CN107233078A - 一种交叉偏振照相成像装置及成像方法 - Google Patents

一种交叉偏振照相成像装置及成像方法 Download PDF

Info

Publication number
CN107233078A
CN107233078A CN201710433944.1A CN201710433944A CN107233078A CN 107233078 A CN107233078 A CN 107233078A CN 201710433944 A CN201710433944 A CN 201710433944A CN 107233078 A CN107233078 A CN 107233078A
Authority
CN
China
Prior art keywords
light source
msub
lcd
polarized light
camera
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710433944.1A
Other languages
English (en)
Inventor
刘学峰
崔璐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nanjing University of Science and Technology
Original Assignee
Nanjing University of Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nanjing University of Science and Technology filed Critical Nanjing University of Science and Technology
Priority to CN201710433944.1A priority Critical patent/CN107233078A/zh
Publication of CN107233078A publication Critical patent/CN107233078A/zh
Pending legal-status Critical Current

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes

Abstract

本发明公开了一种交叉偏振照相成像装置及成像方法。该装置包括计算机、光源控制器、相机、LCD、偏振光源、检偏器。方法为:将待测样品放置于载物台,由计算机分别输出控制信号到光源控制器和相机,控制光源对样品进行照明,同时控制相机拍摄。相机所采集的图像输入计算机进行处理,从而获得待测样品的相关数据。本发明具有成像速度快、成本低、成像深、无损试样的优点。

