CN107240122A - 基于时空连续相关滤波的视频目标跟踪方法 - Google Patents

基于时空连续相关滤波的视频目标跟踪方法 Download PDF

Info

Publication number
CN107240122A
CN107240122A CN201710450319.8A CN201710450319A CN107240122A CN 107240122 A CN107240122 A CN 107240122A CN 201710450319 A CN201710450319 A CN 201710450319A CN 107240122 A CN107240122 A CN 107240122A
Authority
CN
China
Prior art keywords
target
layer
frames
space
time continuous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710450319.8A
Other languages
English (en)
Inventor
娄涵
周芸
王东飞
姜竹青
门爱东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing University of Posts and Telecommunications
Academy of Broadcasting Science of SAPPRFT
Original Assignee
Beijing University of Posts and Telecommunications
Academy of Broadcasting Science of SAPPRFT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing University of Posts and Telecommunications, Academy of Broadcasting Science of SAPPRFT filed Critical Beijing University of Posts and Telecommunications
Priority to CN201710450319.8A priority Critical patent/CN107240122A/zh
Publication of CN107240122A publication Critical patent/CN107240122A/zh
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/246Analysis of motion using feature-based methods, e.g. the tracking of corners or segments
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/20Analysis of motion
    • G06T7/262Analysis of motion using transform domain methods, e.g. Fourier domain methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10016Video; Image sequence
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20048Transform domain processing
    • G06T2207/20056Discrete and fast Fourier transform, [DFT, FFT]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/20Special algorithmic details
    • G06T2207/20081Training; Learning

Abstract

本发明涉及一种基于时空连续相关滤波的视频目标跟踪方法,其主要技术特点是:构造并计算损失函数;对输入帧进行深度卷积特征提取,利用深度卷积网络的第3~5层特征信息估计当前帧中目标的位置;根据每层估计的目标位置的准确度分配不同权重,将三层目标位置加权求和得到当前帧目标的最终位置;根据之前所有帧的估计结果更新模板。本发明结合了判别相关滤波器、深度学习技术,其利用多层特征进行目标位置估计,并根据之前所有帧的位置信息连续更新学习率,增加了整体算法的跟踪精度,提高了跟踪结果的稳定性,获得了很好的目标跟踪效果。

