CN107236753A - The method that the construction method and conversion isoeugenol of isoeugenol monooxygenase activity aggregation produce vanillic aldehyde - Google Patents
The method that the construction method and conversion isoeugenol of isoeugenol monooxygenase activity aggregation produce vanillic aldehyde Download PDFInfo
- Publication number
- CN107236753A CN107236753A CN201710369478.5A CN201710369478A CN107236753A CN 107236753 A CN107236753 A CN 107236753A CN 201710369478 A CN201710369478 A CN 201710369478A CN 107236753 A CN107236753 A CN 107236753A
- Authority
- CN
- China
- Prior art keywords
- isoeugenol
- iem
- coli
- pet30a
- isoeugenol monooxygenase
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 108030005392 Isoeugenol monooxygenases Proteins 0.000 title claims abstract description 84
- MWOOGOJBHIARFG-UHFFFAOYSA-N vanillin Chemical compound COC1=CC(C=O)=CC=C1O MWOOGOJBHIARFG-UHFFFAOYSA-N 0.000 title claims abstract description 40
- BJIOGJUNALELMI-ONEGZZNKSA-N Isoeugenol Natural products COC1=CC(\C=C\C)=CC=C1O BJIOGJUNALELMI-ONEGZZNKSA-N 0.000 title claims abstract description 33
- BJIOGJUNALELMI-ARJAWSKDSA-N cis-isoeugenol Chemical compound COC1=CC(\C=C/C)=CC=C1O BJIOGJUNALELMI-ARJAWSKDSA-N 0.000 title claims abstract description 33
- BJIOGJUNALELMI-UHFFFAOYSA-N trans-isoeugenol Natural products COC1=CC(C=CC)=CC=C1O BJIOGJUNALELMI-UHFFFAOYSA-N 0.000 title claims abstract description 33
- 238000000034 method Methods 0.000 title claims abstract description 23
- 238000010276 construction Methods 0.000 title claims abstract description 19
- 230000000694 effects Effects 0.000 title claims description 26
- 238000004220 aggregation Methods 0.000 title claims description 24
- 230000002776 aggregation Effects 0.000 title claims description 24
- 238000006243 chemical reaction Methods 0.000 title claims description 20
- 241000588724 Escherichia coli Species 0.000 claims abstract description 65
- 102000004190 Enzymes Human genes 0.000 claims abstract description 37
- 108090000790 Enzymes Proteins 0.000 claims abstract description 37
- 239000007788 liquid Substances 0.000 claims abstract description 26
- 238000004519 manufacturing process Methods 0.000 claims abstract description 14
- 238000005119 centrifugation Methods 0.000 claims abstract description 9
- 108010028522 peptide 18A Proteins 0.000 claims abstract description 6
- 108090000623 proteins and genes Proteins 0.000 claims description 32
- 239000000243 solution Substances 0.000 claims description 30
- 239000002609 medium Substances 0.000 claims description 26
- 239000013612 plasmid Substances 0.000 claims description 25
- 239000007853 buffer solution Substances 0.000 claims description 19
- 230000029087 digestion Effects 0.000 claims description 17
- 239000006285 cell suspension Substances 0.000 claims description 15
- 241001198387 Escherichia coli BL21(DE3) Species 0.000 claims description 13
- 238000000855 fermentation Methods 0.000 claims description 12
- 230000004151 fermentation Effects 0.000 claims description 12
- 230000006698 induction Effects 0.000 claims description 12
- CIJQGPVMMRXSQW-UHFFFAOYSA-M sodium;2-aminoacetic acid;hydroxide Chemical compound O.[Na+].NCC([O-])=O CIJQGPVMMRXSQW-UHFFFAOYSA-M 0.000 claims description 12
- MQRJBSHKWOFOGF-UHFFFAOYSA-L disodium;carbonate;hydrate Chemical compound O.[Na+].[Na+].[O-]C([O-])=O MQRJBSHKWOFOGF-UHFFFAOYSA-L 0.000 claims description 9
- SXRSQZLOMIGNAQ-UHFFFAOYSA-N Glutaraldehyde Chemical compound O=CCCCC=O SXRSQZLOMIGNAQ-UHFFFAOYSA-N 0.000 claims description 7
- 230000001580 bacterial effect Effects 0.000 claims description 7
- NOIIUHRQUVNIDD-UHFFFAOYSA-N 3-[[oxo(pyridin-4-yl)methyl]hydrazo]-N-(phenylmethyl)propanamide Chemical compound C=1C=CC=CC=1CNC(=O)CCNNC(=O)C1=CC=NC=C1 NOIIUHRQUVNIDD-UHFFFAOYSA-N 0.000 claims description 6
- 238000012408 PCR amplification Methods 0.000 claims description 5
- 238000013461 design Methods 0.000 claims description 5
- 239000001963 growth medium Substances 0.000 claims description 4
- 238000000703 high-speed centrifugation Methods 0.000 claims description 4
- 238000011218 seed culture Methods 0.000 claims description 4
- 238000003756 stirring Methods 0.000 claims description 4
- 238000005516 engineering process Methods 0.000 claims description 3
- 150000001299 aldehydes Chemical class 0.000 claims description 2
- 238000004140 cleaning Methods 0.000 claims description 2
- 230000000692 anti-sense effect Effects 0.000 claims 16
- 238000005215 recombination Methods 0.000 claims 10
- 230000006798 recombination Effects 0.000 claims 10
- FRXSZNDVFUDTIR-UHFFFAOYSA-N 6-methoxy-1,2,3,4-tetrahydroquinoline Chemical compound N1CCCC2=CC(OC)=CC=C21 FRXSZNDVFUDTIR-UHFFFAOYSA-N 0.000 claims 7
- 241000672609 Escherichia coli BL21 Species 0.000 claims 2
- 102000008109 Mixed Function Oxygenases Human genes 0.000 claims 2
- 108010074633 Mixed Function Oxygenases Proteins 0.000 claims 2
- 241001597008 Nomeidae Species 0.000 claims 2
- ISWSIDIOOBJBQZ-UHFFFAOYSA-N Phenol Chemical compound OC1=CC=CC=C1 ISWSIDIOOBJBQZ-UHFFFAOYSA-N 0.000 claims 2
- 238000007865 diluting Methods 0.000 claims 2
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 claims 2
- 238000005457 optimization Methods 0.000 claims 2
- 238000001556 precipitation Methods 0.000 claims 2
- 238000004064 recycling Methods 0.000 claims 2
- 239000013049 sediment Substances 0.000 claims 2
- 239000004971 Cross linker Substances 0.000 claims 1
- 239000012530 fluid Substances 0.000 claims 1
- FGQOOHJZONJGDT-UHFFFAOYSA-N vanillin Natural products COC1=CC(O)=CC(C=O)=C1 FGQOOHJZONJGDT-UHFFFAOYSA-N 0.000 abstract description 32
- 235000012141 vanillin Nutrition 0.000 abstract description 32
- 238000001338 self-assembly Methods 0.000 abstract description 6
- 238000009776 industrial production Methods 0.000 abstract description 2
- 239000000047 product Substances 0.000 description 28
- 229940088598 enzyme Drugs 0.000 description 26
- 241000894006 Bacteria Species 0.000 description 18
- 229940023064 escherichia coli Drugs 0.000 description 17
- SBUJHOSQTJFQJX-NOAMYHISSA-N kanamycin Chemical compound O[C@@H]1[C@@H](O)[C@H](O)[C@@H](CN)O[C@@H]1O[C@H]1[C@H](O)[C@@H](O[C@@H]2[C@@H]([C@@H](N)[C@H](O)[C@@H](CO)O2)O)[C@H](N)C[C@@H]1N SBUJHOSQTJFQJX-NOAMYHISSA-N 0.000 description 14
- 229930027917 kanamycin Natural products 0.000 description 12
- 229960000318 kanamycin Drugs 0.000 description 12
- 229930182823 kanamycin A Natural products 0.000 description 12
- 238000002360 preparation method Methods 0.000 description 12
- PEDCQBHIVMGVHV-UHFFFAOYSA-N Glycerine Chemical compound OCC(O)CO PEDCQBHIVMGVHV-UHFFFAOYSA-N 0.000 description 10
- 239000002244 precipitate Substances 0.000 description 10
- 238000011144 upstream manufacturing Methods 0.000 description 10
- 108010093096 Immobilized Enzymes Proteins 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Chemical compound O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 9
- BPHPUYQFMNQIOC-NXRLNHOXSA-N isopropyl beta-D-thiogalactopyranoside Chemical compound CC(C)S[C@@H]1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-NXRLNHOXSA-N 0.000 description 8
- 239000007787 solid Substances 0.000 description 7
- 239000006228 supernatant Substances 0.000 description 7
- FAPWRFPIFSIZLT-UHFFFAOYSA-M Sodium chloride Chemical compound [Na+].[Cl-] FAPWRFPIFSIZLT-UHFFFAOYSA-M 0.000 description 6
- 238000001962 electrophoresis Methods 0.000 description 5
- 238000000746 purification Methods 0.000 description 5
- 239000008223 sterile water Substances 0.000 description 5
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 4
- 229960000723 ampicillin Drugs 0.000 description 4
- AVKUERGKIZMTKX-NJBDSQKTSA-N ampicillin Chemical compound C1([C@@H](N)C(=O)N[C@H]2[C@H]3SC([C@@H](N3C2=O)C(O)=O)(C)C)=CC=CC=C1 AVKUERGKIZMTKX-NJBDSQKTSA-N 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000003153 chemical reaction reagent Substances 0.000 description 4
- 239000000499 gel Substances 0.000 description 4
- 235000011187 glycerol Nutrition 0.000 description 4
- 102000004169 proteins and genes Human genes 0.000 description 4
- 238000011084 recovery Methods 0.000 description 4
- 108091008146 restriction endonucleases Proteins 0.000 description 4
- 229920000936 Agarose Polymers 0.000 description 3
- IAZDPXIOMUYVGZ-UHFFFAOYSA-N Dimethylsulphoxide Chemical compound CS(C)=O IAZDPXIOMUYVGZ-UHFFFAOYSA-N 0.000 description 3
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical group OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 3
- 229940041514 candida albicans extract Drugs 0.000 description 3
- 238000006555 catalytic reaction Methods 0.000 description 3
- 238000001976 enzyme digestion Methods 0.000 description 3
- 238000002474 experimental method Methods 0.000 description 3
- 239000011780 sodium chloride Substances 0.000 description 3
- 238000002415 sodium dodecyl sulfate polyacrylamide gel electrophoresis Methods 0.000 description 3
- 230000009466 transformation Effects 0.000 description 3
- 239000012138 yeast extract Substances 0.000 description 3
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 2
- 235000009499 Vanilla fragrans Nutrition 0.000 description 2
- 244000263375 Vanilla tahitensis Species 0.000 description 2
- 235000012036 Vanilla tahitensis Nutrition 0.000 description 2
- 239000003242 anti bacterial agent Substances 0.000 description 2
- 229940088710 antibiotic agent Drugs 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 238000012258 culturing Methods 0.000 description 2
- 239000000284 extract Substances 0.000 description 2
- 239000012634 fragment Substances 0.000 description 2
- 239000000411 inducer Substances 0.000 description 2