Description

一种交叉偏振照相成像装置及成像方法
技术领域
本发明属于光学医学影像学技术领域,特别是一种人体成像装置及方法。
背景技术
对于现代医学影像学,目前常用的有CT(Computed Tomography)、PET(Positronemission tomography)、B超以及MRI(Magnetic Resonance Imaging)等等。但是上述的方法都有它们的缺陷,CT利用的是高频高能射线,能对人体组织造成不可逆转的破坏;PET扫描则伴随着大量的辐射剂量,甚至致癌风险;B超是利用的超声波,其分辨率很低,易产生漏诊,而且孕妇滥查B超可能易致胎儿畸形;MRI的确诊率不高,对于孕妇以及危重病人不适用,检查的时间也比较长。
为了解决以上问题,人们开始探索光学成像这种无损的人体组织探测方法。90年代开始人们发展了一系列的先进光学取像方法:比如时间分辨透射投影层析成像超短激光脉冲与时间门相结合的取像方法、双光子荧光成像、光子密度波方法、空间低频光共焦扫描透射成像法以及光学相干层析术(OCT)等。但是由于组织结构的复杂性,光学取像方法还很不成熟。从探测深度、分辨率和实用性等方面综合评定,目前OCT技术是最有发展前途的一种,但是目前OCT仅仅对于组织结构相对简单的眼睛有较好的探测结果,对于复杂组织成像存在速度较慢、成本高、成像的分辨率低等问题。
发明内容
本发明的目的在于提供一种速度快、成本低、成像深、无损试样成像装置及方法。
实现本发明目的的技术解决方案为:一种利用交叉偏振进行照相成像的装置,其结构包括计算机、光源控制器和照相模块,其中照相模块包括相机、LCD、偏振光源和检偏器。相机与载物台之间放置两块不同相位的LCD,并在相机与LCD之间放置检偏器。计算机经由光源控制器控制光源的开关和切换,相机直接与计算机连接。
偏振光源以一定的倾斜角度照射到样品上,经试样反射后的光线依次垂直通过LCD、检偏器后由相机采集,将图像数据传输到计算机。
优选地,所述第一LCD和第二LCD的快轴方向为45°,0°。
优选地,所述相机和计算机可以用移动设备代替。
一种基于交叉偏振照相成像装置的成像方法,步骤如下:
步骤1,将样品置于显微镜的载物台上;
步骤2,打开光源控制器点亮第一偏振光源和第二偏振光源,利用相机获得一幅光强图片,作为未被处理的原始图像并输入计算机;
步骤3、改变第一LCD、第二LCD的电压,拍摄多幅图像,根据电压得出实际的相位延迟量。依据的关系式为:
δ1=-1.5·10-6·V1 2+0.0093·V1-12(2000mv<V1<3200mv)
δ2=-1.6·10-6·V2 2+0.0094·V2-12(2000mv<V2<3200mv)
其中δ1和V1为第二LCD的相位延迟量和电压,δ2和V2为第一LCD的相位延迟量和电压。
步骤4、利用步骤3所得实际相位延迟量和拍摄到的图像光强,可以得出斯托克斯参量S0、S1、S2和S3,再由斯托克斯参量得出方位角,椭圆率,椭圆率角,偏振度等信息。所述根据光强和实际相位延迟量得到斯托克斯参量的关系式为:
本发明与现有的技术相比,其显著的优点为:(1)无损试样:本发明采用的是光学成像方法,不需对试样进行表面处理,不会对试样造成损坏或污染。(2)成本低:本发明的成本较低,主要是由光学元件构成。(3)分辨率高:由于该方法,利用偏振参数成像,可以绕开衍射极限,获得高分辨率的假彩色图像。(4)效率高:本发明采用的是光学成像方法,成像速度快,获得各种偏振态下的图像过程可控制在5分钟以内。
附图说明
图1为交叉偏振进行照相成像的装置的基本原理图。
图2为本发明交叉偏振进行照相成像的装置的一种具体实施方式的示意图。
图3为本发明交叉偏振进行照相成像的装置的另一种具体实施方式的示意图。
具体实施方式
下面结合附图对本发明作进一步说明。