Description

基于时空连续相关滤波的视频目标跟踪方法
技术领域
本发明属于视觉目标跟踪技术领域,尤其是一种基于时空连续相关滤波的视频目标跟踪方法。
背景技术
目标跟踪是计算机视觉领域中非常重要的一个研究课题,并被广泛应用于军事和人们日常生活中的各个领域,如制导系统、人机交互、智能交通、视觉导航、图像压缩、视频监控以及视频分析等等。因此对目标跟踪算法的研究,具有重要的军事、商业价值。
目标跟踪是指对视频中的目标进行定位,获得目标的位置和大小等信息,为对目标做进一步的分析与理解提供帮助,如目标识别、目标分类以及基于视频内容的分析等等。随着更多高级视觉任务需求的不断增长,目标跟踪算法的研究成为计算机视觉领域的一个研究热点。同时因为计算机计算能力的大幅度提高、廉价高性能摄像头的广泛应用,也使得复杂但更精确和稳健的跟踪算法得以实现。
经过几十年的发展,目标跟踪在计算机视觉领域取得了十足的进步。Bolme等人首先将相关滤波应用于视觉跟踪领域(D.S.Bolme,J.R.Beveridge,B.A.Draper,andY.M.Lui,“Visual object tracking using adaptive correlation filters,”inCVPR.IEEE,2010,pp.2544–2550.)。基于此研究,很多人将其方法进行扩展,提出了核相关滤波器、多特征融合、尺度估计的方面的改进,主要包括四个方面:(1)利用时空上下文信息进行目标跟踪(K.Zhang,L.Zhang,M.H.Yang,and D.Zhang,“Fast tracking via spatio-temporal context learning,”arXiv preprint arXiv:1311.1939,2013.);(2)将目标进行分块(T.Liu,G.Wang,and Q.Yang,“Realtime part-based visual tracking viaadaptive correlation filters,”in CVPR,2015,pp.4902–4912.),以很好地解决部分遮挡的问题;(3)预计关键点的算法,MUSTer跟踪器(Z.Hong,Z.Chen,C.Wang,and X.Mei,“Multi-store tracker(muster):A cognitive psychology inspired approach toobject tracking,”in CVPR,2015,pp.749–758.)存储了一些历史模版用以跟踪目标;(4)训练多个分类器以适应不同的跟踪环境(C.Ma,X.Yang,C.Zhang,and M.H.Yang,“Long-term correlation tracking,”in CVPR,2015,pp.5388–5396.)。
同时,基于深度学习的跟踪器也已经被证实具有很优异的性能,因此也引起了学者的关注,将深度学习与判别相关滤波器相结合,代表性的算法有HCF(C.Ma,J.B.Huang,X.Yang,and M.H.Yang,“Hierarchical convolutional features for visualtracking,”in ICCV,2015,pp.3074–3082.)、DeepSRDCF(M.Danelljan,G.Hager,F.S.Khan,and M.Felsberg,“Convolutional features for correlation filter based visualtracking,”in ICCVW,2015,pp.58–66.)等。
虽然目标跟踪算法经过了几十年的发展,但是要实现长期稳健实时的跟踪算法还是受到很多的限制。目标跟踪技术还是存在很多的挑战,如形变、遮挡、光照变化、旋转等,难以达到稳定的跟踪效果。
发明内容
本发明的目地在于克服现有技术的不足,提出一种设计合理、精度高且稳定性强的基于时空连续相关滤波的视频目标跟踪方法。
本发明解决其技术问题是采取以下技术方案实现的:
一种基于时空连续相关滤波的视频目标跟踪方法,包括以下步骤:
步骤1、构造并计算损失函数;
步骤2、对输入帧进行深度卷积特征提取,利用深度卷积网络的第3~5层特征信息估计当前帧中目标的位置;
步骤3、根据每层估计的目标位置的准确度分配不同权重,将三层目标位置加权求和得到当前帧目标的最终位置;
步骤4、根据之前所有帧的估计结果更新模板;当新的一帧到来,返回步骤2。
所述步骤4后还包括如下步骤:采用集成操作,实现多尺度的训练样本采集。
所述步骤1的具体实现方法为:
构造如下损失函数:
其中e=Y-W·X
其中,表示每一层的特征图,M、N、D分别表示特征图的长度、宽度和通道数,表示高斯标签,W表示每一层的相关滤波器的系数, e表示根据每一层特征图估计出来的目标位置与真实位置之间的误差;
