQ ID NO.703)
assembling a primer:
skpp-103-F GTCGAGTCCTATGTAACCGT(SEQ ID NO.2832)
skpp-103-R CAGGGGTCGTCATATCTTCA(SEQ ID NO.2833)
example 9
Name of DNA Module: BBK1001
The experimental scheme is as follows: a + c
Length of DNA module: 567bp by
DNA module sequence:
CGTCTCCTCGAGTACAGCTATCTTGGTTCAGACGTGAGAAGTGATGCACAGGTCGACTTTTCTTCACTTTTCTTTCAACAATTCAAAGATGGCTAGAACCATAACTTTTGATATCCCTTCCCAATATAAACTCGTAGATTTAATAGGTGAGGGAGCGTACGGAACAGTATGTTCAGCAATTCATAAGCCTTCCGGCATAAAGGTAGCTATCAAGAAAATACAACCGTTTAGCAAAAAATTGTTTGTTACAAGAACTATACGTGAGATCAAGCTTTTACGGTATTTCCATGAACACGAAAACATAATAAGTATATTGGATAAAGTAAGGCCAGTATCCATAGACAAACTAAACGCTGTTTATTTAGTCGAAGAGTTGATGGAAACCGATTTACAAAAAGTAATTAATAATCAGAATAGCGGGTTTTCCACTTTAAGTGATGACCATGTTCAATACTTTACATACCAAATCCTCAGAGCCTTAAAGTCTATTCACAGTGCACAAGTTATCCATAGAGACATAAAGCCATCAAACCTGTTACTAAATTCCAATTGTGATCTCAAGAGACG
5' end common primer:
skpp-1-F ATATAGATGCCGTCCTAGCG(SEQ ID NO.2825)
plate library sorting primers:
skpp-10-R ATATATGGTCACACGCCTGT(SEQ ID NO.2822)
overlapping element sublibrary sorting primers:
skpp-10-1001-R ACACGCCTGTCTATGTCCGC(SEQ ID NO.802)
assembling a primer:
skpp-101-F GCTTATTCGTGCCGTGTTAT(SEQ ID NO.2834)
skpp-101-R TACTTTTGATTGCTGTGCCC(SEQ ID NO.2835)
example 10
Name of DNA Module: BBK1002
The experimental scheme is as follows: a + c
Length of DNA module: 563bp
DNA module sequence:
CGTCTCTCTCAAAGTCTGCGATTTTGGACTAGCTAGATGCTTGGCCTCATCATCAGACAGCAGAGAAACATTGGTAGGATTCATGACGGAGTACGTCGCAACGCGATGGTACAGGGCACCCGAGATAATGCTAACTTTTCAAGAGTACACAACTGCGATGGATATATGGTCATGCGGATGCATTTTGGCTGAAATGGTCTCCGGGAAGCCTTTGTTCCCAGGCAGAGACTATCATCATCAATTATGGCTAATTCTAGAAGTCTTGGGAACTCCATCTTTCGAAGACTTTAATCAGATCAAATCCAAGAGGGCTAAAGAGTATATAGCAAACTTACCTATGAGGCCACCCTTGCCATGGGAGACCGTCTGGTCAAAGACCGATCTGAATCCAGATATGATAGATTTACTAGACAAAATGCTTCAATTCAATCCTGACAAAAGAATAAGCGCAGCAGAAGCTTTAAGACACCCTTACCTGGCAATGTACCACGATCCTTCAGACGAGCCAGCTGCAGCACTACATCAACTGACTACTGACTACTGACTGCCACCTCGAGGAGACG
5' end common primer:
skpp-1-F ATATAGATGCCGTCCTAGCG(SEQ ID NO.2825)
plate library sorting primers:
skpp-10-R ATATATGGTCACACGCCTGT(SEQ ID NO.2822)
overlapping element sublibrary sorting primers:
skpp-10-1002-R ACACGCCTGTCCTTCGGTTG(SEQ ID NO.803)
assembling a primer:
skpp-102-F TTTGCTTCAGTCAGATTCGC(SEQ ID NO.2830)
skpp-102-R GTTCAATCACTGAATCCCGG(SEQ ID NO.2831)
example 11
Name of DNA Module: BBK602
The experimental scheme is as follows: b + c
Length of DNA module: 693bp
DNA module sequence:
GCGATGTAAATCCTGTGTTTCTTTTATGTATATTTTTTATCAATTTCAATTTAGTTTAGTTTAGTTTCTTTAAAAATAAAATTGTAATTTCTCACATTCTGCCTTCGGGTCTCAAGGGCTGGTTGGTAGACGAATGCGCTTGTTTCTAGCTGAGCGGCAGATGCATGAATTCAATGCAAGAAAATGAGAAAACTTCCAATATTAAAATGTGATTGTTAATTATTAGTATATTTATGACAATATATATATGTACATAGGGTGATTATGAAGATGAGTAAGATGCGAATGGATATGAGGATATGAATCTTTTTAGAGACAATGAAGATGCAAAGAAGTAGTTAAGCACATTGACCTCAGGGATAACTTCGTATAATGTACATTATACGAAGTTATTTGTTATATGCTACTTTTAGTCCGTTGGATTTCTGAAGCAGTATTGGCCACAAAAATTTCTTCATTATTTCTACGATTAGAGTTTCTTCTGGATTTTTCTCGTCCCTGAGACTTACTCCTTTTCAAGTCATTTTCAGCAGCAGCTTTGATTAAATCATATCTTGTGATTTTACTTGGAGAGCTATTGTGATGGGAACTTTGTCTGCAGGTTACCGTATTAGTCAGAGATGTTATGGGCTTAACCATAAGGGAAGAAACTATGGCACGCATGAATGAATTACTGCTTTTACTGCTCATCGCTACTGACTACTGACTGCCACCTCGAGGAGACG
plate library sorting primers:
skpp-6-F CATGTTTAGGAACGCTACCG(SEQ ID NO.2823)
skpp-6-R AATAATCTCCGTTCCCTCCC(SEQ ID NO.2824)