- 238000003760 magnetic stirring Methods 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000035772 mutation Effects 0.000 description 2
- 108020004707 nucleic acids Proteins 0.000 description 2
- 102000039446 nucleic acids Human genes 0.000 description 2
- 150000007523 nucleic acids Chemical class 0.000 description 2
- 238000004321 preservation Methods 0.000 description 2
- 108090000765 processed proteins & peptides Proteins 0.000 description 2
- 102000004196 processed proteins & peptides Human genes 0.000 description 2
- 238000012163 sequencing technique Methods 0.000 description 2
- 239000000725 suspension Substances 0.000 description 2
- 239000012137 tryptone Substances 0.000 description 2
- BPHPUYQFMNQIOC-MBOVONDJSA-N (2r,3r,4s,5r)-2-(hydroxymethyl)-6-propan-2-ylsulfanyloxane-3,4,5-triol Chemical compound CC(C)SC1O[C@H](CO)[C@H](O)[C@H](O)[C@H]1O BPHPUYQFMNQIOC-MBOVONDJSA-N 0.000 description 1
- PMJHHCWVYXUKFD-SNAWJCMRSA-N (E)-1,3-pentadiene Chemical compound C\C=C\C=C PMJHHCWVYXUKFD-SNAWJCMRSA-N 0.000 description 1
- 229920001817 Agar Polymers 0.000 description 1
- 241000725101 Clea Species 0.000 description 1
- 102000012410 DNA Ligases Human genes 0.000 description 1
- 108010061982 DNA Ligases Proteins 0.000 description 1
- 108010014303 DNA-directed DNA polymerase Proteins 0.000 description 1
- 102000016928 DNA-directed DNA polymerase Human genes 0.000 description 1
- 241000196324 Embryophyta Species 0.000 description 1
- 102000004020 Oxygenases Human genes 0.000 description 1
- 108090000417 Oxygenases Proteins 0.000 description 1
- 239000001888 Peptone Substances 0.000 description 1
- 108010080698 Peptones Proteins 0.000 description 1
- 108010002747 Pfu DNA polymerase Proteins 0.000 description 1
- 206010047700 Vomiting Diseases 0.000 description 1
- 229960000583 acetic acid Drugs 0.000 description 1
- 239000000980 acid dye Substances 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 239000011543 agarose gel Substances 0.000 description 1
- 238000000246 agarose gel electrophoresis Methods 0.000 description 1
- 125000000539 amino acid group Chemical group 0.000 description 1
- 150000001413 amino acids Chemical class 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 239000007864 aqueous solution Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 235000013361 beverage Nutrition 0.000 description 1
- 230000002210 biocatalytic effect Effects 0.000 description 1
- 230000003115 biocidal effect Effects 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 230000036983 biotransformation Effects 0.000 description 1
- 238000004113 cell culture Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000002537 cosmetic Substances 0.000 description 1
- 239000003431 cross linking reagent Substances 0.000 description 1
- 239000008367 deionised water Substances 0.000 description 1
- 229910021641 deionized water Inorganic materials 0.000 description 1
- 238000004925 denaturation Methods 0.000 description 1
- 230000036425 denaturation Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229940079919 digestives enzyme preparation Drugs 0.000 description 1
- 208000002173 dizziness Diseases 0.000 description 1
- 239000003814 drug Substances 0.000 description 1
- 238000000605 extraction Methods 0.000 description 1
- 235000013305 food Nutrition 0.000 description 1
- 239000003205 fragrance Substances 0.000 description 1
- 239000012362 glacial acetic acid Substances 0.000 description 1
- 238000004128 high performance liquid chromatography Methods 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 238000002347 injection Methods 0.000 description 1
- 239000007924 injection Substances 0.000 description 1
- 239000012160 loading buffer Substances 0.000 description 1
- 239000003550 marker Substances 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000000813 microbial effect Effects 0.000 description 1
- 238000009629 microbiological culture Methods 0.000 description 1
- 235000019319 peptone Nutrition 0.000 description 1
- 238000003752 polymerase chain reaction Methods 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000012257 pre-denaturation Methods 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 239000012264 purified product Substances 0.000 description 1
- QEVHRUUCFGRFIF-MDEJGZGSSA-N reserpine Chemical compound O([C@H]1[C@@H]([C@H]([C@H]2C[C@@H]3C4=C(C5=CC=C(OC)C=C5N4)CCN3C[C@H]2C1)C(=O)OC)OC)C(=O)C1=CC(OC)=C(OC)C(OC)=C1 QEVHRUUCFGRFIF-MDEJGZGSSA-N 0.000 description 1
- 238000013341 scale-up Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 235000013599 spices Nutrition 0.000 description 1
- 239000011550 stock solution Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 239000000758 substrate Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
- 238000000825 ultraviolet detection Methods 0.000 description 1
- 210000001835 viscera Anatomy 0.000 description 1
- 230000008673 vomiting Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
- C12N15/70—Vectors or expression systems specially adapted for E. coli
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/0004—Oxidoreductases (1.)
- C12N9/0006—Oxidoreductases (1.) acting on CH-OH groups as donors (1.1)
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P7/00—Preparation of oxygen-containing organic compounds
- C12P7/24—Preparation of oxygen-containing organic compounds containing a carbonyl group
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Y—ENZYMES
- C12Y101/00—Oxidoreductases acting on the CH-OH group of donors (1.1)
- C12Y101/01—Oxidoreductases acting on the CH-OH group of donors (1.1) with NAD+ or NADP+ as acceptor (1.1.1)
- C12Y101/01319—Isoeugenol synthase (1.1.1.319)
Landscapes
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Organic Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Wood Science & Technology (AREA)
- Zoology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Biotechnology (AREA)
- Microbiology (AREA)
- Biomedical Technology (AREA)
- Molecular Biology (AREA)
- Plant Pathology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Medicinal Chemistry (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Enzymes And Modification Thereof (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
本发明公开了一种异丁香酚单加氧酶活性聚集体的构建方法及转化异丁香酚生产香草醛的方法,构建方法包括S1、构建用于生产异丁香酚单加氧酶活性聚集体的重组大肠杆菌:将具有两亲性自组装功能的短肽18A与目标基因异丁香酚单加氧酶连接,构建异丁香酚单加氧酶‑18A活性聚集体,并在大肠杆菌中表达,获得重组大肠杆菌;S2、使用构建的所述重组大肠杆菌生产异丁香酚单加氧酶活性聚集体:将构建的所述重组大肠杆菌进行培养优化、诱导,离心收集诱导后的菌体,破碎细胞以获得粗酶液,所得粗酶液即为异丁香酚单加氧酶活性聚集体。本发明实现香草醛的高效生产,便于工业生产应用。The invention discloses a method for constructing an isoeugenol monooxygenase active aggregate and a method for converting isoeugenol to produce vanillin. The construction method includes S1, constructing an active aggregate for producing isoeugenol monooxygenase Recombinant Escherichia coli: Link the short peptide 18A with amphipathic self-assembly function to the target gene isoeugenol monooxygenase to construct the active aggregate of isoeugenol monooxygenase-18A, and express it in Escherichia coli to obtain Recombinant Escherichia coli; S2, using the constructed recombinant Escherichia coli to produce isoeugenol monooxygenase active aggregates: culture, optimize and induce the constructed recombinant Escherichia coli, collect the induced cells by centrifugation, and break the cells The crude enzyme liquid is obtained, and the obtained crude enzyme liquid is the active aggregate of isoeugenol monooxygenase. The invention realizes efficient production of vanillin and is convenient for industrial production and application.
Description
技术领域technical field
本发明涉及异丁香酚单加氧酶的基因工程菌的构建及其生物催化技术领域,尤其涉及一种异丁香酚单加氧酶活性聚集体的构建方法及转化异丁香酚生产香草醛的方法。The present invention relates to the construction of genetically engineered bacteria of isoeugenol monooxygenase and the technical field of biocatalysis, in particular to a method for constructing active aggregates of isoeugenol monooxygenase and a method for converting isoeugenol to produce vanillin .
背景技术Background technique
香草醛是世界上需求量最大的香料之一,广泛应用于食品、饮料、药品、化妆品等行业。目前市面上销售的香草醛分为天然香草醛和化学合成香草醛两种。其中,化学合成香草醛占市场份额的90%以上。研究发现,大剂量食用化学合成香草醛会造成头晕、呕吐、甚至损伤内脏。天然的香草醛提取自植物香荚兰的豆荚,因香荚兰的种植受到气候、产地、地方政策等的影响,每年产量不足20t,远不能满足人们的需求,且价格较为昂贵,每公斤价格是化学合成香草醛的几十倍。通过生物转化法获得的香草醛属于天然香草醛,其香味与天然香草醛无异,具有周期短、生产成本低等优点,是最具有发展前途的替代方法之一。异丁香酚来源广泛、价格低廉,是微生物转化法获得香草醛的理想前体物质。异丁香酚单加氧酶是高效催化异丁香酚获得香草醛的唯一关键酶。Vanillin is one of the most demanded spices in the world and is widely used in food, beverage, medicine, cosmetics and other industries. The vanillin currently on the market is divided into two types: natural vanillin and chemically synthesized vanillin. Among them, chemically synthesized vanillin accounts for more than 90% of the market share. Studies have found that large doses of chemically synthesized vanillin can cause dizziness, vomiting, and even damage internal organs. Natural vanillin is extracted from the pods of the vanilla plant. Because the planting of vanilla is affected by climate, place of origin, and local policies, the annual output is less than 20 tons, which is far from meeting people's needs, and the price is relatively expensive. The price per kilogram It is dozens of times that of chemically synthesized vanillin. The vanillin obtained by the biotransformation method belongs to natural vanillin, and its fragrance is the same as that of natural vanillin. It has the advantages of short production cycle and low production cost, and is one of the most promising alternative methods. Isoeugenol has a wide range of sources and low price, and is an ideal precursor substance for obtaining vanillin by microbial transformation. Isoeugenol monooxygenase is the only key enzyme that efficiently catalyzes isoeugenol to vanillin.