根据迭代阈值收缩算法对损失函数进行计算得到:
表示相关滤波器系数W的对偶表示,W=XTa。kXX表示核矩阵K的第一行,函数σ(ε,x)=sign(x)max(0,|x|-ε)。
所述步骤2对输入帧进行深度卷积特征提取所利用的深度网络结构是VGG-Net-19网络。
所述步骤3的具体步骤包括:
步骤3.1、将时空连续相关滤波器作用到相对应的每一层深度卷积特征,在每一层卷积特征上估计出当前帧的目标位置;
步骤3.2、根据预测的每一层目标结果计算相应的峰值旁瓣比和稳定系数,由此得出每一层位置信息的权重;
步骤3.3、将三层预测结果加权求和得到当前帧目标的最终位置。
所述步骤3.1的实现方法为:利用第t-1帧的时空连续相关滤波器作用到相对应的当前第t帧每一层的深度卷积特征,在每一层卷积特征上估计出当前第t帧的目标位置:
其中,表示傅立叶逆变换,kXZ=k(X,Z)表示核运算, 表示第t帧第l层的特征图,⊙表示对应位相乘的操作,字母上的小帽子^表示傅立叶变换;
所述步骤3.2的实现方法为:根据每一层预测的目标位置信息计算相应的权重:
按如下公式计算峰值旁瓣比:
其中,分别是第t帧第l层响应图的均值和标准差;
按如下公式计算第t-1帧和第t帧的第l层相关滤波器之间的稳定系数:
其中,分别是第t-1帧和第t帧的第l层的响应图,STAB值越小说明相关滤波器越稳定;
所述步骤3.3的实现方法为:根据步骤3.1得到的每一层预测的目标结果以及步骤3.2计算得到的权重,对三层特征的响应图进行加权求和即可得到当前帧目标的最终位置:
所述步骤4更新模板的方法为:根据步骤1的损失函数计算出的相关滤波器系数的对偶表示则第t帧的相关滤波器表示为:
其中,ηt表示当前第t帧更新模版的学习率;
学习率根据每一帧的误差进行自适应调整,从而实现了学习率的连续更新,使其以连续值加以呈现:
ηt∝1-sigmoid(||et||1)
其中,函数使得误差归一化到[0,1]之间。
所述集成操作是指结合现有技术并使用一个自适应的高斯窗代替余弦窗,实现多尺度的训练样本采集:
0≤i≤m,0≤j≤n
其中,2D高斯窗的尺寸为m×n,m和n分别是目标特征图的维度,是特征图和目标当前尺度的比值。
本发明的优点和积极效果是:
1、本发明基于判别相关滤波器(Discriminative Correlation Filter)融合多层深度卷积特征的技术,其通过对所使用的每一层卷积特征,即空间信息,学习相对应的特定的相关滤波器,在每一层卷积特征上估计出目标位置后再根据准确度分配不同的权重,以估计目标的最终位置;同时,更新模版的时候结合之前所有帧的跟踪结果,即时间信息,并利用每一帧的跟踪误差自适应地调整学习率,从而实现了学习率的连续更新,使其以连续值加以呈现,能够获得满意的视觉目标跟踪效果。
2、本发明设计合理,其结合了判别相关滤波器、深度学习技术,其利用多层特征进行目标位置估计,并根据之前所有帧的位置信息连续更新学习率,增加了整体算法的跟踪精度,提高了跟踪速率和跟踪结果的稳定性,获得了很好的目标跟踪效果。
附图说明
图1是本发明提出的目标跟踪算法的流程图(步骤2);
图2是本发明提出的目标跟踪算法的流程图(步骤3)
图3是本发明与其他不同算法在OTB-50数据集上获得的跟踪结果AUC曲线对比图;
图4是本发明与其他不同算法在OTB-100数据集上获得的跟踪结果AUC曲线对比图;
图5是本发明与其他不同算法的跟踪结果对比图。
具体实施方式
以下结合附图对本发明实施例做进一步详述。
一种基于时空连续相关滤波的视频目标跟踪方法,包括以下步骤:
步骤1、构造并计算损失函数:
其中e=Y-W·X
表示每一层的特征图,M、N、D分别表示特征图的长度、宽度和通道数,表示高斯标签,W表示每一层的相关滤波器的系数, e表示根据每一层特征图估计出来的目标位置与真实位置之间的误差。由于损失使得误差具有稀疏解,损失使得误差尽可能小,处理物体形变非常有效,所以,这里损失使用的是损失,对于物体形状的突变或者缓慢变化都十分有效。
根据迭代阈值收缩算法对损失函数进行计算可得:
表示相关滤波器系数W的对偶表示,W=XTa。kXX表示核矩阵K的第一行,函数σ(ε,x)=sign(x)max(0,|x|-ε)。
步骤2、当新的一帧到来,通过VGG-Net-19深度网络网络提取出第3、4、5层的深度特征进行目标位置的预测,如图1所示。根据每一层估计的目标位置的准确度分配不同权重,将三层目标位置加权求和得到当前帧目标的最终位置。具体方法包括以下步骤:
(1)利用第t-1帧的时空连续相关滤波器作用到相对应的当前第t帧每一层的深度卷积特征,在每一层卷积特征上估计出当前第t帧的目标位置:
其中,表示傅立叶逆变换,kXZ=k(X,Z)表示核运算, 表示第t帧第l层的特征图,⊙表示对应位相乘的操作,字母上的小帽子^表示傅立叶变换;