overlapping element sublibrary sorting primers:
skpp-6-602-IN-F AACGCTACCGGGATGCAGTG(SEQ ID NO.2813)
skpp-6-602-R GTTCCCTCCCATCCGGAGAC(SEQ ID NO.403)
assembling a primer:
skpp-102-F TTTGCTTCAGTCAGATTCGC(SEQ ID NO.2830)
skpp-102-R GTTCAATCACTGAATCCCGG(SEQ ID NO.2831)
example 12
Name of DNA Module: BBK603
The experimental scheme is as follows: b + c
Length of DNA module: 688bp
DNA module sequence:
GCGATGGAATGAATTACTGCTTTTACTGCTGTCATCTGTTGAGTTTGCTGAGTCTTCCGTTCTTGTAGTCTTGGCTGGTGTGAGTAACATTACGTATTGTTTCTGTAGAGAAGATAACTTATAACTTCCGTCTTGTCACTAGTTGTTTTAATTATATGTTTGTTACAAGTTTTTATGTATAGATATATGTTACAACTTTTAGAAGTATTGTGGACATAACAGAGAGAAGGGAATGTTGCTATATTTATATATTTTATATATTGCCCTCAAAACTGTATCTCATCTTTTTTTCTGCAATCCTTGCTTTCGTAATCTAAGTGTGGGTGACATGCTAAATCCGCGGCTTTCCTTAAGCTTTTTCACAAACCATCTATTATGTCCAGAAGCTCCGCTGATTATCCGTGGAAAAGGGTCTTATTCTGCCGTAGGAAACTTCTTCTCGAGAAAAAAGTGAGTTATAACTTCGTATAATGTACATTATACGAAGTTATCACCCGCGGCGCTCTCGTAAAACCCGAGGGCCGATTCTTTCCCTCCGTGGAACAATCGGCCCCGCGGCGTCAGAGGGTATTATCTCCGCAAGTGATAGAACTCACATTTATTCTACGTTCTGCATGGTTTTGATTATCTTCTTTTGCACGATGTCACATACTTTTTCGATTACCGTCCATGGCCCCCCCCCCATCGC
plate library sorting primers:
skpp-6-F CATGTTTAGGAACGCTACCG(SEQ ID NO.2823)
skpp-6-R AATAATCTCCGTTCCCTCCC(SEQ ID NO.2824)
overlapping element sublibrary sorting primers:
skpp-6-603-IN-F AACGCTACCGTAATGCAGTG(SEQ ID NO.2814)
skpp-6-603-R GTTCCCTCCCACCTTCAGGT(SEQ ID NO.404)
assembling a primer:
skpp-103-F GTCGAGTCCTATGTAACCGT(SEQ ID NO.2832)
skpp-103-R CAGGGGTCGTCATATCTTCA(SEQ ID NO.2833)
as a result: gel electrophoresis of the assembled products of examples 1-12 is shown in FIG. 9. The lanes in FIG. 9 are DL2000marker, 50bp ladder marker (ladder marker), BBK1002(A + C), BBK1001(A + C), BBK903(C), BBK902(C), BBK803(A), BBK802(A), BBK702(B), BBK701(B), BBK603(B + C), BBK602(B + C), 50bp ladder marker, BBK516 (original protocol), BBK515 (original protocol), respectively, from left to right. The DNA components except BBK602 were assembled successfully.
In the description herein, references to the description of the term "one embodiment," "some embodiments," "an example," "a specific example," or "some examples," etc., mean that a particular feature, structure, material, or characteristic described in connection with the embodiment or example is included in at least one embodiment or example of the invention. In this specification, the schematic representations of the terms used above are not necessarily intended to refer to the same embodiment or example. Furthermore, the particular features, structures, materials, or characteristics described may be combined in any suitable manner in any one or more embodiments or examples. Furthermore, various embodiments or examples and features of different embodiments or examples described in this specification can be combined and combined by one skilled in the art without contradiction.
Although embodiments of the present invention have been shown and described above, it is understood that the above embodiments are exemplary and should not be construed as limiting the present invention, and that variations, modifications, substitutions and alterations can be made to the above embodiments by those of ordinary skill in the art within the scope of the present invention.
SEQUENCE LISTING