生物催化生产香草醛需要解决的关键难题之一是如何高效制备异丁香酚单加氧酶。酶催化技术的核心是酶的高效生产、分离、制剂化和应用开发,但目前酶制剂的生产过程复杂、成本很高,已成为制约酶催化广泛应用的关键问题。近年来,人们发现通过将某些具有两亲性自组装功能的短肽(Self-assembly peptides,SAPs,一般在8-18个氨基酸残基)连接于可溶性酶的末端可以有效地诱导活性酶聚集体的生成。应用活性酶聚集体结合包埋法或交联酶聚集法(cross-linked enzyme aggregates,CLEA)制备固定化酶具有操作简单、活性高等优势,能够显著的降低蛋白质固定化成本,简化工艺,后续还可成功应用于目的蛋白的初步纯化,是实现活性酶制备工业放大和高通量纯化的基础目前,尚未有构建出异丁香酚单加氧酶活性聚集体的任何公开及报道。One of the key problems to be solved for the biocatalytic production of vanillin is how to efficiently prepare isoeugenol monooxygenase. The core of enzyme catalysis technology is the efficient production, separation, preparation and application development of enzymes. However, the production process of enzyme preparations is complicated and the cost is high, which has become a key problem restricting the wide application of enzyme catalysis. In recent years, it has been found that the aggregation of active enzymes can be effectively induced by linking some short peptides (Self-assembly peptides, SAPs, generally 8-18 amino acid residues) with amphipathic self-assembly function to the end of soluble enzymes. body formation. The application of active enzyme aggregates combined with embedding method or cross-linked enzyme aggregates (cross-linked enzyme aggregates, CLEA) to prepare immobilized enzymes has the advantages of simple operation and high activity, which can significantly reduce the cost of protein immobilization and simplify the process. It can be successfully applied to the preliminary purification of the target protein, which is the basis for the industrial scale-up and high-throughput purification of active enzyme preparation. At present, there are no publications or reports on the construction of active aggregates of isoeugenol monooxygenase.
发明内容Contents of the invention
本发明要解决的技术问题在于,提供一种异丁香酚单加氧酶活性聚集体的构建方法及转化异丁香酚生产香草醛的方法。The technical problem to be solved by the present invention is to provide a method for constructing active aggregates of isoeugenol monooxygenase and a method for converting isoeugenol to produce vanillin.
本发明解决其技术问题所采用的技术方案是:提供一种构建异丁香酚单加氧酶活性聚集体及其固定化的方法,包括以下步骤:The technical solution adopted by the present invention to solve the technical problems is: provide a method for constructing active aggregates of isoeugenol monooxygenase and immobilization thereof, comprising the following steps:
S1、构建用于生产异丁香酚单加氧酶活性聚集体的重组大肠杆菌:S1. Construction of recombinant Escherichia coli for producing isoeugenol monooxygenase active aggregates:
将具有两亲性自组装功能的短肽18A(EWLKAFYEKVLEKLKELF)与目标基因异丁香酚单加氧酶连接,构建异丁香酚单加氧酶-18A活性聚集体,并在大肠杆菌中表达,获得重组大肠杆菌;The short peptide 18A (EWLKAFYEKVLEKLKELF) with amphipathic self-assembly function was connected with the target gene isoeugenol monooxygenase to construct the active aggregate of isoeugenol monooxygenase-18A, which was expressed in Escherichia coli to obtain recombinant Escherichia coli;
S2、使用构建的所述重组大肠杆菌生产异丁香酚单加氧酶活性聚集体:S2, using the constructed recombinant Escherichia coli to produce isoeugenol monooxygenase activity aggregates:
将构建的所述重组大肠杆菌进行培养优化、诱导,离心收集诱导后的菌体,破碎细胞以获得粗酶液,将所得粗酶液离心和/或过滤,得到沉淀即为异丁香酚单加氧酶活性聚集体。The constructed recombinant Escherichia coli is cultured, optimized and induced, and the induced bacteria are collected by centrifugation, and the cells are broken to obtain a crude enzyme solution, and the obtained crude enzyme solution is centrifuged and/or filtered to obtain a precipitate that is isoeugenol mono-added Oxygenase active aggregates.
优选地,步骤S1包括以下步骤:Preferably, step S1 includes the following steps:
S1-1、将菌株E.coli BL21(DE3)IEM和E.coli BL21(DE3)pET30a-LipA-18A进行培养,分别获得大肠杆菌E.coli BL21(DE3)IEM和大肠杆菌E.coli BL21(DE3)pET30a-LipA-18A;S1-1. Culture strains E.coli BL21(DE3)IEM and E.coli BL21(DE3)pET30a-LipA-18A to obtain Escherichia coli E.coli BL21(DE3)IEM and Escherichia coli BL21( DE3) pET30a-LipA-18A;
S1-2、根据异丁香酚单加氧酶的基因序列,设计四对PCR引物,包括上游引物A、下游引物B1、下游引物B2、下游引物B3和下游引物B4;其中上游引物A和下游引物B4为包含酶切位点的特异性引物;S1-2, according to the gene sequence of isoeugenol monooxygenase, design four pairs of PCR primers, including upstream primer A, downstream primer B1, downstream primer B2, downstream primer B3 and downstream primer B4; wherein upstream primer A and downstream primer B4 is a specific primer containing restriction enzyme sites;
S1-3、按照顺序分别使用四对PCR引物,以大肠杆菌E.coli BL21(DE3)IEM为第一次PCR模板进行PCR扩增,得到的PCR产物稀释1000倍后取1μL作为下一次PCR的模板;下一次的PCR均以上一次PCR产物为模板进行扩增,最终得到PCR产物目的基因异丁香酚单加氧酶,命名为IEM-1;S1-3. Use four pairs of PCR primers in sequence, and perform PCR amplification with E. coli BL21(DE3) IEM as the first PCR template. The obtained PCR product is diluted 1000 times and 1 μL is used as the next PCR template. Template; the next PCR is amplified with the previous PCR product as a template, and finally the PCR product target gene isoeugenol monooxygenase is obtained, named IEM-1;
S1-4、对所述目的基因IEM-1进行纯化;S1-4, purifying the target gene IEM-1;
S1-5、从大肠杆菌E.coli BL21(DE3)pET30a-LipA-18A中提取质粒pET30a-LipA-18A;S1-5. Extract plasmid pET30a-LipA-18A from E. coli BL21(DE3)pET30a-LipA-18A;
S1-6、分别对所述目的基因IEM-1与质粒pET30a-LipA-18A进行双酶切;S1-6. Carry out double digestion of the target gene IEM-1 and the plasmid pET30a-LipA-18A respectively;
S1-7、将目的基因IEM-1和质粒pET30a-LipA-18A的双酶切产物进行核酸电泳,回收双酶切产物;S1-7. Perform nucleic acid electrophoresis on the double-digestion product of the target gene IEM-1 and the plasmid pET30a-LipA-18A, and recover the double-digestion product;
S1-8、将目的基因IEM-1和质粒pET30a-LipA-18A双酶切再回收后的产物进行连接,得到连接产物异丁香酚单加氧酶-18A活性聚集体,命名为pET30a-IEM-18A;S1-8. Ligate the target gene IEM-1 and the product after double enzyme digestion and recovery of the plasmid pET30a-LipA-18A to obtain the active aggregate of the ligated product isoeugenol monooxygenase-18A, which is named pET30a-IEM- 18A;
S1-9、用所述连接产物pET30a-IEM-18A转化大肠杆菌E.coli BL21(DE3),得到重组菌E.coli BL21(DE3)pET30a-IEM-18A。S1-9. Transform Escherichia coli E.coli BL21(DE3) with the ligation product pET30a-IEM-18A to obtain the recombinant strain E.coli BL21(DE3)pET30a-IEM-18A.
优选地,步骤S1-2中:Preferably, in step S1-2:
上游引物A的序列如下:5’-tagctacatatgatggcaacgtttaccgcaatgatc-3’The sequence of the upstream primer A is as follows: 5'-tagctacatatgatggcaacgtttaccgcaatgatc-3'
下游引物B1的序列如下:5’-gcggccgccttatctctcgaggttcttagactgccaac-3’The sequence of the downstream primer B1 is as follows: 5'-gcggccgccttatctctcgaggttcttagactgccaac-3'
下游引物B2的序列如下:5’-gtgcaacgctgctcggagacggaagggtagctt-3’The sequence of the downstream primer B2 is as follows: 5'-gtgcaacgctgctcggagacggaagggtagctt-3'
下游引物B3的序列如下:5’-gactgccaacaaccgtgcaacgctgctcggaga-3’The sequence of the downstream primer B3 is as follows: 5'-gactgccaacaaccgtgcaacgctgctcggaga-3'
下游引物B4的序列如下:5’-tagctaaagctttcagttcttagactgccaacaaccgtgc-3’。The sequence of the downstream primer B4 is as follows: 5'-tagctaaagctttcagttcttagactgccaacaaccgtgc-3'.
优选地,步骤S2包括以下步骤:Preferably, step S2 includes the following steps:
S2-1、将构建的所述重组大肠杆菌接种于含卡纳霉素的液态LB培养基中培养以获得种子液;S2-1, inoculating the constructed recombinant Escherichia coli in a liquid LB medium containing kanamycin and culturing to obtain a seed liquid;
S2-2、取获得的种子液接种于含卡纳霉素的固态LB培养基中培养;S2-2, taking the obtained seed solution and inoculating it in a solid LB medium containing kanamycin for cultivation;
S2-3、在所述固态LB培养基中加入诱导剂(IPTG)进行诱导;S2-3, adding an inducer (IPTG) to the solid LB medium for induction;
S2-4、低温高速离心收集诱导后的菌体,用甘氨酸-氢氧化钠缓冲溶液重悬菌体,配成细胞悬液,破碎细胞;S2-4. Collect the induced bacteria by low-temperature high-speed centrifugation, resuspend the bacteria with glycine-sodium hydroxide buffer solution, make a cell suspension, and break the cells;
S2-5、离心,在沉淀物中加入等体积的甘氨酸-氢氧化钠或碳酸钠-氢氧化钠缓冲溶液,轻柔重悬(用移液枪吸打2-3次),获得的粗酶液,离心和/或过滤,得到沉淀即为异丁香酚单加氧酶活性聚集体。S2-5. Centrifuge, add an equal volume of glycine-sodium hydroxide or sodium carbonate-sodium hydroxide buffer solution to the precipitate, and gently resuspend (use a pipette for 2-3 times), and obtain the crude enzyme solution , centrifuged and/or filtered to obtain a precipitate that is the active aggregate of isoeugenol monooxygenase.
优选地,该构建方法还包括以下步骤:Preferably, the construction method also includes the following steps:
S3、异丁香酚单加氧酶活性聚集体的固定化:S3. Immobilization of active aggregates of isoeugenol monooxygenase:
通过交联酶聚集体技术,采用戊二醛为交联剂,将步骤S2获得的异丁香酚单加氧酶活性聚集体进行无载体固定化。The isoeugenol monooxygenase active aggregates obtained in step S2 were immobilized without a carrier by cross-linking enzyme aggregate technology, using glutaraldehyde as a cross-linking agent.