(2)根据每一层预测的目标位置信息计算相应的权重:
其中涉及两个性能指标:峰值旁瓣比和稳定系数;
基于相关滤波的分类器,跟踪响应图的峰值旁瓣比是一个有效且常用的测量指标:
其中,分别是第t帧第l层响应图的均值和标准差,PSR值越大,说明得到的响应图越准确;
另外,本发明还设计了另外一个测量指标,叫稳定系数;这里,计算了第t-1帧和第t帧的第l层相关滤波器之间的稳定系数:
分别是第t-1帧和第t帧的第l层的响应图,STAB值越小说明相关滤波器越稳定;
(3)根据上述步骤得到的每一层预测的目标结果以及相应的权重,对三层特征的响应图进行加权求和即可得到当前帧目标的最终位置:
步骤3、得到当前第t帧的目标位置之后,需要更新模版,也就是对相关滤波器进行更新,如图2所示。此时需要根据步骤1的损失函数计算出的相关滤波器系数的对偶表示则第t帧的相关滤波器表示为:
其中,ηt表示当前第t帧更新模版的学习率。本方法利用之前所有视频帧(时间信息,即)进行模板的更新,不同于以往的固定学习率或者二值学习率,本方法的学习率根据每一帧的误差进行自适应调整,从而实现了学习率的连续更新,使其以连续值加以呈现:
ηt∝1-sigmoid(||et||1)
其中,函数使得误差归一化到[0,1]之间。e越大,说明估计的结果越不准确,则此时的相关滤波器性能不好,要避免对其进行过多的更新,即学习率ηt要小。
步骤4、根据当前帧的预测结果更新完模版,再来新的一帧,返回步骤2。如此对整个视频帧序列完成目标跟踪。
步骤5、采用集成操作,实现多尺度的训练样本采集。
集成操作是指结合现有技术并使用一个自适应的高斯窗代替余弦窗,实现多尺度的训练样本采集:
0≤i≤m,0≤j≤n
其中,2D高斯窗的尺寸为m×n,m和n分别是目标特征图的维度,是特征图和目标当前尺度的比值。
下面按照本发明的方法进行实验,说明本发明的实验效果。
测试环境:MATLAB R2015b;本次实验使用MatConvNet工具包进行深度卷积特征的提取。
测试序列:所选序列和其对应标准跟踪位置图(ground-truth)来自两个常用数据集:OTB-50(Y.Wu,J.Lim,and M.-H.Yang.Online object tracking:A benchmark.InProceedings of IEEE Conference on Computer Vision and Pattern Recognition,2013),OTB-100(Y.Wu,J.Lim,and M.H.Yang,“Object tracking bench-mark,”PAMI,vol.37,no.9,pp.1834–1848,2015.)。
测试指标:使用了两种评价指标:中心位置误差(center location error,CLE)和重叠面积比率(Pascal VOC Overlap Ratio,VOR),分别对应于准确率曲线(the precisionplot)和成功率曲线(the success plot)。测试曲线如图3和图4所示,曲线与坐标轴下面围成的面积越大,说明跟踪效果越好。其中CLE是中心位置误差,表示跟踪到的目标位置和真实的标注位置的中心位置像素距离。CLE忽略了目标大小的影响,作为补充考虑VOR准则,VOR定义为跟踪的目标区域和真实区域的交集和并集的比值。通常,以CLE=20判断跟踪到的目标位置是否准确,即若跟踪结果的中心位置和目标的真实位置的距离小于20个像素,则认为对目标的位置估计准确;以VOR>0.5作为判断是否跟踪成功的依据。针对具体数据结果见下表:
通过上表以及图3、图4、图5可以看出,采用本发明进行目标跟踪相对于其他方法具有一定的优越性。在图3和图4中,算法越靠上说明其鲁棒性越好,该图可以直观的看出每一个算法的综合能力。本发明相对于较有名的DeepSRDCF、HCF等算法在这些测试序列上都取得更好效果。图5中,所测试的序列包含了快速运动、部分遮挡、背景杂乱、尺度变化等序列。由于本发明的连续学习率更新策略,在发生部分遮挡的Girl2和Lemming序列中取得了很好的跟踪效果,比如,Girl2序列,其他跟踪器在目标被遮挡后都发生跟丢的现象,而本方法却能很好地在目标重新出现时进行再次定位。得益于集成操作,本发明能够很好地处理序列中目标尺度变换的问题,如Carscale和Singer1序列。由于深度卷积特征对物体高效的表示能力,本方法也很好的解决了背景杂乱的问题,如Human6和Bike1序列。在目标发生旋转的情况下也能准确跟踪目标,如Kitesurf和Sking序列。
需要强调的是,本发明所述的实施例是说明性的,而不是限定性的,因此本发明包括并不限于具体实施方式中所述的实施例,凡是由本领域技术人员根据本发明的技术方案得出的其他实施方式,同样属于本发明保护的范围。