<110> Shenzhen Hua Dagene institute
<120> oligonucleotide and use thereof
<130>PIOC147487PCN
<160>47
<170>PatentIn version 3.3
<210>2801
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2801
atagtgctgt agtggaaccg 20
<210>2802
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2802
ttcttactag agactgcgcc 20
<210>2803
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2803
cgtgtagtgt gaatatgcgg 20
<210>2804
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>4
gagtcaatga ttgagcctgc 20
<210>2805
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2805
gaaccattcc tttgctgacc 20
<210>2806
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2806
actgtgttag cctcgtttca 20
<210>2807
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2807
gattgaaacg gtgagcagtg 20
<210>2808
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2808
cgtctatgtt tgatcgacgc 20
<210>9
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2809
gttccgttaa ttcggcagtg 20
<210>2810
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2810
tcagaagaag cgggagaatg 20
<210>2811
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2811
gatatagagc ctccgattcg 20
<210>2812
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2812
gatatagagc gttttggtcg 20
<210>2813
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2813
aacgctaccg ggatgcagtg 20
<210>2814
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2814
aacgctaccg taatgcagtg 20
<210>2815
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2815
tccgacgggg agtatatact 20
<210>2816
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2816
tactaactgc ttcaggccaa 20
<210>2817
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2817
atgatcctat gcgtctgtgt 20
<210>2818
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2818
gtacatgaaa cgatggacgg 20
<210>2819
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2819
ctggtatagt ctcctcagcg 20
<210>2820
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2820
ggcgagagga gatatagagc 20
<210>2821
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2821
aatatcgaac agctgtgcac 20
<210>2822
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2822
atatatggtc acacgcctgt 20
<210>2823
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2823
catgtttagg aacgctaccg 20
<210>2824
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2824
aataatctcc gttccctccc 20
<210>2825
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2825
atatagatgc cgtcctagcg 20
<210>2826
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2826
gagccatgtg aaatgtgtgt 20
<210>2827
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2827
cggactaaag gatcgagtca 20
<210>2828
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2828
cgtatacgta agggttccga 20
<210>2829
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2829
catcggataa cacaaagcgt 20
<210>2830
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2830
tttgcttcag tcagattcgc 20
<210>2831
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2831
gttcaatcac tgaatcccgg 20
<210>2832
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2832
gtcgagtcct atgtaaccgt 20
<210>2833
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2833
caggggtcgt catatcttca 20
<210>2834
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2834