优选地,步骤S3包括以下步骤:Preferably, step S3 includes the following steps:
S3-1、在低温下往步骤S2获得的粗酶液中滴加戊二醛溶液(浓度100mmol/L;交联时间为60–240分钟),搅拌;S3-1. Add glutaraldehyde solution (concentration: 100 mmol/L; cross-linking time: 60-240 minutes) dropwise to the crude enzyme solution obtained in step S2 at low temperature, and stir;
S3-2、在低温下高速离心,获得的沉淀物为固定化的异丁香酚单加氧酶活性聚集体,即固定化酶;S3-2. High-speed centrifugation at low temperature, and the obtained precipitate is an active aggregate of immobilized isoeugenol monooxygenase, that is, an immobilized enzyme;
S3-3、通过碳酸钠-氢氧化钠缓冲溶液对固定化酶重悬,清洗固定化酶表面附着的戊二醛;S3-3, resuspending the immobilized enzyme in a sodium carbonate-sodium hydroxide buffer solution, and cleaning the glutaraldehyde attached to the surface of the immobilized enzyme;
S3-4、低温高速离心,采用碳酸钠-氢氧化钠缓冲溶液重悬固定化酶。S3-4. Centrifuge at low temperature and high speed, and resuspend the immobilized enzyme in sodium carbonate-sodium hydroxide buffer solution.
本发明还提供一种异丁香酚单加氧酶活性聚集体转化异丁香酚生产香草醛的方法,包括以下步骤:The present invention also provides a method for producing vanillin by converting isoeugenol monooxygenase active aggregates into isoeugenol, comprising the following steps:
T1、构建用于生产异丁香酚单加氧酶活性聚集体的重组大肠杆菌:T1. Construction of recombinant Escherichia coli for producing isoeugenol monooxygenase active aggregates:
将具有两亲性自组装功能的短肽18A(EWLKAFYEKVLEKLKELF)与目标基因异丁香酚单加氧酶连接,构建异丁香酚单加氧酶-18A活性聚集体,并在大肠杆菌中表达,获得重组大肠杆菌;The short peptide 18A (EWLKAFYEKVLEKLKELF) with amphipathic self-assembly function was connected with the target gene isoeugenol monooxygenase to construct the active aggregate of isoeugenol monooxygenase-18A, which was expressed in Escherichia coli to obtain recombinant Escherichia coli;
T2、使用构建的所述重组大肠杆菌转化异丁香酚生产香草醛:T2, using the recombinant Escherichia coli constructed to transform isoeugenol into vanillin:
将构建的所述重组大肠杆菌进行培养优化、诱导,离心收集诱导后的菌体,重悬菌体配成细胞悬液,加入异丁香酚进行转化,获得含有香草醛的反应液。The constructed recombinant Escherichia coli is cultured, optimized and induced, the induced bacteria are collected by centrifugation, the bacteria are resuspended to form a cell suspension, and isoeugenol is added for transformation to obtain a reaction solution containing vanillin.
优选地,步骤S1包括以下步骤:Preferably, step S1 includes the following steps:
T1-1、将菌株E.coli BL21(DE3)IEM和E.coli BL21(DE3)pET30a-LipA-18A进行培养,分别获得大肠杆菌E.coli BL21(DE3)IEM和大肠杆菌E.coli BL21(DE3)pET30a-LipA-18A细胞;T1-1, the strains E.coli BL21(DE3)IEM and E.coli BL21(DE3)pET30a-LipA-18A were cultured to obtain Escherichia coli E.coli BL21(DE3)IEM and Escherichia coli E.coli BL21( DE3) pET30a-LipA-18A cells;
T1-2、根据异丁香酚单加氧酶的基因序列,设计四对PCR引物,包括上游引物A、下游引物B1、下游引物B2、下游引物B3和下游引物B4;其中上游引物A和下游引物B4为包含酶切位点的特异性引物;T1-2, according to the gene sequence of isoeugenol monooxygenase, design four pairs of PCR primers, including upstream primer A, downstream primer B1, downstream primer B2, downstream primer B3 and downstream primer B4; wherein upstream primer A and downstream primer B4 is a specific primer containing restriction enzyme sites;
T1-3、按照顺序分别使用四对PCR引物,以大肠杆菌E.coli BL21(DE3)IEM为第一次PCR模板进行PCR扩增,得到的PCR产物稀释1000倍后取1μL作为下一次PCR的模板;下一次的PCR均以上一次PCR产物为模板进行扩增,最终得到PCR产物目的基因异丁香酚单加氧酶,命名为IEM-1;T1-3. Use four pairs of PCR primers in sequence, and use E. coli BL21(DE3) IEM as the first PCR template to carry out PCR amplification. The obtained PCR product is diluted 1000 times, and 1 μL is used as the next PCR template. Template; the next PCR is amplified with the previous PCR product as a template, and finally the PCR product target gene isoeugenol monooxygenase is obtained, named IEM-1;
T1-4、对所述目的基因IEM-1进行纯化;T1-4, purifying the target gene IEM-1;
T1-5、从大肠杆菌E.coli BL21(DE3)pET30a-LipA-18A中提取质粒pET30a-LipA-18A;T1-5. Extract plasmid pET30a-LipA-18A from E. coli BL21(DE3)pET30a-LipA-18A;
T1-6、分别对所述目的基因IEM-1与质粒pET30a-LipA-18A进行双酶切;T1-6. Carry out double digestion of the target gene IEM-1 and the plasmid pET30a-LipA-18A respectively;
T1-7、将目的基因IEM-1和质粒pET30a-LipA-18A的双酶切产物进行核酸电泳,回收双酶切产物;T1-7. Perform nucleic acid electrophoresis on the double-digestion product of the target gene IEM-1 and the plasmid pET30a-LipA-18A, and recover the double-digestion product;
T1-8、将目的基因IEM-1和质粒pET30a-LipA-18A双酶切再回收后的产物进行连接,得到连接产物异丁香酚单加氧酶-18A活性聚集体,命名为pET30a-IEM-18A;T1-8. Ligate the target gene IEM-1 and the product after double digestion and recovery of the plasmid pET30a-LipA-18A, and obtain the active aggregate of the ligated product isoeugenol monooxygenase-18A, which is named pET30a-IEM- 18A;
T1-9、用所述连接产物pET30a-IEM-18A转入大肠杆菌E.coli BL21(DE3),得到重组菌E.coli BL21(DE3)pET30a-IEM-18A。T1-9. The ligation product pET30a-IEM-18A was used to transform Escherichia coli E.coli BL21(DE3) to obtain the recombinant strain E.coli BL21(DE3)pET30a-IEM-18A.
优选地,步骤T1-2中:Preferably, in step T1-2:
上游引物A的序列如下:5’-tagctacatatgatggcaacgtttaccgcaatgatc-3’The sequence of the upstream primer A is as follows: 5'-tagctacatatgatggcaacgtttaccgcaatgatc-3'
下游引物B1的序列如下:5’-gcggccgccttatctctcgaggttcttagactgccaac-3’The sequence of the downstream primer B1 is as follows: 5'-gcggccgccttatctctcgaggttcttagactgccaac-3'
下游引物B2的序列如下:5’-gtgcaacgctgctcggagacggaagggtagctt-3’The sequence of the downstream primer B2 is as follows: 5'-gtgcaacgctgctcggagacggaagggtagctt-3'
下游引物B3的序列如下:5’-gactgccaacaaccgtgcaacgctgctcggaga-3’The sequence of the downstream primer B3 is as follows: 5'-gactgccaacaaccgtgcaacgctgctcggaga-3'
下游引物B4的序列如下:5’-tagctaaagctttcagttcttagactgccaacaaccgtgc-3’。The sequence of the downstream primer B4 is as follows: 5'-tagctaaagctttcagttcttagactgccaacaaccgtgc-3'.
优选地,步骤T2包括以下步骤:Preferably, step T2 includes the following steps:
T2-1、将构建的所述重组大肠杆菌接种于含卡纳霉素的种子培养基中培养以获得种子液;T2-1, inoculating the constructed recombinant Escherichia coli in a seed medium containing kanamycin and culturing to obtain a seed liquid;
T2-2、获得的种子液接种于含卡纳霉素的发酵培养基中培养;T2-2, the obtained seed liquid is inoculated in the fermentation medium containing kanamycin and cultivated;
T2-3、在所述发酵培养基中加入诱导剂(IPTG)进行诱导;T2-3, adding an inducer (IPTG) to the fermentation medium for induction;
T2-4、将诱导后的发酵液低温离心,收集菌体,用甘氨酸-氢氧化钠缓冲溶液重悬菌体,配成细胞悬液;T2-4. Centrifuge the induced fermentation broth at low temperature, collect the bacteria, resuspend the bacteria with glycine-sodium hydroxide buffer solution, and make a cell suspension;
T2-5、取细胞悬液,加入异丁香酚进行转化,获得含有香草醛的反应液。T2-5. Take the cell suspension, add isoeugenol for transformation, and obtain a reaction solution containing vanillin.
本发明的有益效果:将异丁香酚单加氧酶基因与具有自组装功能的两亲性短肽18A构建出异丁香酚单加氧酶活性聚集体,离心、破碎得到聚集体,无需繁琐的纯化步骤。通过无载体固定化的异丁香酚单加氧酶可直接用于转化异丁香酚生产香草醛,减少酶纯化步骤,节约生产成本,实现香草醛的高效生产,便于工业生产应用。Beneficial effects of the present invention: the isoeugenol monooxygenase gene and the amphipathic short peptide 18A with self-assembly function are used to construct isoeugenol monooxygenase active aggregates, and the aggregates are obtained by centrifugation and crushing without cumbersome Purification step. The carrier-free immobilized isoeugenol monooxygenase can be directly used to convert isoeugenol to produce vanillin, reducing enzyme purification steps, saving production costs, realizing efficient production of vanillin, and facilitating industrial production and application.
具体实施方式detailed description
以下的实施例便于更好地理解本发明,但并不限定本发明。下述实施例中的实验方法,如无特殊说明,均为常规方法。下述实施例中所用的试验材料,如无特殊说明,均为是从常规生化试剂商店购买得到的。以下实施例中的定量试验,均设置三次重复实验,结果取平均值。The following examples facilitate a better understanding of the present invention, but do not limit the present invention. The experimental methods in the following examples are conventional methods unless otherwise specified. The test materials used in the following examples, unless otherwise specified, were purchased from conventional biochemical reagent stores. Quantitative experiments in the following examples were all set up to repeat the experiments three times, and the results were averaged.
本发明的异丁香酚单加氧酶活性聚集体的构建方法,步骤包括如下:The construction method of the isoeugenol monooxygenase activity aggregate of the present invention, the steps include as follows:
一、重组菌的构建:构建用于生产异丁香酚单加氧酶活性聚集体的重组大肠杆菌1. Construction of recombinant bacteria: construction of recombinant Escherichia coli for the production of isoeugenol monooxygenase active aggregates
其中,菌株:由深圳大学保藏的E.coli BL21(DE3)IEM(保藏编号为CGMCCNo.8918)和E.coli BL21(DE3)pET30a-IEM-18A;大肠杆菌E.coli BL21(DE3)购于生工生物工程(上海)有限公司。E.coli BL21(DE3)pET30a-IEM-18A属于大肠埃希氏菌(Escherichiacoli),于2016年12月26日保藏于中国微生物菌种保藏管理委员会普通微生物中心(简称CGMCC,地址为:北京市朝阳区北辰西路1号院3号),保藏编号为CGMCC No.13493。Among them, bacterial strains: E.coli BL21(DE3)IEM preserved by Shenzhen University (preservation number is CGMCCNo.8918) and E.coli BL21(DE3)pET30a-IEM-18A; Escherichia coli E.coli BL21(DE3) was purchased from Sangon Bioengineering (Shanghai) Co., Ltd. E.coli BL21(DE3)pET30a-IEM-18A belongs to Escherichia coli (Escherichiacoli), and was preserved in the General Microorganism Center of China Committee for Microbial Culture Collection (CGMCC for short) on December 26, 2016, the address is: Beijing No. 3, No. 1 Yard, Beichen West Road, Chaoyang District), the preservation number is CGMCC No.13493.