本发明利用交叉偏振成像,不需要对样品进行染色处理,不会对其造成损伤,并可以通过测量拟合来强化结果图的分辨。由于反射成像对样品的无破坏性,可以用于活体检测。
具体而言,本发明交叉偏振非直观显微成像装置如图1所示,结构包括计算机1、光源控制器2和照相模块,其中照相模块包括相机3、第一LCD5、第二LCD6、第一偏振光源7、第二偏振光源8和检偏器4;相机3在载物台10的垂直轴向上,两者之间依次由上到下放置两块快轴方向不同的第一LCD5和2号LCD6,并在相机3与第一LCD5之间放置检偏器4。第一偏振光源7、第二偏振光源8在载物台10所在的水平面与垂直轴向之间的区域,并呈对称分布。计算机1经由光源控制器2分别控制第一偏振光源7、第二偏振光源8的开关和切换,相机3直接与计算机1连接。
第一偏振光源7、第二偏振光源8发出的光线以一定的倾斜角度照射到样品9上,经试样反射后的光线依次垂直通过第二LCD6、第一LCD5、检偏器4后由相机3采集,将图像数据传输到计算机。
所述第一偏振光源7、第二偏振光源8偏振角度相同且与检偏器4的偏振角垂直。
所述第一LCD5、第二LCD6的快轴为0°,45°。
所述偏振光源的波段采用可见光波段。
如图2,所述第一偏振光源7由第一LED光源13和第一起偏器12组成,第二偏振光源8由第二LED光源14和第二起偏器11组成;第一LED光源13、第二LED光源14与载物台10之间分别放置第一起偏器12、第二起偏器11,用于产生偏振光。
如图3,所述偏振光源还可以是一个直径大于载物台10的环形LED阵列光源7,该环形LED阵列光源7置于载物台10和第二LCD6之间进行照射,并且在光源外罩上镀偏振膜进行起偏。
所述相机3和计算机1可以用移动设备代替。
交叉偏振的基本原理是:自然光通过相互垂直的两片偏振片,强度会归零,但是经过某角度的起偏器的自然光照射到样本上,反射后会产生包含各个偏振角度的反射光,再通过检偏器,会产生一个与检偏器相同偏振角的图像。由于经过两次偏振和反射,最后传输到计算机上的图像的光强会很微弱,但是细节得到了凸显。
本发明基于交叉偏振照相成像装置的成像方法,步骤如下:
步骤1,将样品置于显微镜的载物台上;
步骤2,打开光源控制器(2)点亮第一偏振光源(7)、第二偏振光源(8),利用相机(3)获得一幅光强图片,作为未被处理的原始图像并输入计算机(1);
步骤3、改变第一LCD(5)、第二LCD(6)的电压,拍摄多幅图像,根据电压得出实际的相位延迟量。依据的关系式为:
δ1-1.5·10-6·V1 2+0.0093·V1-12(2000mv<V1<3200mv)
δ2=-1.6·10-6·V2 2+0.0094·V2-12(2000mv<V2<3200mv)
其中δ1和V1为第二LCD6的相位延迟量和电压,δ2和V2为第一LCD5的相位延迟量和电压。
步骤4、利用步骤3所得实际相位延迟量和拍摄到的图像光强,可以得出斯托克斯参量S0、S1、S2和S3,再由斯托克斯参量得出方位角,椭圆率,椭圆率角,偏振度等信息。所述根据光强和实际相位延迟量得到斯托克斯参量的关系式为:
得到方位角,椭圆率,椭圆率角,偏振度的关系式为:
本发明是利用交叉偏振成像。先利用偏振调制,得到偏振状态下的图像,从中进行参数提取,得到各参数值进行分析。与直接利用远场的光强进行成像相比,偏振参数对于物体结构各项异性的变化更加的灵敏,更为重要的是通过利用均方根拟合,筛选出拟合度高于95%的像素点,使得PSF宽度变窄,这样就可以突破光学成像的衍射极限,大大提高了成像的分辨率。因此,本发明提供了一种新的光学成像的方法,该方法基于交叉偏振成像技术,获得了高分辨率图像。
综合探测方法和所采用的光源,交叉偏振成像提高了成像的分辨率,而且不需要进行扫描,不需对样品进行染色,无损样品,大大节约了成像效率和成本,
综上,本发明主要有四大优势:(1)无损样品,(2)成像速度快,(3)成本低,(4)成像的分辨率高。