gcttattcgt gccgtgttat 20
<210>2835
<211>20
<212>DNA
<213> Artificial sequence
<220>
<223> primer
<400>2835
tacttttgat tgctgtgccc 20
<210>2836
<211>581
<212>DNA
<213> Artificial sequence
<220>
<223> DNA Module sequences
<400>2836
ggtctcctcg agtacagcta tcttggttca gacgtgagaa gtgatgcaca gcagctgtat 60
cctttattta ttggagcttc cgaaacttcc caagaaaagt gaagaaaaaa ccaggaaaat 120
caaaagacat gacgcatata atgtacacct tttttttttc gcggccaaaa atttaaccta 180
ctcatctaga tcagtggttg gtagagcagt attccgtcat ttttcatgtc caggttcgaa 240
gctgacctgg tattatccgg ttttttttct tgttgaccaa taggaaaaaa aaaaattaaa 300
ataaagtcac agaaattcaa tgaatattat aaatttttct tgtttgtttc cctagttgtt 360
atttttataa aaaaaattct tgtagacaat aaaataagaa atgcccattt tgtaacttag 420
cgaaagatgc ccagtacatc ccttttacac ccgtgcatta aaggtgtttg ggtttaatag 480
gagctttatc atatctcttt gatttttttt ctgctgtcct cggcttgagg gactcacaga 540
gatctggaaa ttttcagatt gtcagtgctt aggatgagac c 581
<210>2837
<211>578
<212>DNA
<213> Artificial sequence
<220>
<223> DNA Module sequences
<400>2837
ggtctctagg atgggttgtc agtagacggt ggccgccgtg gatgggaaat ctcatacgtt 60
tacacacata gtgtttggaa attaatagta gcaatagcta tctggctact gttttaaagt 120
attagcccgt tctcagtgct tcttttttaa ggaataacaa cggcaagacc aaagatatat 180
caaatatggc taagcaatct ctaggtatgt ttggaggata cgaataacga tagaaaacat 240
gagtgaattt ccgtccacga aaaaatgtta acataaaatg caagagaaca attaatcgaa 300
taatgttaaa ttattgtaaa acaatgtgta tgatgaggag gaatgtacct aagccaaaaa 360
aaaaaaaaaa aaaaaaaaaa aaaaaagaaa cagcttttgc atattcaatc caggcatagg 420
gcgactattt agcactcaac gatttttaag cttgtgtatt gctgacataa attccggctt 480
tagaatccaa tattgaaaaa cgtgagtacg cagaggagat agcgcgccag cactacatca 540
actgactact gactactgac tgccacctcg aggagacc 578
<210>2838
<211>579
<212>DNA
<213> Artificial sequence
<220>
<223> DNA Module sequences
<400>2838
ggtctcaaga aggcgttctt ccagcataat ttcacatgtg gaaccggaga cttttgaaga 60
tgaaaatgac cagcaacttc taccaaatat gaatgctact tgggtagacc aacgcggcgc 120
ttggattatt catgtggtca ttatcatact gctgaaacta ttttataatt tatttcctgg 180
cgtcactacc gaatggagct ggaccttaac taatatgaca tatgttattg ggtcctatgt 240
catgttccat ctgattaagg gtaccccttt cgatttcaat ggtggtgctt atgacaactt 300
gacgatgtgg gaacaaattg acgacgagac tttatatact ccttcaagaa aatttttgat 360
tagtgtcccg atcgccctat tcttagttag tactcattat gctcactatg atttgaaatt 420
gttttcatgg aattgttttt tgacaacctt tggtgctgtt gtcccaaagt tacctgttac 480
tcatagatta aggatttcta tccctggcat taccggcaga gctcaaatct catgaacaat 540
aacttcgtat aatgtacatt atacgaagtt attgagacc 579
<210>2839
<211>595
<212>DNA
<213> Artificial sequence
<220>
<223> DNA Module sequences
<400>2839
ggtctcgtta ttagtttatt tcaatcttgt atctagatgt ttttgctata tttatatttt 60
ctgggccaaa tcactaacgc tttgaaattt caaaagccaa caacggattt cggacttcat 120
ttatgtaaat gaaaaagaat gtgaacaaaa attgaaaaaa ttccatatta atgcaccttc 180
taaacctatt tgttgaaatt gtatttaatt catataatca tattctattc aaaaagaata 240
acagatagta ttagcactat ttcacgtact gcttctaata ctattatcac aaaatagaca 300
tcggaaaact caaaaataaa taacttcgta taatgtacat tatacgaagt tatataactt 360
cgtataatgt acattatacg aagttatgta tttatgtttt gtcattcttt tctacataat 420
cttgaaacta ggtagatcta caattgaaaa gtaaatacta acattattta ctaaatttaa 480
gttagaaatc ggcacgaaaa aaatttgaca gattacgaga gtccagccaa aatatgagta 540
tattactatt tccccttggt gaaagaaatg aaagatgtta ttttttaccg agacc 595