常用溶液及培养基的制备:Preparation of commonly used solutions and media:
(1)氨苄青霉素(100mg/mL):称取5g氨苄青霉素,用无菌水溶解,定容于50mL容量瓶,用一次性过滤器过滤,分装于1.5mL EP管,-40℃保存。(1) Ampicillin (100mg/mL): Weigh 5g of ampicillin, dissolve it in sterile water, dilute to volume in a 50mL volumetric flask, filter through a disposable filter, aliquot into 1.5mL EP tubes, and store at -40°C.
(2)卡纳霉素(50mg/mL):称取2.5g卡纳霉素,用无菌水溶解,定容于50mL容量瓶,用一次性过滤器过滤,分装于1.5mL EP管,-40℃保存。(2) Kanamycin (50mg/mL): Weigh 2.5g of Kanamycin, dissolve it in sterile water, dilute it in a 50mL volumetric flask, filter it with a disposable filter, and dispense it into a 1.5mL EP tube. Store at -40°C.
(3)IPTG(异丙基硫代半乳糖苷,0.8mol/L):称取0.2g IPTG,用无菌水溶解,定容于10mL容量瓶,,用一次性过滤器过滤,分装于1.5mL EP管,-40℃保存。(3) IPTG (isopropylthiogalactopyranoside, 0.8mol/L): Weigh 0.2g IPTG, dissolve it in sterile water, dilute it in a 10mL volumetric flask, filter it with a disposable filter, and pack it in 1.5mL EP tube, store at -40°C.
(4)核酸电泳缓冲溶液(1×TAE):将50×TAE储存液用超纯水稀释50倍,常温下保存待用。(4) Nucleic acid electrophoresis buffer solution (1×TAE): Dilute the 50×TAE stock solution 50 times with ultrapure water, and store it at room temperature until use.
(5)1%琼脂糖凝胶配制:称取0.25g琼脂糖溶于25mL 1×TAE,微波炉加热1min至胶溶解均匀,室温下冷却至不烫手,加入3μL核酸染料,混匀,倒入制胶板,室温下冷却备用(所用琼脂糖购自于北京全式金生物技术有限公司)。(5) Preparation of 1% agarose gel: Weigh 0.25g of agarose and dissolve it in 25mL 1×TAE, heat in a microwave oven for 1min until the gel dissolves evenly, cool at room temperature until it is not hot, add 3μL of nucleic acid dye, mix well, pour into the preparation The rubber plate was cooled at room temperature for later use (the agarose used was purchased from Beijing Quanshijin Biotechnology Co., Ltd.).
(6)0.1mol/L CaCl2:制备0.1mol/L CaCl2溶液,用一次性过滤器过滤,分装于1.5mL EP管,-20℃保存。(6) 0.1 mol/L CaCl 2 : Prepare 0.1 mol/L CaCl 2 solution, filter it with a disposable filter, aliquot into 1.5 mL EP tubes, and store at -20°C.
(7)蛋白质电泳内液的配制(1*SDS-PAGE电泳缓冲液):将5*SDS-PAGE电泳缓冲液用去离子水稀释成1*SDS-PAGE电泳缓冲液即可使用。(7) Preparation of inner solution for protein electrophoresis (1*SDS-PAGE electrophoresis buffer): Dilute 5*SDS-PAGE electrophoresis buffer with deionized water into 1*SDS-PAGE electrophoresis buffer for use.
(8)50%甘油:甘油与无菌水1:1混合,121℃高压灭菌20min,室温保存备用。(8) 50% glycerin: Glycerin was mixed with sterile water at a ratio of 1:1, autoclaved at 121°C for 20 minutes, and stored at room temperature for later use.
(9)液态LB培养基:蛋白胨10g/L,酵母提取物5g/L,氯化钠10g/L,用5mol/L NaOH调节该培养基至pH 7.0;121℃高压灭菌20min。(9) Liquid LB medium: peptone 10g/L, yeast extract 5g/L, sodium chloride 10g/L, the medium was adjusted to pH 7.0 with 5mol/L NaOH; autoclaved at 121°C for 20min.
(10)固态LB培养基配制方法:(10) Preparation method of solid LB medium:
①配制:100mL LB培养基中加入2g琼脂粉,加热溶解后121℃高压灭菌20min。① Preparation: Add 2g agar powder to 100mL LB medium, heat to dissolve, and then autoclave at 121°C for 20min.
②加入抗生素:固体培养基高压灭菌后,将培养基置于无菌操作台内,待培养基冷却至不烫手时加入抗生素,混匀倒平板,每个平板倒入15-20mL固体培养基。② Add antibiotics: After the solid medium is autoclaved, put the medium in a sterile operating table, add antibiotics when the medium is cooled until it is not hot to the hands, mix well and pour into plates, pour 15-20mL of solid medium into each plate .
③保存:用封口膜将平板密封,倒置,储存于4℃冰箱。③Preservation: Seal the plate with parafilm, invert it, and store it in a refrigerator at 4°C.
④抗生素浓度:培养基中的氨苄青霉素终浓度为100μg/mL,卡纳霉素终浓度为50μg/mL。④ Antibiotic concentration: the final concentration of ampicillin in the medium is 100 μg/mL, and the final concentration of kanamycin is 50 μg/mL.
1、菌株E.coli BL21(DE3)IEM和E.coli BL21(DE3)pET30a-LipA-18A的培养:1. The cultivation of strains E.coli BL21(DE3)IEM and E.coli BL21(DE3)pET30a-LipA-18A:
(1)用枪头沾取少量E.coli BL21(DE3)IEM接种于5mL液态LB培养基(含100μg/mL氨苄青霉素),于37℃、200rpm下过夜培养。(1) Dip a small amount of E.coli BL21(DE3) IEM into 5 mL liquid LB medium (containing 100 μg/mL ampicillin) with a pipette tip, and culture overnight at 37°C and 200 rpm.
(2)用枪头沾取少量E.coli BL21(DE3)pET30a-LipA-18A接种于5mL固体LB培养基(含50μg/mL卡纳霉素),于37℃、200rpm下过夜培养。(2) Dip a small amount of E.coli BL21(DE3)pET30a-LipA-18A with a pipette tip and inoculate it in 5 mL solid LB medium (containing 50 μg/mL kanamycin), and culture overnight at 37°C and 200 rpm.
2、根据设计,需要通过PCR在异丁香酚单加氧酶(IEM)基因两端引入NdeⅠ和HindⅢ两个酶切位点,由于IEM基因内含有一个HindⅢ酶切位点,因此,在不改变其编码的氨基酸的条件下,突变IEM内HindⅢ的某个碱基,即定点突变。根据IEM基因序列,设计了四对PCR引物,包括上游引物A、下游引物B1、下游引物B2、下游引物B3和下游引物B4;上游引物A和下游引物B4为包含酶切位点的特异性引物。2. According to the design, it is necessary to introduce two restriction sites, NdeⅠ and HindⅢ, at both ends of the isoeugenol monooxygenase (IEM) gene by PCR. Since the IEM gene contains a HindⅢ restriction site, the Under the condition of the encoded amino acid, a certain base of HindⅢ in IEM is mutated, that is, site-directed mutation. According to the IEM gene sequence, four pairs of PCR primers were designed, including upstream primer A, downstream primer B1, downstream primer B2, downstream primer B3 and downstream primer B4; upstream primer A and downstream primer B4 are specific primers containing restriction enzyme sites .
其中,上游引物A的序列如下:5’-tagctacatatgatggcaacgtttaccgcaatgatc-3’;Wherein, the sequence of the upstream primer A is as follows: 5'-tagctacatatgatggcaacgtttaccgcaatgatc-3';
下游引物B1的序列如下:5’-gcggccgccttatctctcgaggttcttagactgccaac-3’;The sequence of the downstream primer B1 is as follows: 5'-gcggccgccttatctctcgaggttcttagactgccaac-3';
下游引物B2的序列如下:5’-gtgcaacgctgctcggagacggaagggtagctt-3’;The sequence of the downstream primer B2 is as follows: 5'-gtgcaacgctgctcggagacggaagggtagctt-3';
下游引物B3的序列如下:5’-gactgccaacaaccgtgcaacgctgctcggaga-3’;The sequence of the downstream primer B3 is as follows: 5'-gactgccaacaaccgtgcaacgctgctcggaga-3';
下游引物B4的序列如下:5’-tagctaaagctttcagttcttagactgccaacaaccgtgc-3’。The sequence of the downstream primer B4 is as follows: 5'-tagctaaagctttcagttcttagactgccaacaaccgtgc-3'.
3、按照顺序分别使用上述四对引物,以培养获得的大肠杆菌E.coliBL21(DE3)IEM为第一次PCR模板进行PCR扩增,得到的PCR产物稀释1000倍后取1μL作为下一次PCR的模板,以后下一次的PCR均以上一次PCR产物为模板进行扩增。最终得到的扩增序列(PCR产物目的基因异丁香酚单加氧酶)命名为IEM-1。3. Use the above four pairs of primers in sequence, and use the cultured Escherichia coli E.coliBL21(DE3) IEM as the first PCR template to carry out PCR amplification. After the obtained PCR product is diluted 1000 times, take 1 μL as the template for the next PCR. template, and the next PCR will be amplified with the previous PCR product as the template. The final amplified sequence (PCR product target gene isoeugenol monooxygenase) was named IEM-1.
其中,PCR反应体系为:体系总量为25μL,其中上下游引物(浓度均为100μmol/L)各加入0.75μL,模板1μL,2×Pfu聚合酶12.5μL,最后加灭菌水10μL补齐。加样原则为:先加入量少的试剂,再加入量大的试剂,目的在于冲匀体系中的分子试剂;模板和聚合酶最后加入,整个过程保持在冰上操作,减少温度过高对酶的损害(所用聚合酶PrimeSTAR Max DNAPolymerase购自于Takara公司)。Among them, the PCR reaction system is: the total amount of the system is 25 μL, in which 0.75 μL of upstream and downstream primers (both at a concentration of 100 μmol/L), 1 μL of template, 12.5 μL of 2×Pfu polymerase, and finally 10 μL of sterilized water are added to make up. The principle of sample addition is: first add a small amount of reagent, and then add a large amount of reagent, the purpose is to mix the molecular reagents in the system; the template and polymerase are added last, and the whole process is kept on ice to reduce the impact of excessive temperature on the enzyme. damage (the polymerase PrimeSTAR Max DNAPolymerase used was purchased from Takara Company).