Claims (9)

1.一种交叉偏振照相成像的装置,其特征在于:包括计算机(1)、光源控制器(2)和照相模块,其中照相模块包括相机(3)、第一LCD(5)、第二LCD(6)、偏振光源和检偏器(4),相机(3)位于载物台(10)的垂直轴向上,两者之间依次由上至下放置两块快轴方向不同的第一LCD(5)和第二LCD(6),并在相机(3)与第一LCD(5)之间放置检偏器(4);偏振光源位于载物台(10)所在的水平面与垂直轴向之间的区域,计算机(1)经由光源控制器(2)控制偏振光源的开关和切换,相机(3)直接与计算机(1)连接;
偏振光源发出的光线以一定的倾斜角度照射到放置在载物台(10)上的样品(9)上,经试样反射后的光线依次垂直通过第二LCD(6)、第一LCD(5)、检偏器(4)后由相机(3)采集,将图像数据传输到计算机(1)。
2.根据权利要求1所述的交叉偏振照相成像装置,其特征在于:所述偏振光源包括第一偏振光源(7)和第二偏振光源(8);第一偏振光源(7)、第二偏振光源(8)位于载物台(10)所在的水平面与垂直轴向之间的区域,并呈对称分布。
3.根据权利要求2所述的交叉偏振照相成像装置,其特征在于:所述第一偏振光源(7)、第二偏振光源(8)偏振角度相同且与检偏器(4)的偏振角垂直。
4.根据权利要求2或3所述的交叉偏振照相成像装置,其特征在于:所述第一偏振光源(7)由第一LED光源(13)和第一起偏器(12)组成,第二偏振光源(8)由第二LED光源(14)和第二起偏器(11)组成;第一LED光源(13)、第二LED光源(14)与载物台(10)之间分别放置第一起偏器(12)、第二起偏器(11),用于产生偏振光。
5.根据权利要求1所述的交叉偏振照相成像装置,其特征在于:所述偏振光源还可以是一个直径大于载物台(10)的环形LED阵列光源(7),该环形LED阵列光源(7)置于载物台(10)和第二LCD(6)之间进行照射,并且在光源外罩上镀偏振膜进行起偏。
6.根据权利要求1所述的交叉偏振照相成像装置,其特征在于:所述偏振光源的波段采用可见光波段。
7.根据权利要求1所述的交叉偏振照相成像装置,其特征在于:所述第二LCD(6)的快轴为0°,第一LCD(5)的快轴为45°。
8.一种基于权利要求1所述的交叉偏振照相成像装置的成像方法,其特征在于步骤如下:
步骤1,将样品(9)置于显微镜的载物台(10)上;
步骤2,打开光源控制器(2)点亮偏振光源,利用相机(3)获得一幅光强图片,作为未被处理的原始图像并输入计算机(1);
步骤3、改变第一LCD(5)、第二LCD(6)的电压,拍摄多幅图像,根据电压得出实际的相位延迟量,依据的关系式为:
δ1=-1.5·10-6·V1 2+0.0093·V1-12(2000mv<V1<3200mv)
δ2=-1.6·10-6·V2 2+0.0094·V2-12(2000mv<V2<3200mv)
其中δ1和V1为第二LCD(6)的相位延迟量和电压,δ2和V2为第一LCD(5)的相位延迟量和电压;
步骤4、利用步骤3所得实际相位延迟量和拍摄到的图像光强,得出斯托克斯参量S0、S1、S2和S3,再由斯托克斯参量得出方位角、椭圆率、椭圆率角和偏振度信息。
9.根据权利要求7所述的交叉偏振照相成像装置的成像方法,其特征在于:步骤4所述根据光强和实际相位延迟量得到斯托克斯参量的关系式为:
<mrow> <mi>I</mi> <mo>=</mo> <mfrac> <msub> <mi>S</mi> <mn>0</mn> </msub> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>S</mi> <mn>1</mn> </msub> <msub> <mi>cos&amp;delta;</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> <mo>+</mo> <mfrac> <mrow> <msub> <mi>S</mi> <mn>2</mn> </msub> <msub> <mi>sin&amp;delta;</mi> <mn>1</mn> </msub> <msub> <mi>sin&amp;delta;</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> <mo>-</mo> <mfrac> <mrow> <msub> <mi>S</mi> <mn>3</mn> </msub> <msub> <mi>cos&amp;delta;</mi> <mn>1</mn> </msub> <msub> <mi>sin&amp;delta;</mi> <mn>2</mn> </msub> </mrow> <mn>2</mn> </mfrac> <mo>.</mo> </mrow> 2
CN201710433944.1A 2017-06-09 2017-06-09 一种交叉偏振照相成像装置及成像方法 Pending CN107233078A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710433944.1A CN107233078A (zh) 2017-06-09 2017-06-09 一种交叉偏振照相成像装置及成像方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710433944.1A CN107233078A (zh) 2017-06-09 2017-06-09 一种交叉偏振照相成像装置及成像方法

Publications (1)

Publication Number Publication Date
CN107233078A true CN107233078A (zh) 2017-10-10

Family

ID=59986138

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710433944.1A Pending CN107233078A (zh) 2017-06-09 2017-06-09 一种交叉偏振照相成像装置及成像方法

Country Status (1)

Country Link
CN (1) CN107233078A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110119033A (zh) * 2018-02-05 2019-08-13 清华大学 红外成像系统
CN111896489A (zh) * 2020-08-05 2020-11-06 曲阜师范大学 一种基于交叉偏振的六通道多光谱测量系统及方法
US11360253B2 (en) 2018-02-05 2022-06-14 Tsinghua University Generator and method for generating far infrared polarized light