<210>2840
<211>632
<212>DNA
<213> Artificial sequence
<220>
<223> DNA Module sequences
<400>2840
ggtctcggat ccttcttttg cacgatgtca catacttttt cgattaccgt cgctttacac 60
agtaactgtt taaaacgagc gttcttaatt aataactgta ggagagcagg ctttcggctt 120
tctttatgag aaataaggac tactccagct tgccaagttt tatccagtta cacaaacgct 180
caagatcgcc tcgctaaaatagatgaaaaa ataagaaaaa tgaaatgttc ataacttcgt 240
ataatgtaca ttatacgaag ttataactta atcccttttg gatttatcat tgaaagatcg 300
ctgatttatt cttttccaat acgcctcgta attctctttc aatgtcaaag gcgccagatt 360
gtaagaatct gtcatgtaaa ataatctgac aatacgtagt tttaaaaacc aattgattaa 420
accaagctct cttatgatgc caactataaa gaagtacaag ctaccggtta aagcaccaac 480
gctgaatccc acgattactt gatctaaatt gtggtagtgc aagtaaactc tggaaaagca 540
aacgcaaaac gataataaag ccaatgcacc agaaaaaatg catttttcta agaagtttag 600
attcttccag gaagtgtata tcttcagaga cc 632
<210>2841
<211>631
<212>DNA
<213> Artificial sequence
<220>
<223> DNA Module sequences
<400>2841
ggtctctctt cagagagtta taggtaaaac aaaaccccat gaattgggag tgtgcactgg 60
gcatcccgta accggatctt atagtgtcat tttggaacga cgcaccgaac gatacggggc 120
gtggctgttt tattatattc ttgatcacgt tattgaatat ttcgttcatc aattggccaa 180
aagcaacgat acaagcttcc aactcacggg tgatgataaa ccacgacaaa taaaaagcta 240
gcactaggat gggcatcagc gagaaatatg cactaaggaa tgatagaaag tcatgcgaat 300
catagagaat gtatgtgtca tcgaatggta taacatttgg atttggattt attgcagcgg 360
cggtactatt catgatatga tccgattcaa aacaaatttt gatgtagata aaatgcctgg 420
tataatgagt ggtagagaag aaaattagac gaaaagaatg agaacgaaga aatgatttaa 480
agtgatcaca gtggcaatca ctttcccctt tttaacgcgt gttgagcaat cgattgatgt 540
ctctaccata tgtagcattt tctcagaagg caaacttttc tttttctttc tacttttcca 600
acaagaaatt ttaagttttc ccagagagac c 631
<210>2842
<211>523
<212>DNA
<213> Artificial sequence
<220>
<223> DNA Module sequences
<400>2842
ggtctcaatc aaagaggcga tatcaacacc ttttatccag cactattcaa cagtgaatgg 60
gctcccaagt aagtcttggc attgtgcttt ctattcttaa gtattaagta gaagttttgt 120
ttactgggtt tgtttattcc tggctagatg ttcgcattcg ttttctagtt gaccatattt 180
accaaatatt cacaactaat acccagccaa ggtagtctaa aagctaattt ctctaaaagg 240
gagaaagttg gtgatttttt atctcgcatt attatatatg caagaatagt taaggtatag 300
ttataaagtt ttatcttaat tgccacatac gtacattgac acgtagaagg actccattat 360
ttttttcatt ctagcatact attattcctt gtaacgtccc agagtattcc atttaattgt 420
cctccatttc ttaacggtga cgaaggatca ccatacaaca actactaaag attatagtac 480
actctcacct tgcaactatt tatctgacat ttgccttgag acc 523
<210>2843
<211>526
<212>DNA
<213> Artificial sequence
<220>
<223> DNA Module sequences
<400>2843
ggtctctgcc ttacttttat ctccagcttc ccctcgattt tatttttcaa tttgatttct 60
aaagcttttt gcttaggcat accaaaccat ccactcattt aacaccttat tttttttttc 120
gaagacagca tccaacttta tacgttcact accttttttt ttacaacaat ttcattcttc 180
atcctatgaa atgacgaaaa taaccagaga tgtttcgata acgacagaaa attcaaaatc 240
cacatctgga tcggcaacgg cctcttcggc ctctttacct gagaacgacc acccaatatt 300
ccatcaacct agagctcgta tccgtagcgg cagcttattc atcgaaggat ctgattcatt 360
tccatcatca gaagtgaagt catacaatgt ttatattgat gatagcaagt atagtgaaat 420
cctcaaagga gatacaaatt caagtagtac tgatggtaaa caagtctttg aagatgctag 480
agatgacaat ttccatcagg aatcacatag agatctagag gagacc 526
<210>2844
<211>567
<212>DNA
<213> Artificial sequence
<220>
<223> DNA Module sequences
<400>2844