PCR反应条件为:98℃预变性2min,98℃变性10s,60℃退火15s,72℃延伸10s,72℃继续延伸10min,最后降为4℃,即可取出。四次PCR均为此反应条件。The PCR reaction conditions are: pre-denaturation at 98°C for 2 minutes, denaturation at 98°C for 10 seconds, annealing at 60°C for 15 seconds, extension at 72°C for 10 seconds, extension at 72°C for 10 minutes, and finally lowering to 4°C before taking out. This reaction condition was used for four times of PCR.
四次PCR结束后将最后一次的PCR产物用琼脂糖凝胶电泳对其进行分析(所用核酸分子量supermarker、Loading Buffer购自于北京康为世纪科技有限公司),并用凝胶成像系统观察胶图,结果显示通过PCR得到的定点突变IEM分子量大小在1.5kb左右,第四步得到的PCR产物经过琼脂糖电泳验证后为一条亮的单带。After the completion of the four PCRs, the last PCR product was analyzed by agarose gel electrophoresis (the nucleic acid molecular weight marker and Loading Buffer used were purchased from Beijing Kangwei Century Technology Co., Ltd.), and the gel image was observed with a gel imaging system. The results showed that the molecular weight of the site-directed mutation IEM obtained by PCR was about 1.5kb, and the PCR product obtained in the fourth step was verified by agarose electrophoresis as a bright single band.
4、用DNA片段纯化试剂盒(购自于Takara公司)对PCR产物目的基因IEM-1进行纯化。4. Using a DNA fragment purification kit (purchased from Takara Company) to purify the target gene IEM-1 of the PCR product.
用小量质粒提取试剂盒(购自于上海生物工程科技有限公司)从大肠杆菌E.coliBL21(DE3)pET30a-LipA-18A中提取质粒pET30a-LipA-18A。The plasmid pET30a-LipA-18A was extracted from Escherichia coli E.coliBL21(DE3)pET30a-LipA-18A with a mini-plasmid extraction kit (purchased from Shanghai Bioengineering Technology Co., Ltd.).
5、纯化后的产物(目的基因IEM-1)与提取出来的载体质粒pET30a-LipA-18A分别用NdeⅠ和HindⅢ两种限制性内切酶(购自于北京NEB有限公司)进行双酶切。5. The purified product (target gene IEM-1) and the extracted vector plasmid pET30a-LipA-18A were double-digested with NdeI and HindIII restriction enzymes (purchased from Beijing NEB Co., Ltd.), respectively.
双酶切总体系为50μL:NdeⅠ1μL,HindⅢ1μL,DNA或质粒1μL,10x NEBuffer 5μL,灭菌水补齐至50μL。酶切条件:双酶切过夜,酶切温度37℃。The total double digestion system is 50 μL: 1 μL of NdeⅠ, 1 μL of HindⅢ, 1 μL of DNA or plasmid, 5 μL of 10x NEBuffer, and make up to 50 μL with sterile water. Digestion conditions: double digestion overnight, digestion temperature 37 ° C.
6、将目的基因IEM-1和质粒pET30a-LipA-18A的双酶切产物进行核酸电泳,用DNA胶回收试剂盒(购自于Takara公司)回收双酶切产物。6. Perform nucleic acid electrophoresis on the double-digestion product of the target gene IEM-1 and the plasmid pET30a-LipA-18A, and recover the double-digestion product with a DNA gel recovery kit (purchased from Takara Company).
7、将目的基因IEM-1和质粒pET30a-LipA-18A双酶切再回收后的产物进行连接,将得到的连接产物异丁香酚单加氧酶-18A活性聚集体,命名为pET30a-IEM-18A。7. Ligate the target gene IEM-1 and the product after double enzyme digestion and recovery of the plasmid pET30a-LipA-18A, and name the resulting ligation product isoeugenol monooxygenase-18A active aggregate pET30a-IEM- 18A.
连接总体系为20μL:目的基因IEM-11μL,质粒pET30a-LipA-18A 8μL,10x Buffer2μL,T4DNA连接酶(购自于北京NEB有限公司)1μL,灭菌水8μL。目的基因IEM-1与质粒pET30a-LipA-18A的摩尔比约为3:1,载体和目的片段的总质量在0.01μg左右。连接条件为16℃,4h,4℃过夜。The total ligation system is 20 μL: target gene IEM-11 μL, plasmid pET30a-LipA-18A 8 μL, 10x Buffer 2 μL, T4 DNA ligase (purchased from Beijing NEB Co., Ltd.) 1 μL, sterilized water 8 μL. The molar ratio of the target gene IEM-1 to the plasmid pET30a-LipA-18A is about 3:1, and the total mass of the vector and the target fragment is about 0.01 μg. The ligation conditions were 16°C, 4h, 4°C overnight.
8、用连接产物pET30a-IEM-18A转化E.coli BL21(DE3)感受态细胞,得到重组菌E.coli BL21(DE3)pET30a-IEM-18A。8. Transform E.coli BL21(DE3) competent cells with the ligation product pET30a-IEM-18A to obtain the recombinant strain E.coli BL21(DE3)pET30a-IEM-18A.
9、通过菌落PCR和重组质粒双酶切对重组菌进行验证,并选取阳性克隆子进行基因测序。9. Verify the recombinant bacteria by colony PCR and double enzyme digestion of the recombinant plasmid, and select positive clones for gene sequencing.
E.coli BL21(DE3)pET30a-IEM-18A测序结果:E.coli BL21(DE3)pET30a-IEM-18A sequencing results:
二、使用构建的重组菌生产异丁香酚单加氧酶活性聚集体2. Production of active aggregates of isoeugenol monooxygenase using constructed recombinant bacteria
常用溶液及培养基的制备,参考上述重组菌的构建中的溶液及培养基的制备。For the preparation of commonly used solutions and culture media, refer to the preparation of solutions and culture media in the construction of recombinant bacteria mentioned above.
1、取50μL E.coli DL21(DE3)pET30a-IEM-18A接种于50mL液态LB培养基(含100μg/mL卡纳霉素),于37℃、200rpm下过夜培养,即得种子液。1. Inoculate 50 μL of E.coli DL21(DE3)pET30a-IEM-18A in 50 mL of liquid LB medium (containing 100 μg/mL kanamycin), and culture overnight at 37°C and 200 rpm to obtain the seed solution.
2、取1mL步骤1的种子液接种于100mL含100μg/mL卡纳霉素的固体LB培养基,于37℃、200rpm下培养至OD600为0.8,加入0.8mmol/IPTG,25℃,200rpm,诱导16h。2. Inoculate 1mL of the seed liquid from step 1 into 100mL solid LB medium containing 100μg/mL kanamycin, culture at 37°C and 200rpm until the OD600 is 0.8, add 0.8mmol/IPTG, 25°C, 200rpm, induce 16h.
3、10000rpm低温(4℃以下)离心收集诱导后菌体,用0.05mol/L pH 10.5甘氨酸-氢氧化钠缓冲溶液重悬菌体,配成60g/L的细胞悬液(菌悬液),用高压均质机破碎细胞,设置压力800bar,40mL菌悬液破碎三分钟。3. Centrifuge at 10,000rpm at low temperature (below 4°C) to collect the induced bacteria, resuspend the bacteria with 0.05mol/L pH 10.5 glycine-sodium hydroxide buffer solution, and make a 60g/L cell suspension (bacteria suspension), Break the cells with a high-pressure homogenizer, set the pressure at 800 bar, and break 40mL of the bacterial suspension for three minutes.
4、7000rpm离心5min,上清另存,在沉淀物中加入等体积的0.05mol/L pH 10.5甘氨酸-氢氧化钠缓冲溶液,轻柔重悬(用移液枪吸打2-3次),将所得粗酶液离心和/或过滤,得到沉淀即为异丁香酚单加氧酶活性聚集体。4. Centrifuge at 7000rpm for 5min, save the supernatant separately, add an equal volume of 0.05mol/L pH 10.5 glycine-sodium hydroxide buffer solution to the precipitate, gently resuspend (pipe 2-3 times with a pipette gun), and dissolve the obtained The crude enzyme solution is centrifuged and/or filtered to obtain a precipitate which is the active aggregate of isoeugenol monooxygenase.
三、异丁香酚单加氧酶活性聚集体的固定化3. Immobilization of active aggregates of isoeugenol monooxygenase
其中,培养基的制备:Wherein, the preparation of culture medium:
种子培养基(g/L):胰蛋白胨10、酵母提取物5、NaCl 10;pH 7.0,装液量200mL/500mL锥形瓶。Seed medium (g/L): tryptone 10, yeast extract 5, NaCl 10; pH 7.0, liquid volume 200mL/500mL Erlenmeyer flask.
发酵培养基(g/L):胰蛋白胨10、酵母提取物5、NaCl 10;pH 7.0,装液量400mL/1000mL锥形瓶。Fermentation medium (g/L): tryptone 10, yeast extract 5, NaCl 10; pH 7.0, liquid volume 400mL/1000mL Erlenmeyer flask.
1、细胞培养1. Cell culture
种子培养:无菌条件下,在种子培养基(含50μg/mL卡纳霉素)中加入200μL E.coliBL21(DE3)pET30a-IEM-18A,于37℃、200rpm下振摇过夜培养,获得种子液。Seed culture: under sterile conditions, add 200 μL E.coliBL21(DE3)pET30a-IEM-18A to the seed medium (containing 50 μg/mL kanamycin), shake overnight at 37°C and 200 rpm to obtain seeds liquid.
发酵培养:无菌条件下,取80mL种子液接种于发酵培养基(含50μg/mL卡纳霉素)中,于37℃、200rpm下振摇培养至OD600为0.8时,加入0.8mmol/L IPTG,30℃诱导8h。Fermentation culture: under sterile conditions, inoculate 80mL of seed liquid into fermentation medium (containing 50μg/mL kanamycin), shake and cultivate at 37°C and 200rpm until OD600 is 0.8, add 0.8mmol/L IPTG , 30 ℃ induction 8h.
2、制备固定化酶(固定化的异丁香酚单加氧酶活性聚集体)2. Preparation of immobilized enzyme (immobilized active aggregate of isoeugenol monooxygenase)
诱导结束后,将菌液于低温(4℃以下)下10000rpm离心15min,收集湿菌体,加入0.05mol/L pH 10.5的甘氨酸-氢氧化钠缓冲溶液配成65g/L的细胞悬液,用均质机高压破碎细胞悬液,设置均质机压强为800bar,40mL细胞悬液循环3min。After induction, centrifuge the bacterial solution at 10,000 rpm for 15 min at low temperature (below 4°C), collect the wet bacterial cells, add 0.05 mol/L glycine-sodium hydroxide buffer solution with pH 10.5 to prepare a 65 g/L cell suspension, and use The homogenizer was used to crush the cell suspension under high pressure, and the pressure of the homogenizer was set to 800 bar, and 40 mL of the cell suspension was circulated for 3 minutes.