Claims (8)

1.一种基于时空连续相关滤波的视频目标跟踪方法,其特征在于包括以下步骤:
步骤1、构造并计算损失函数;
步骤2、对输入帧进行深度卷积特征提取,利用深度卷积网络的第3~5层特征信息估计当前帧中目标的位置;
步骤3、根据每层估计的目标位置的准确度分配不同权重,将三层目标位置加权求和得到当前帧目标的最终位置;
步骤4、根据之前所有帧的估计结果更新模板;当新的一帧到来,返回步骤2。
2.根据权利要求1所述的基于时空连续相关滤波的视频目标跟踪方法,其特征在于:所述步骤4后还包括如下步骤:采用集成操作,实现多尺度的训练样本采集。
3.根据权利要求1或2所述的基于时空连续相关滤波的视频目标跟踪方法,其特征在于:所述步骤1的具体实现方法为:
构造如下损失函数:
其中e=Y-W·X
其中,表示每一层的特征图,M、N、D分别表示特征图的长度、宽度和通道数,表示高斯标签,W表示每一层的相关滤波器的系数,W·e表示根据每一层特征图估计出来的目标位置与真实位置之间的误差;
根据迭代阈值收缩算法对损失函数进行计算得到:
表示相关滤波器系数W的对偶表示,W=XTa。kXX表示核矩阵K的第一行,函数σ(ε,x)=sign(x)max(0,|x|-ε)。
4.根据权利要求1或2所述的基于时空连续相关滤波的视频目标跟踪方法,其特征在于:所述步骤2对输入帧进行深度卷积特征提取所利用的深度网络结构是VGG-Net-19网络。
5.根据权利要求1或2所述的基于时空连续相关滤波的视频目标跟踪方法,其特征在于:所述步骤3的具体步骤包括:
步骤3.1、将时空连续相关滤波器作用到相对应的每一层深度卷积特征,在每一层卷积特征上估计出当前帧的目标位置;
步骤3.2、根据预测的每一层目标结果计算相应的峰值旁瓣比和稳定系数,由此得出每一层位置信息的权重;
步骤3.3、将三层预测结果加权求和得到当前帧目标的最终位置。
6.根据权利要求5所述的基于时空连续相关滤波的视频目标跟踪方法,其特征在于:所述步骤3.1的实现方法为:利用第t-1帧的时空连续相关滤波器作用到相对应的当前第t帧每一层的深度卷积特征,在每一层卷积特征上估计出当前第t帧的目标位置:
其中,表示傅立叶逆变换,kXZ=k(X,Z)表示核运算, 表示第t帧第l层的特征图,⊙表示对应位相乘的操作,字母上的小帽子表示傅立叶变换;
所述步骤3.2的实现方法为:根据每一层预测的目标位置信息计算相应的权重:
按如下公式计算峰值旁瓣比:
其中,分别是第t帧第l层响应图的均值和标准差;
按如下公式计算第t-1帧和第t帧的第l层相关滤波器之间的稳定系数:
其中,分别是第t-1帧和第t帧的第l层的响应图,STAB值越小说明相关滤波器越稳定;
所述步骤3.3的实现方法为:根据步骤3.1得到的每一层预测的目标结果以及步骤3.2计算得到的权重,对三层特征的响应图进行加权求和即可得到当前帧目标的最终位置:
7.根据权利要求1或2所述的基于时空连续相关滤波的视频目标跟踪方法,,其特征在于:所述步骤4更新模板的方法为:根据步骤1的损失函数计算出的相关滤波器系数的对偶表示则第t帧的相关滤波器表示为:
其中,ηt表示当前第t帧更新模版的学习率;
学习率根据每一帧的误差进行自适应调整,从而实现了学习率的连续更新,使其以连续值加以呈现:
ηt∝1-sigmoid(||et||1)
其中,函数使得误差归一化到[0,1]之间。
8.根据权利要求2所述的基于时空连续相关滤波的视频目标跟踪方法,其特征在于:所述集成操作是指结合现有技术并使用一个自适应的高斯窗代替余弦窗,实现多尺度的训练样本采集:
其中,2D高斯窗的尺寸为m×n,m和n分别是目标特征图的维度,是特征图和目标当前尺度的比值。
CN201710450319.8A 2017-06-15 2017-06-15 基于时空连续相关滤波的视频目标跟踪方法 Pending CN107240122A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710450319.8A CN107240122A (zh) 2017-06-15 2017-06-15 基于时空连续相关滤波的视频目标跟踪方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710450319.8A CN107240122A (zh) 2017-06-15 2017-06-15 基于时空连续相关滤波的视频目标跟踪方法

Publications (1)

Publication Number Publication Date
CN107240122A true CN107240122A (zh) 2017-10-10