cgtctcctcg agtacagcta tcttggttca gacgtgagaa gtgatgcaca ggtcgacttt 60
tcttcacttt tctttcaaca attcaaagat ggctagaacc ataacttttg atatcccttc 120
ccaatataaa ctcgtagatt taataggtga gggagcgtac ggaacagtat gttcagcaat 180
tcataagcct tccggcataa aggtagctat caagaaaata caaccgttta gcaaaaaatt 240
gtttgttaca agaactatac gtgagatcaa gcttttacgg tatttccatg aacacgaaaa 300
cataataagt atattggata aagtaaggcc agtatccata gacaaactaa acgctgttta 360
tttagtcgaa gagttgatgg aaaccgattt acaaaaagta attaataatc agaatagcgg 420
gttttccact ttaagtgatg accatgttca atactttaca taccaaatcc tcagagcctt 480
aaagtctatt cacagtgcac aagttatcca tagagacata aagccatcaa acctgttact 540
aaattccaat tgtgatctca agagacg 567
<210>2845
<211>563
<212>DNA
<213> Artificial sequence
<220>
<223> DNA Module sequences
<400>2845
cgtctctctc aaagtctgcg attttggact agctagatgc ttggcctcat catcagacag 60
cagagaaaca ttggtaggat tcatgacgga gtacgtcgca acgcgatggt acagggcacc 120
cgagataatg ctaacttttc aagagtacac aactgcgatg gatatatggt catgcggatg 180
cattttggct gaaatggtct ccgggaagcc tttgttccca ggcagagact atcatcatca 240
attatggcta attctagaag tcttgggaac tccatctttc gaagacttta atcagatcaa 300
atccaagagg gctaaagagt atatagcaaa cttacctatg aggccaccct tgccatggga 360
gaccgtctgg tcaaagaccg atctgaatcc agatatgata gatttactag acaaaatgct 420
tcaattcaat cctgacaaaa gaataagcgc agcagaagct ttaagacacc cttacctggc 480
aatgtaccac gatccttcag acgagccagc tgcagcacta catcaactga ctactgacta 540
ctgactgcca cctcgaggag acg 563
<210>2846
<211>725
<212>DNA
<213> Artificial sequence
<220>
<223> DNA Module sequences
<400>2846
gcgatgtaaa tcctgtgttt cttttatgta tattttttat caatttcaat ttagtttagt 60
ttagtttctt taaaaataaa attgtaattt ctcacattct gccttcgggt ctcaagggct 120
ggttggtaga cgaatgcgct tgtttctagc tgagcggcag atgcatgaat tcaatgcaag 180
aaaatgagaa aacttccaat attaaaatgt gattgttaat tattagtata tttatgacaa 240
tatatatatg tacatagggt gattatgaag atgagtaaga tgcgaatgga tatgaggata 300
tgaatctttt tagagacaat gaagatgcaa agaagtagtt aagcacattg acctcaggga 360
taacttcgta taatgtacat tatacgaagt tatttgttat atgctacttt tagtccgttg 420
gatttctgaa gcagtattgg ccacaaaaat ttcttcatta tttctacgat tagagtttct 480
tctggatttt tctcgtccct gagacttact ccttttcaag tcattttcag cagcagcttt 540
gattaaatca tatcttgtga ttttacttgg agagctattg tgatgggaac tttgtctgca 600
ggttaccgta ttagtcagag atgttatggg cttaaccata agggaagaaa ctatggcacg 660
catgaatgaa ttactgcttt tactgctcat cgctactgac tactgactgc cacctcgagg 720
agacg 725
<210>2847
<211>688
<212>DNA
<213> Artificial sequence
<220>
<223> DNA Module sequences
<400>2847
gcgatggaat gaattactgc ttttactgct gtcatctgtt gagtttgctg agtcttccgt 60
tcttgtagtc ttggctggtg tgagtaacat tacgtattgt ttctgtagag aagataactt 120
ataacttccg tcttgtcact agttgtttta attatatgtt tgttacaagt ttttatgtat 180
agatatatgt tacaactttt agaagtattg tggacataac agagagaagg gaatgttgct 240
atatttatat attttatata ttgccctcaa aactgtatct catctttttt tctgcaatcc 300
ttgctttcgt aatctaagtg tgggtgacat gctaaatccg cggctttcct taagcttttt 360
cacaaaccat ctattatgtc cagaagctcc gctgattatc cgtggaaaag ggtcttattc 420
tgccgtagga aacttcttct cgagaaaaaa gtgagttata acttcgtata atgtacatta 480
tacgaagtta tcacccgcgg cgctctcgta aaacccgagg gccgattctt tccctccgtg 540
gaacaatcgg ccccgcggcg tcagagggta ttatctccgc aagtgataga actcacattt 600
attctacgtt ctgcatggtt ttgattatct tcttttgcac gatgtcacat actttttcga 660
ttaccgtcca tggccccccc cccatcgc 688