破碎结束后收集菌液。4℃下,10000rpm高速离心15min,弃去上清液,在沉淀中加入10mL 0.05mol/L pH 10.5碳酸钠-氢氧化钠缓冲溶液,轻柔重悬沉淀,所得粗酶液即为异丁香酚单加氧酶活性聚集体。After crushing, the bacterial liquid was collected. Centrifuge at 10,000 rpm for 15 minutes at 4°C, discard the supernatant, add 10 mL of 0.05 mol/L pH 10.5 sodium carbonate-sodium hydroxide buffer solution to the precipitate, gently resuspend the precipitate, and the obtained crude enzyme solution is isoeugenol mono Oxygenase activity aggregates.
将重悬完全的粗酶液于低温下(4℃以下)缓慢滴加121μL 50%戊二醛溶液,滴加同时保持磁力搅拌不间断,搅拌期间保持低温,以防高温引起酶失活。搅拌2h后取出溶液;4℃下,10000rpm高速离心15min,弃去上清,取20mL 0.05mol/L pH 10.5碳酸钠-氢氧化钠缓冲溶液重悬两次,清洗固定化酶表面附着的戊二醛等;低温(4℃以下)高速(10000rpm)离心弃去上清,制备出异丁香酚单加氧酶固定化酶。Slowly add 121 μL of 50% glutaraldehyde solution dropwise to the completely resuspended crude enzyme solution at low temperature (below 4°C), and keep magnetic stirring uninterrupted while adding dropwise, and keep low temperature during stirring to prevent enzyme inactivation caused by high temperature. After stirring for 2 hours, take out the solution; centrifuge at 10,000 rpm for 15 minutes at 4°C, discard the supernatant, and resuspend twice in 20 mL of 0.05 mol/L pH 10.5 sodium carbonate-sodium hydroxide buffer solution to wash the pentadiene attached to the surface of the immobilized enzyme. Aldehydes, etc.; centrifuge at low temperature (below 4° C.) and high speed (10000 rpm) to discard the supernatant, and prepare the immobilized enzyme of isoeugenol monooxygenase.
四、使用异丁香酚单加氧酶活性聚集体转化异丁香酚生产香草醛4. Conversion of isoeugenol to vanillin using active aggregates of isoeugenol monooxygenase
实施例1Example 1
从-80℃保藏的甘油管E.coli BL21(DE3)pET30a-IEM-18A取出50μL,按照上述种子培养的培养方法培养过夜,取1mL种子液接种于含50μg/mL卡纳霉素的发酵培养基,当OD600为0.8时,加入0.8mmol/L IPTG,诱导温度为30℃,200rpm,诱导16h;将诱导后的发酵液10000rpm低温(4℃以下)离心15min,弃去上清,收集菌体,用0.05mol/L pH 10.5的甘氨酸-氢氧化钠缓冲溶液重悬菌体,配成80g/L的细胞悬液。Take out 50 μL from the glycerol tube E.coli BL21(DE3)pET30a-IEM-18A stored at -80°C, cultivate overnight according to the above-mentioned seed culture method, and inoculate 1 mL of seed liquid into the fermentation culture containing 50 μg/mL kanamycin Base, when OD600 is 0.8, add 0.8mmol/L IPTG, induction temperature is 30°C, 200rpm, induce for 16h; centrifuge the induced fermentation broth at 10,000rpm at low temperature (below 4°C) for 15min, discard the supernatant, and collect the cells , with 0.05mol/L glycine-sodium hydroxide buffer solution of pH 10.5 to resuspend the bacteria to prepare 80g/L cell suspension.
取10mL菌体(细胞悬液),加入260mmol/L异丁香酚,于25℃、200rpm下转化48h,测定最终反应液中香草醛的浓度为2.24g/L。Take 10 mL of bacteria (cell suspension), add 260 mmol/L isoeugenol, transform at 25°C and 200 rpm for 48 hours, and measure the concentration of vanillin in the final reaction solution to be 2.24 g/L.
实施例2Example 2
从-80℃保藏的甘油管E.coli BL21(DE3)pET30a-IEM-18A取出50μL,按照上述种子培养的培养方法培养14h,取1mL种子液接种于含50μg/mL卡纳霉素的发酵培养基,当OD600为0.8时,加入0.8mmol/L IPTG,30℃诱导,200rpm,诱导时间为8h,将诱导后的发酵液10 000rpm低温(4℃以下)离心15min,弃去上清,收集菌体;用0.05mol/L pH 10.5的甘氨酸-氢氧化钠缓冲溶液重悬菌体,高压破碎细胞悬液,收集沉淀,加入10mL 0.05mol/L pH10.5碳酸钠-氢氧化钠缓冲溶液,轻柔重悬,于低温下(4℃以下)缓慢滴加121μL 50%戊二醛溶液,保持磁力搅拌2h后离心取沉淀,制备出异丁香酚单加氧酶固定化酶。Take out 50 μL from the glycerol tube E.coli BL21(DE3)pET30a-IEM-18A stored at -80°C, culture it for 14 hours according to the above-mentioned seed culture method, and inoculate 1 mL seed liquid into the fermentation culture containing 50 μg/mL kanamycin Base, when OD600 is 0.8, add 0.8mmol/L IPTG, induce at 30°C, 200rpm, induction time is 8h, centrifuge the induced fermentation broth at 10 000rpm at low temperature (below 4°C) for 15min, discard the supernatant, and collect the bacteria cells; resuspend the cells with 0.05mol/L pH 10.5 glycine-sodium hydroxide buffer solution, crush the cell suspension under high pressure, collect the precipitate, add 10mL 0.05mol/L pH10.5 sodium carbonate-sodium hydroxide buffer solution, gently Resuspend, slowly add 121 μL of 50% glutaraldehyde solution dropwise at low temperature (below 4° C.), keep magnetic stirring for 2 hours, and then centrifuge to collect the precipitate to prepare isoeugenol monooxygenase-immobilized enzyme.
取9mL含固定化酶的溶液,加入1mL DMSO,100mmol/L的异丁香酚,25℃,200rpm,转化36h,反应结束后离心反应液,弃去上清,用缓冲溶液清洗交联酶两次,再用9mL 0.05mol/L pH 10.5甘氨酸-氢氧化钠缓冲溶液重悬交联酶,继续下一次的酶催化反应,反复使用交联酶,测定每次反应液中香草醛的浓度;结果表明其具备良好的操作稳定性,重复使用7次后酶活保留在60%以上。Take 9mL of the solution containing immobilized enzyme, add 1mL DMSO, 100mmol/L isoeugenol, 25°C, 200rpm, transform for 36h, centrifuge the reaction solution after the reaction, discard the supernatant, wash the cross-linked enzyme twice with buffer solution , then use 9mL 0.05mol/L pH 10.5 glycine-sodium hydroxide buffer solution to resuspend the cross-linked enzyme, continue the next enzyme-catalyzed reaction, use the cross-linked enzyme repeatedly, measure the concentration of vanillin in each reaction solution; the results show It has good operational stability, and the enzyme activity remains above 60% after repeated use for 7 times.
香草醛的测定方法:Determination method of vanillin:
以高效液相色谱法(HPLC)测定香草醛和异丁香酚。Determination of vanillin and isoeugenol by high performance liquid chromatography (HPLC).
样品处理:反应液加入与反应液同体积的乙醇,沉淀蛋白(异丁香酚单加氧酶活性聚集体),并溶解底物(异丁香酚)和产物(香草醛),10000r/min离心5min,再以乙醇稀释10-20倍(实施例中稀释10倍),滤膜过滤,待测。Sample treatment: Add the same volume of ethanol to the reaction solution to precipitate the protein (isoeugenol monooxygenase activity aggregate), dissolve the substrate (isoeugenol) and product (vanillin), and centrifuge at 10000r/min for 5min , and then diluted 10-20 times with ethanol (10 times in the embodiment), filtered through a filter membrane, and tested.
色谱柱:Thermo BDS HYPERSIL C18反相色谱柱250×4.6mm;Chromatographic column: Thermo BDS HYPERSIL C18 reverse-phase chromatographic column 250×4.6mm;
流动相:A=0.01%冰醋酸水溶液,B=甲醇;Mobile phase: A=0.01% glacial acetic acid aqueous solution, B=methanol;
梯度洗脱程序:开始时35%B,保持7分钟,到15min时增加至70%B,到17min时降至35%B;Gradient elution program: start at 35% B, keep for 7 minutes, increase to 70% B at 15 minutes, and drop to 35% B at 17 minutes;
柱温:30℃;Column temperature: 30°C;
流速1mL/min,波长280nm处紫外检测,进样量20μL。其中香草醛和异丁香酚的出峰时间分别为7.8min和17.4min左右。The flow rate is 1mL/min, the ultraviolet detection is at a wavelength of 280nm, and the injection volume is 20μL. The peak eluting times of vanillin and isoeugenol were about 7.8 min and 17.4 min, respectively.
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。The above is only an embodiment of the present invention, and does not limit the patent scope of the present invention. Any equivalent structure or equivalent process conversion made by using the content of the description of the present invention, or directly or indirectly used in other related technical fields, shall be The same reasoning is included in the patent protection scope of the present invention.