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000300A (zh) * 2006-12-30 2007-07-18 清华大学深圳研究生院 线偏振光成像方法及装置
CN103679153A (zh) * 2013-12-16 2014-03-26 中国民航大学 手指多模态生物特征偏振成像系统
US20160116397A1 (en) * 2013-05-23 2016-04-28 Hinds Instruments, Inc. Polarization properties imaging systems
CN106264473A (zh) * 2016-10-11 2017-01-04 湖北器长光电股份有限公司 一种 lcd 调制皮肤检测成像系统及成像方法
CN106526823A (zh) * 2016-11-09 2017-03-22 南京理工大学 一种dna纳米球非荧光非直观显微成像装置及方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101000300A (zh) * 2006-12-30 2007-07-18 清华大学深圳研究生院 线偏振光成像方法及装置
US20160116397A1 (en) * 2013-05-23 2016-04-28 Hinds Instruments, Inc. Polarization properties imaging systems
CN103679153A (zh) * 2013-12-16 2014-03-26 中国民航大学 手指多模态生物特征偏振成像系统
CN106264473A (zh) * 2016-10-11 2017-01-04 湖北器长光电股份有限公司 一种 lcd 调制皮肤检测成像系统及成像方法
CN106526823A (zh) * 2016-11-09 2017-03-22 南京理工大学 一种dna纳米球非荧光非直观显微成像装置及方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110119033A (zh) * 2018-02-05 2019-08-13 清华大学 红外成像系统
US10816328B2 (en) 2018-02-05 2020-10-27 Tsinghua University Far infrared imaging system
US11360253B2 (en) 2018-02-05 2022-06-14 Tsinghua University Generator and method for generating far infrared polarized light
CN111896489A (zh) * 2020-08-05 2020-11-06 曲阜师范大学 一种基于交叉偏振的六通道多光谱测量系统及方法
CN111896489B (zh) * 2020-08-05 2023-06-30 曲阜师范大学 一种基于交叉偏振的六通道多光谱测量系统及方法

Similar Documents

Publication Publication Date Title
Schulz et al. Experimental fluorescence tomography of tissues with noncontact measurements
CN103959040B (zh) 在智能手机上附接光学相干断层成像系统
EP2698103A1 (en) System and method for MRI imaging using polarized light
CN107209362A (zh) 傅立叶重叠关联断层摄影
CN107709968A (zh) 荧光活检样本成像仪及方法
Liu et al. Complementary fluorescence-polarization microscopy using division-of-focal-plane polarization imaging sensor
CN107233078A (zh) 一种交叉偏振照相成像装置及成像方法
US20190082998A1 (en) Assessment of Wound Status and Tissue Viability via Analysis of Spatially Resolved THz Reflectometry Maps
CN103389273A (zh) 一种光声和光学融合的多模态成像系统
CN110455834B (zh) 基于光强传输方程的x射线单次曝光成像装置及方法
Guggenheim et al. Multi-modal molecular diffuse optical tomography system for small animal imaging
Thong et al. Toward real-time virtual biopsy of oral lesions using confocal laser endomicroscopy interfaced with embedded computing
Lizana et al. Polarization gating based on Mueller matrices
JP7095924B2 (ja) 高温プラズマ内の低磁場およびヌル磁場の非摂動測定
Novikova et al. Is a complete Mueller matrix necessary in biomedical imaging?
CN106073701A (zh) 一种人体组织红外非直观显微成像装置及方法
Deng et al. Machine-learning enhanced photoacoustic computed tomography in a limited view configuration
CN207166606U (zh) 医用图像提取装置及系统
Shrestha et al. Design, calibration, and testing of an automated near-infrared liquid-crystal polarimetric imaging system for discrimination of lung cancer cells
CN113367717B (zh) 一种锥束x射线荧光成像方法、系统、终端以及存储介质
CN106248642A (zh) 一种智能分辨激光光学层析成像方法的系统
Zhou et al. Polarized hyperspectral microscopic imaging system for enhancing the visualization of collagen fibers and head and neck squamous cell carcinoma
TW200825621A (en) 3-D image-forming apparatus
Du et al. Mueller polarimetry for the detection of cancers
Gaige et al. Multiscale structural analysis of mouse lingual myoarchitecture employing diffusion spectrum magnetic resonance imaging and multiphoton microscopy

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20171010

RJ01 Rejection of invention patent application after publication