Claims (11)

1. An oligonucleotide, comprising:
a gene coding region;
a first flanking sequence formed 5' of the coding region of the gene; and
a second flanking sequence formed 3' of the coding region of the gene,
wherein a plate bank sorting primer binding sequence, a component sub-bank sorting primer binding sequence and an enzyme cutting site are sequentially formed on the first flanking sequence from a 5 'end to a 3' end, and the enzyme cutting site, the component sub-bank sorting primer binding sequence and the plate bank sorting primer binding sequence are sequentially formed on the second flanking sequence from the 5 'end to the 3' end, wherein the plate bank sorting primer binding sequence, the component sub-bank sorting primer binding sequence and the enzyme cutting site in the first flanking sequence satisfy the following conditions:
(a) the plate bank sorting primer binding sequence and the component bank sorting primer binding sequence are public primer binding sequences;
(b) at least one part of the enzyme cutting sites are formed inside the sorting primer binding sequences of the component sub-library, and the enzyme cutting sites are connected with the gene coding regions;
the plate subpool sorting primer binding sequence, the assembly subpool sorting primer binding sequence and the enzyme cutting site in the second flanking sequence satisfy the following conditions:
(c) the plate sub-library sorting primer binding sequence shares a partial overlap sequence with the component sub-library sorting primer binding sequence.
2. The oligonucleotide of claim 1, wherein the oligonucleotide is 100 to 300nt in length.
3. The oligonucleotide of claim 1, wherein the cleavage site is 6 to 12nt in length.
4. The oligonucleotide of claim 1, wherein the cleavage site is a type II restriction enzyme cleavage site.
5. The oligonucleotide of claim 1, wherein the common primer binding sequence, the modular subsubstrate selector primer binding sequence, and the plate subsubstrate selector primer binding sequence are 15-25nt in length.
6. The oligonucleotide of claim 1, wherein the common primer binding sequence is the complement of SEQ id No. 2825.
7. The oligonucleotide of claim 1, wherein the plate library sorting primer binding sequence is a complementary sequence of at least one of SEQ ID No.2815 to SEQ ID No. 2824.
8. The oligonucleotide of claim 1, wherein the modular sublibrary sorting primer binding sequence is a complementary sequence of at least one of SEQ ID No.1 to SEQ ID No. 2814.
9. The oligonucleotide according to claim 1, wherein the length of the overlapping sequence is no greater than 10 nt.
10. Use of the oligonucleotide of any one of claims 1 to 9 in DNA chip synthesis.
11. A method of synthesizing DNA, comprising:
synthesizing an oligonucleotide library by using the chip;
assembling based on the oligonucleotide library so as to obtain a target DNA,
wherein the library of oligonucleotides comprises a plurality of oligonucleotide strands, said oligonucleotide strands being the oligonucleotides of any one of claims 1-9.
CN201580075708.6A 2015-06-11 2015-06-11 Oligonucleotides and uses thereof Active CN107250446B (en)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2015/081268 WO2016197374A1 (en) 2015-06-11 2015-06-11 Oligonucleotide and uses thereof