Family

ID=59987048

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710450319.8A Pending CN107240122A (zh) 2017-06-15 2017-06-15 基于时空连续相关滤波的视频目标跟踪方法

Country Status (1)

Country Link
CN (1) CN107240122A (zh)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107818575A (zh) * 2017-10-27 2018-03-20 深圳市唯特视科技有限公司 一种基于分层卷积的视觉对象跟踪方法
CN108053425A (zh) * 2017-12-25 2018-05-18 北京航空航天大学 一种基于多通道特征的高速相关滤波目标跟踪方法
CN108470355A (zh) * 2018-04-04 2018-08-31 中山大学 融合卷积网络特征和判别式相关滤波器的目标跟踪方法
CN108550161A (zh) * 2018-03-20 2018-09-18 南京邮电大学 一种尺度自适应核相关滤波快速目标跟踪方法
CN109271865A (zh) * 2018-08-17 2019-01-25 西安电子科技大学 基于散射变换多层相关滤波的运动目标跟踪方法
CN109343701A (zh) * 2018-09-03 2019-02-15 电子科技大学 一种基于动态手势识别的智能人机交互方法
CN109816689A (zh) * 2018-12-18 2019-05-28 昆明理工大学 一种多层卷积特征自适应融合的运动目标跟踪方法
CN109858326A (zh) * 2018-12-11 2019-06-07 中国科学院自动化研究所 基于类别语义弱监督的在线视觉跟踪方法及系统
CN109934846A (zh) * 2019-03-18 2019-06-25 南京信息工程大学 基于时间和空间网络的深度集成目标跟踪方法
CN109961462A (zh) * 2019-03-25 2019-07-02 华瑞新智科技(北京)有限公司 目标跟踪方法、装置和系统
CN109993777A (zh) * 2019-04-04 2019-07-09 杭州电子科技大学 一种基于双模板自适应阈值的目标跟踪方法及系统
CN110033012A (zh) * 2018-12-28 2019-07-19 华中科技大学 一种基于通道特征加权卷积神经网络的生成式目标跟踪方法
CN110148157A (zh) * 2019-05-10 2019-08-20 腾讯科技(深圳)有限公司 画面目标跟踪方法、装置、存储介质及电子设备
CN110659619A (zh) * 2019-09-27 2020-01-07 昆明理工大学 一种基于深度时空信息的相关滤波跟踪方法
CN111028269A (zh) * 2019-12-26 2020-04-17 陕西理工大学 一种简单模拟时域正则化的目标跟踪模型更新方法
CN111368830A (zh) * 2020-03-03 2020-07-03 西北工业大学 基于多视频帧信息和核相光滤波算法的车牌检测识别方法
CN111860532A (zh) * 2019-04-25 2020-10-30 四川大学 基于两种互补跟踪算法的自适应目标跟踪方法
CN112053386A (zh) * 2020-08-31 2020-12-08 西安电子科技大学 基于深度卷积特征自适应集成的目标跟踪方法
CN112184750A (zh) * 2019-06-13 2021-01-05 北京四维图新科技股份有限公司 基于视频图像的对象跟踪方法及装置
CN113222060A (zh) * 2021-05-31 2021-08-06 四川轻化工大学 一种基于卷积特征和手工特征整合的视觉跟踪方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103886325A (zh) * 2014-02-18 2014-06-25 浙江大学 一种分块的循环矩阵视频跟踪方法
EP2790130A1 (en) * 2013-04-08 2014-10-15 Cogisen SRL Method for object recognition
CN105741316A (zh) * 2016-01-20 2016-07-06 西北工业大学 基于深度学习和多尺度相关滤波的鲁棒目标跟踪方法
CN106408579A (zh) * 2016-10-25 2017-02-15 华南理工大学 一种基于视频的捏合指尖跟踪方法
CN106570893A (zh) * 2016-11-02 2017-04-19 中国人民解放军国防科学技术大学 一种基于相关滤波的快速稳健视觉跟踪方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2790130A1 (en) * 2013-04-08 2014-10-15 Cogisen SRL Method for object recognition
CN103886325A (zh) * 2014-02-18 2014-06-25 浙江大学 一种分块的循环矩阵视频跟踪方法
CN105741316A (zh) * 2016-01-20 2016-07-06 西北工业大学 基于深度学习和多尺度相关滤波的鲁棒目标跟踪方法
CN106408579A (zh) * 2016-10-25 2017-02-15 华南理工大学 一种基于视频的捏合指尖跟踪方法
CN106570893A (zh) * 2016-11-02 2017-04-19 中国人民解放军国防科学技术大学 一种基于相关滤波的快速稳健视觉跟踪方法