<110>深圳大学<110> Shenzhen University
<120>异丁香酚单加氧酶活性聚集体的构建方法及转化异丁香酚生产香草醛的方法<120> Construction method of active aggregate of isoeugenol monooxygenase and method of converting isoeugenol to produce vanillin
<130> CN1618492YZ<130> CN1618492YZ
<160> 6<160> 6
<210> 1<210> 1
<211> 36<211> 36
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 1<400> 1
tagctacata tgatggcaac gtttaccgca atgatc 36tagctacata tgatggcaac gtttaccgca atgatc 36
<210> 2<210> 2
<211> 38<211> 38
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400> 2<400> 2
gcggccgcct tatctctcga ggttcttaga ctgccaac 38gcggccgcct tatctctcga ggttcttaga ctgccaac 38
<210> 3<210> 3
<211> 33<211> 33
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400>3<400>3
gtgcaacgct gctcggagac ggaagggtag ctt 33gtgcaacgct gctcggagac ggaagggtag ctt 33
<210> 4<210> 4
<211> 33<211> 33
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400>4<400>4
gactgccaac aaccgtgcaa cgctgctcgg aga 33gactgccaac aaccgtgcaa cgctgctcgg aga 33
<210> 5<210> 5
<211>40<211>40
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400>5<400>5
tagctaaagc tttcagttct tagactgcca acaaccgtgc 40tagctaaagc tttcagttct tagactgcca acaaccgtgc 40
<210> 6<210> 6
<211>40<211>40
<212> DNA<212>DNA
<213> 人工序列<213> Artificial sequence
<400>6<400>6
atggcaacgt ttgaccgcaa tgatccgcag ttggcaggaa cgatgttccc cacccgaataatggcaacgt ttgaccgcaa tgatccgcag ttggcaggaa cgatgttccc cacccgaata
gaggcgaatg tctttgacct tgaaattgag ggcgagatcc cacgtgcaat caacgggagcgaggcgaatg tctttgacct tgaaattgag ggcgagatcc cacgtgcaat caacgggagc
ttcttccgca acacccccga acctcaggtc accacgcaac ctttccacac cttcatcgatttcttccgca acacccccga acctcaggtc accacgcaac ctttccacac cttcatcgat
ggggatggtt tggcgtctgc ttttcatttc gaagatggcc aggtcgactt tgtcagccgtggggatggtt tggcgtctgc ttttcatttc gaagatggcc aggtcgactt tgtcagccgt
tgggtatgta ctcctcgctt tgaagctgag cggtcggctc gtaaatcact cttcggtatgtgggtatgta ctcctcgctt tgaagctgag cggtcggctc gtaaatcact cttcggtatg
taccgcaatc cgttcactga tgatccatcg gtagaaggta ttgatcgtac agtcgccaactaccgcaatc cgttcactga tgatccatcg gtagaaggta ttgatcgtac agtcgccaac
accagtatca tcactcatca cgggaaagta ctggccgcaa aggaagatgg actaccttataccagtatca tcactcatca cgggaaagta ctggccgcaa aggaagatgg actaccttat
gagcttgacc cccaaaccct ggaaacccga ggtcgttatg attacaaggg gcaggtaaccgagcttgacc cccaaaccct ggaaacccga ggtcgttatg attacaaggg gcaggtaacc
agccatacac atacagcgca ccctaagttc gacccccaga caggtgaaat gttactcttcagccataacac atacagcgca ccctaagttc gacccccaga caggtgaaat gttactcttc
ggctccgctg ctaaaggcga acgaacgctt gatatggcgt actatattgt tgatcgctacggctccgctg ctaaaggcga acgaacgctt gatatggcgt actatattgt tgatcgctac
ggcaaggtga cacatgagac ctggtttaag cagccttacg gtgcattcat gcacgactttggcaaggtga cacatgagac ctggtttaag cagccttacg gtgcattcat gcacgacttt
gctgtcacgc gcaactggtc aatctttccg atcatgcctg cgacaaatag ccttgagcgtgctgtcacgc gcaactggtc aatctttccg atcatgcctg cgacaaatag ccttgagcgt
cttaaagcaa agcagcccat ttacatgtgg gagcctgagc gaggaagcta tataggagtacttaaagcaa agcagcccat ttacatgtgg gagcctgagc gaggaagcta tataggagta
cttcctcgtc gtggtcaggg caaggacatt cgttggttcc gtgccccggc gttgtgggttcttcctcgtc gtggtcaggg caaggacatt cgttggttcc gtgccccggc gttgtgggtt
ttccatgtcg tgaatgcttg ggaggaaggg aatagaattc tgattgactt gatggaaagtttccatgtcg tgaatgcttg ggaggaaggg aatagaattc tgattgactt gatggaaagt
gagattttgc cgttcccatt cccgaactcg cagaaccttc catttgatcc ctccaaggctgagattttgc cgttcccatt cccgaactcg cagaaccttc catttgatcc ctccaaggct
gttccgcgtc taacccgttg ggaaattgat ctcaatagtg gtaacgatga gatgaaacgtgttccgcgtc taacccgttg ggaaattgat ctcaatagtg gtaacgatga gatgaaacgt
acgcagctac acgaatattt tgcagaaatg cctatcatgg atttccgttt tgcgctccagacgcagctac acgaatattt tgcagaaatg cctatcatgg atttccgttt tgcgctccag
gatcatcgct acgcctacat gggggttgac gatcctcgtc gccccttagc tcatcagcaagatcatcgct acgcctacat gggggttgac gatcctcgtc gccccttagc tcatcagcaa
gctgaaaaaa tctttgccta caattcgtta ggggtttggg acaaccatcg taaagattatgctgaaaaaa tctttgccta caattcgtta ggggtttggg acaaccatcg taaagattat
gaactttggt ttacgggaaa aatgtctgca gcgcaggaac cggcgtttgt tcctagaagcgaactttggt ttacgggaaa aatgtctgca gcgcaggaac cggcgtttgt tcctagaagc
ccagatgcgc ctgagggcga tggctaccta ctcagtgtag tagggcggct cgatgaagatccagatgcgc ctgagggcga tggctaccta ctcagtgtag tagggcggct cgatgaagat
cgtagcgatc tagttatcct tgatacgcaa tgtttggcag ctgggcctgt ggccactgtccgtagcgatc tagttatcct tgatacgcaa tgtttggcag ctgggcctgt ggccactgtc
aagctaccct tccgtctccg agcagcgttg cacggttgtt ggcagtctaa gaactgaaagaagctaccct tccgtctccg agcagcgttg cacggttgtt ggcagtctaa gaactgaaag
cttccgaccc caccgaccac gccaacgcca ccaaccaccc caaccccgac gccgctggaacttccgaccc caccgaccac gccaacgcca ccaacccaccc caaccccgac gccgctggaa
cttgaactga agttaaaact ggaattagaa ttaaagctga aa 1542cttgaactga agttaaaact ggaattagaa ttaaagctga aa 1542
Claims (10)
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710369478.5A CN107236753A (en) | 2017-05-23 | 2017-05-23 | The method that the construction method and conversion isoeugenol of isoeugenol monooxygenase activity aggregation produce vanillic aldehyde |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710369478.5A CN107236753A (en) | 2017-05-23 | 2017-05-23 | The method that the construction method and conversion isoeugenol of isoeugenol monooxygenase activity aggregation produce vanillic aldehyde |
Publications (1)
Publication Number | Publication Date |
---|---|
CN107236753A true CN107236753A (en) | 2017-10-10 |
Family
ID=59985147
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201710369478.5A Pending CN107236753A (en) | 2017-05-23 | 2017-05-23 | The method that the construction method and conversion isoeugenol of isoeugenol monooxygenase activity aggregation produce vanillic aldehyde |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN107236753A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113151131A (en) * | 2021-03-24 | 2021-07-23 | 上海应用技术大学 | Self-induction culture medium for producing isoeugenol monooxygenase and application thereof |
CN113767173A (en) * | 2019-04-29 | 2021-12-07 | 科纳根公司 | Biosynthesis of vanillin from isoeugenol |
CN114072507A (en) * | 2019-04-29 | 2022-02-18 | 科纳根公司 | Biosynthesis of vanillin from isoeugenol |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104031873A (en) * | 2014-05-14 | 2014-09-10 | 深圳大学 | Escherichia coli for producing isoeugenol monooxygenase and construction method and application of Escherichia coli |
-
2017
- 2017-05-23 CN CN201710369478.5A patent/CN107236753A/en active Pending
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN104031873A (en) * | 2014-05-14 | 2014-09-10 | 深圳大学 | Escherichia coli for producing isoeugenol monooxygenase and construction method and application of Escherichia coli |
Non-Patent Citations (7)
Title |
---|
《化工百科全书》编辑委员会: "《化工百科全书(第11卷)》", 31 August 1996, 化学工业出版社 * |
YAMADA M等: "Vanillin production using Escherichia coli cells", 《BIOTECHNOLOGY LETTERS》 * |
冯美卿: "《生物技术制药》", 31 January 2016, 中国医药科技出版社 * |
李冰冰等: "《生化与分子生物学实验指导》", 31 August 2014, 中国矿业大学出版社 * |
王英: "异丁香酚单加氧酶融合蛋白的构建及其应用", 《中国优秀硕士学位论文全文数据库》 * |
赵丽青等: "异丁香酚单加氧酶活性聚集体的构建及应用", 《中国生物工程学会第二届青年科技论坛》 * |
黄安: "自聚集短肽诱导腈水解酶活性聚集体研究", 《中国优秀硕士学位论文全文数据库》 * |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN113767173A (en) * | 2019-04-29 | 2021-12-07 | 科纳根公司 | Biosynthesis of vanillin from isoeugenol |
CN114072507A (en) * | 2019-04-29 | 2022-02-18 | 科纳根公司 | Biosynthesis of vanillin from isoeugenol |
CN113151131A (en) * | 2021-03-24 | 2021-07-23 | 上海应用技术大学 | Self-induction culture medium for producing isoeugenol monooxygenase and application thereof |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN102994524A (en) | Laccase gene as well as encoded protein and application thereof | |
CN107236753A (en) | The method that the construction method and conversion isoeugenol of isoeugenol monooxygenase activity aggregation produce vanillic aldehyde | |
CN103865862B (en) | A kind of carry serine acetyltransferase gene lichem bacillus strain and construction process and application | |
CN104988132A (en) | Microwave-assisted co-immobilization method of aldehyde ketone reductase and glucose dehydrogenase | |
CN107904263B (en) | Method for improving hydrogen yield of hydrogen producing bacteria | |
CN107201332A (en) | A kind of genetic engineering bacterium and its construction method and purposes for expressing heat resistant type Dextransucrase | |
CN104988133A (en) | Embedding and co-immobilization method of aldehyde ketone reductase and glucose dehydrogenase | |
CN102260694B (en) | Acidproof medium-temperature alpha-amylase and preparation method thereof | |
CN103789341A (en) | Construction method of saccharomyces cerevisiae strain with high yield of isobutanol | |
CN103421734B (en) | The method of the soluble expression of a kind of recombination tyrosine decarboxylase and the application of this enzyme | |
CN103320403B (en) | Ketoreductase LEK mutant and application | |
CN1908159B (en) | D-amino acid preparation strain and construction method thereof | |
CN104176732B (en) | Method for preparing graphene through biocatalysis | |
CN1325633C (en) | Glycerol channel protein gene deleted brewing microzyme strain capable of reducing glycerol output and increasing ethanol output and construction method thereof | |
CN101831394A (en) | Heat-resistant bacillus and application thereof in preparing phenyl lactic acid | |
CN111394396B (en) | Method for producing 1, 3-propylene glycol by using glycerol fermentation by microorganisms | |
CN105132390B (en) | A kind of method that dextransucrase is prepared using mixed fungus fermentation | |
CN103060255B (en) | A genetically engineered bacterium producing S-3-hydroxybutanone and its construction method and application | |
CN105112468A (en) | Method for preparing chiral amine from multi-enzyme coupled systems | |
CN105567756A (en) | Marine bacterial strain and method for preparing chiral amine from catalyzing of amine dehydrogenase of marine bacterial strain | |
CN113308424B (en) | Bacillus pumilus for producing feruloyl esterase and application thereof | |
CN110093297A (en) | Nitrate reduction bacterium MCDA3-3 and its method for producing chitin deacetylase | |
CN116286567B (en) | Recombinant escherichia coli producing alpha-amino acid ester acyltransferase, and construction method and application thereof | |
CN102433321A (en) | High-temperature-resistant fused lactic acid bacteria capable of fermenting lactic acid by using xylose and breeding method thereof | |
CN118109430A (en) | An alcohol dehydrogenase mutant and its application in the synthesis of 4-hydroxy-2-butanone |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
RJ01 | Rejection of invention patent application after publication |
Application publication date: 20171010 |
|
RJ01 | Rejection of invention patent application after publication |