Publications (2)

Publication Number Publication Date
CN107250446A CN107250446A (en) 2017-10-13
CN107250446B true CN107250446B (en) 2020-04-14

Family

ID=57502821

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201580075708.6A Active CN107250446B (en) 2015-06-11 2015-06-11 Oligonucleotides and uses thereof

Country Status (2)

Country Link
CN (1) CN107250446B (en)
WO (1) WO2016197374A1 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066844A (en) * 2011-08-26 2014-09-24 Gen9股份有限公司 Compositions and methods for high fidelity assembly of nucleic acids

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7563600B2 (en) * 2002-09-12 2009-07-21 Combimatrix Corporation Microarray synthesis and assembly of gene-length polynucleotides

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104066844A (en) * 2011-08-26 2014-09-24 Gen9股份有限公司 Compositions and methods for high fidelity assembly of nucleic acids

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Gene Assembly from Chip-Synthesized Oligonucleotides;Nikolai Eroshenko et al;《Current Protocols in Chemical Biology》;20120331;图1,表1 *
Nikolai Eroshenko et al.Gene Assembly from Chip-Synthesized Oligonucleotides.《Current Protocols in Chemical Biology》.2012, *

Also Published As

Publication number Publication date
CN107250446A (en) 2017-10-13
WO2016197374A1 (en) 2016-12-15

Similar Documents

Publication Publication Date Title
US9340826B2 (en) Method of preparing nucleic acid molecules
Hoose et al. DNA synthesis technologies to close the gene writing gap
US11898141B2 (en) High-throughput assembly of genetic elements
US20210171994A1 (en) Gene Synthesis by Self-Assembly of Small Oligonucleotide Building Blocks
EP1733055A2 (en) Polynucleotide synthesis
CA2945628A1 (en) Long nuceic acid sequences containing variable regions
KR101600899B1 (en) Method of simultaneous synthesis of DNA library using high-throughput parallel DNA synthesis method
Reisinger et al. Total synthesis of multi-kilobase DNA sequences from oligonucleotides
US20070009928A1 (en) Gene synthesis using pooled DNA
AU2002254773B2 (en) Novel methods of directed evolution
CN107250446B (en) Oligonucleotides and uses thereof
Finney et al. Molecular cloning of PCR products
JP2018500936A (en) Bubble primer
US20170267998A1 (en) Methods of synthesizing polynucleotides
AU2002254773A1 (en) Novel methods of directed evolution
US8470537B2 (en) Sequential addition of short DNA oligos in DNA-polymerase-based synthesis reactions
WO2015089339A2 (en) Compositions, methods and kits for dna fragmentation and tagmentation
US20160376584A1 (en) Method and apparatus for dual solid phase nucleic acid synthesis
US10087484B2 (en) Method for synthesizing gene using high-depth oligonucleotide tiling
from GenScript Technical Resources and Bioinformatics Tools

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
CB02 Change of applicant information

Address after: 518083 Complex Building of Beishan Industrial Zone, Yantian Street, Yantian District, Shenzhen City, Guangdong Province

Applicant after: BGI SHENZHEN

Address before: Beishan Industrial Zone Building in Yantian District of Shenzhen city of Guangdong Province in 518083

Applicant before: BGI SHENZHEN

CB02 Change of applicant information
GR01 Patent grant
GR01 Patent grant