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
ANDRÉS SOLÍS MONTERO ET AL: "Scalable Kernel Correlation Filter with Sparse Feature Integration", 《2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION WORKSHOPS》 *
CHAO MA ET AL: "When Correlation Filters Meet Convolutional Neural Networks for Visual Tracking", 《IEEE SIGNAL PROCESSING LETTERS 》 *
CONG LIN ET AL: "Object Tracking Using Dimension Reduction of Descriptive Features", 《 2014 11TH INTERNATIONAL CONFERENCE ON COMPUTER GRAPHICS, IMAGING AND VISUALIZATION 》 *
TING LIU ET AL: "Real-time part-based visual tracking via adaptive correlation filters", 《2015 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR)》 *
YAN LI ET AL: "LEARNING A SCALE-AND-ROTATION CORRELATION FILTER FOR ROBUST VISUAL TRACKING", 《2016 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING (ICIP) 》 *
YULONG XU ET AL: "Multi-Scale Correlation Tracking with Convolutional Features", 《2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP) 》 *
YULONG XU ET AL: "Multi-Scale Correlation Tracking with Convolutional Features", 《2016 IEEE INTERNATIONAL CONFERENCE ON SIGNAL AND IMAGE PROCESSING (ICSIP)》 *
管皓等: "深度学习在视频目标跟踪中的应用进展与展望", 《自动化学报》 *

Cited By (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107818575A (zh) * 2017-10-27 2018-03-20 深圳市唯特视科技有限公司 一种基于分层卷积的视觉对象跟踪方法
CN108053425B (zh) * 2017-12-25 2018-10-26 北京航空航天大学 一种基于多通道特征的高速相关滤波目标跟踪方法
CN108053425A (zh) * 2017-12-25 2018-05-18 北京航空航天大学 一种基于多通道特征的高速相关滤波目标跟踪方法
CN108550161B (zh) * 2018-03-20 2021-09-14 南京邮电大学 一种尺度自适应核相关滤波快速目标跟踪方法
CN108550161A (zh) * 2018-03-20 2018-09-18 南京邮电大学 一种尺度自适应核相关滤波快速目标跟踪方法
CN108470355A (zh) * 2018-04-04 2018-08-31 中山大学 融合卷积网络特征和判别式相关滤波器的目标跟踪方法
CN108470355B (zh) * 2018-04-04 2022-08-09 中山大学 融合卷积网络特征和判别式相关滤波器的目标跟踪方法
CN109271865A (zh) * 2018-08-17 2019-01-25 西安电子科技大学 基于散射变换多层相关滤波的运动目标跟踪方法
CN109271865B (zh) * 2018-08-17 2021-11-09 西安电子科技大学 基于散射变换多层相关滤波的运动目标跟踪方法
CN109343701A (zh) * 2018-09-03 2019-02-15 电子科技大学 一种基于动态手势识别的智能人机交互方法
CN109858326A (zh) * 2018-12-11 2019-06-07 中国科学院自动化研究所 基于类别语义弱监督的在线视觉跟踪方法及系统
CN109816689A (zh) * 2018-12-18 2019-05-28 昆明理工大学 一种多层卷积特征自适应融合的运动目标跟踪方法
CN110033012A (zh) * 2018-12-28 2019-07-19 华中科技大学 一种基于通道特征加权卷积神经网络的生成式目标跟踪方法
CN109934846B (zh) * 2019-03-18 2023-06-06 南京信息工程大学 基于时间和空间网络的深度集成目标跟踪方法
CN109934846A (zh) * 2019-03-18 2019-06-25 南京信息工程大学 基于时间和空间网络的深度集成目标跟踪方法
CN109961462A (zh) * 2019-03-25 2019-07-02 华瑞新智科技(北京)有限公司 目标跟踪方法、装置和系统
CN109993777A (zh) * 2019-04-04 2019-07-09 杭州电子科技大学 一种基于双模板自适应阈值的目标跟踪方法及系统
CN109993777B (zh) * 2019-04-04 2021-06-29 杭州电子科技大学 一种基于双模板自适应阈值的目标跟踪方法及系统
CN111860532A (zh) * 2019-04-25 2020-10-30 四川大学 基于两种互补跟踪算法的自适应目标跟踪方法
CN111860532B (zh) * 2019-04-25 2022-11-25 四川大学 基于两种互补跟踪算法的自适应目标跟踪方法
CN110148157A (zh) * 2019-05-10 2019-08-20 腾讯科技(深圳)有限公司 画面目标跟踪方法、装置、存储介质及电子设备
US11610321B2 (en) 2019-05-10 2023-03-21 Tencent Technology (Shenzhen) Company Limited Target tracking method and apparatus, storage medium, and electronic device
CN112184750A (zh) * 2019-06-13 2021-01-05 北京四维图新科技股份有限公司 基于视频图像的对象跟踪方法及装置
CN110659619A (zh) * 2019-09-27 2020-01-07 昆明理工大学 一种基于深度时空信息的相关滤波跟踪方法
CN111028269A (zh) * 2019-12-26 2020-04-17 陕西理工大学 一种简单模拟时域正则化的目标跟踪模型更新方法
CN111028269B (zh) * 2019-12-26 2023-12-26 陕西理工大学 一种简单模拟时域正则化的目标跟踪模型更新方法
CN111368830A (zh) * 2020-03-03 2020-07-03 西北工业大学 基于多视频帧信息和核相光滤波算法的车牌检测识别方法
CN111368830B (zh) * 2020-03-03 2024-02-27 西北工业大学 基于多视频帧信息和核相关滤波算法的车牌检测识别方法
CN112053386A (zh) * 2020-08-31 2020-12-08 西安电子科技大学 基于深度卷积特征自适应集成的目标跟踪方法
CN112053386B (zh) * 2020-08-31 2023-04-18 西安电子科技大学 基于深度卷积特征自适应集成的目标跟踪方法
CN113222060A (zh) * 2021-05-31 2021-08-06 四川轻化工大学 一种基于卷积特征和手工特征整合的视觉跟踪方法

Similar Documents

Publication Publication Date Title
CN107240122A (zh) 基于时空连续相关滤波的视频目标跟踪方法
Gudovskiy et al. Cflow-ad: Real-time unsupervised anomaly detection with localization via conditional normalizing flows
Danelljan et al. Atom: Accurate tracking by overlap maximization
CN107609460B (zh) 一种融合时空双重网络流和attention机制的人体行为识别方法
CN109919977B (zh) 一种基于时间特征的视频运动人物跟踪与身份识别方法
CN109784269A (zh) 一种基于时空联合的人体动作检测和定位方法
CN104050488B (zh) 一种基于切换的卡尔曼滤波模型的手势识别方法
CN109859241B (zh) 自适应特征选择和时间一致性鲁棒相关滤波视觉跟踪方法
CN103426179B (zh) 一种基于均值偏移多特征融合的目标跟踪方法及装置
CN105976397B (zh) 一种目标跟踪方法
Yang et al. Visual tracking with long-short term based correlation filter
CN109003291A (zh) 目标跟踪方法及装置
Zhu et al. Tiny object tracking: A large-scale dataset and a baseline
Zeng et al. A novel tensor decomposition-based efficient detector for low-altitude aerial objects with knowledge distillation scheme
CN115984330A (zh) 一种边界感知的目标跟踪模型及目标跟踪方法
Yao RETRACTED ARTICLE: Deep learning analysis of human behaviour recognition based on convolutional neural network analysis
CN112861808B (zh) 动态手势识别方法、装置、计算机设备及可读存储介质
CN107194950A (zh) 一种基于慢特征分析的多人跟踪方法
Yang et al. Bandt: A border-aware network with deformable transformers for visual tracking
Zhang et al. Spatio-temporal matching for siamese visual tracking
Huang et al. SVTN: Siamese visual tracking networks with spatially constrained correlation filter and saliency prior context model
CN106709934A (zh) 频域高斯核函数图像追踪方法
Fang et al. Visual tracking based on a unified tracking-and-detection framework with spatial-temporal consistency filtering
Wang et al. A multi-information fusion correlation filters tracker
Wan et al. Orientation Detector for Small Ship Targets in SAR Images Based on Semantic Flow Feature Alignment and Gaussian Label Matching

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20171010

WD01 Invention patent application deemed withdrawn after publication