CN107229810B - 一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法 - Google Patents

一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法 Download PDF

Info

Publication number
CN107229810B
CN107229810B CN201710589901.2A CN201710589901A CN107229810B CN 107229810 B CN107229810 B CN 107229810B CN 201710589901 A CN201710589901 A CN 201710589901A CN 107229810 B CN107229810 B CN 107229810B
Authority
CN
China
Prior art keywords
soil
pile
pile side
frictional resistance
side soil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710589901.2A
Other languages
English (en)
Other versions
CN107229810A (zh
Inventor
张学峰
马晔
宋春霞
杨宇
张理轻
尼颖升
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Research Institute of Highway Ministry of Transport
Original Assignee
Research Institute of Highway Ministry of Transport
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Research Institute of Highway Ministry of Transport filed Critical Research Institute of Highway Ministry of Transport
Priority to CN201710589901.2A priority Critical patent/CN107229810B/zh
Publication of CN107229810A publication Critical patent/CN107229810A/zh
Application granted granted Critical
Publication of CN107229810B publication Critical patent/CN107229810B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/06Power analysis or power optimisation

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Evolutionary Computation (AREA)
  • Geometry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Investigation Of Foundation Soil And Reinforcement Of Foundation Soil By Compacting Or Drainage (AREA)

Abstract

本发明属于桥梁桩基损伤分析技术领域,具体涉及一种跨海大桥主墩基础受竖向荷载桩土接触面损伤分析方法,本发明利用桩侧土相对位移量指标来定义桩土接触面损伤指数,从而进行桩土损伤作用分析,并可以计算桩侧土摩阻力,其结果与实际测量结果相近,具有较高的可靠性,采用该方法分析桩侧土摩擦阻力,能够大大简化桩基复杂受力损伤分析过程,提高分析效率。

Description

一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法
技术领域
本发明属于桥梁桩基损伤分析技术领域,具体涉及一种跨海大桥主墩基础受竖向荷载桩土接触面损伤分析方法。
背景技术
跨海大桥主墩基础受到竖向荷载作用时,桩基会产生相对于桩侧土体向下方向的位移,即发生沉降,而桩侧土体会阻止桩基的下沉对桩基产生向上的摩阻力,桩基下沉量大,桩侧土体提供的摩阻力就越大,当桩土相对位移量达到一定程度,桩侧土体摩阻力就不会再增加了,桩便发生急剧的下沉而破坏说明桩土作用达到了极限。作者通过调研分析了解竖向荷载作用下桩土接触损伤研究现状,对竖向荷载作用下桩土作用进行受力分析和公式推导,提出了适用于跨海大桥主墩基础在竖向荷载作用下的桩土接触面损伤模型,先后进行了土—混凝土剪切试验23组,桩—土摩擦损伤试验6组,深入研究了跨海大桥主墩基础在竖向荷载作用下桩土接触面损伤机理,并将试验测试数据与损伤模型计算分析所得数值进行对比分析,验证了本研究提出的损伤模型的可靠性。
发明内容
本发明的目的是提供一种利用桩侧土相对位移量来计算桩侧土摩阻力从而对桩侧土损伤程度进行分析的跨海大桥主墩基础受竖向荷载桩土损伤分析方法。
为实现上述目的,本发明提供了以下技术方案:一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法,包括如下步骤:
步骤1:建立桩土损伤分析模型,设立桩侧任意深度Z处桩土损伤指数D(z),并使:
其中:
S(z)为桩土相对位移量;
Scu(z)为桩侧土体极限位移量;
则桩侧土摩阻力的双曲线损伤荷载传递函数为:
式中:
S0(z)为桩侧土的初始相对位移量;
为双曲线中S0(z)→0时的斜率;
τm(z)为桩侧土极限摩阻力;
步骤2:通过计算和测量,获取深度Z处的桩土相对位移量S(z)、桩侧土体极限位移量Scu(z)、桩侧土的初始相对位移量S0(z)、双曲线中S0(z)→0时的斜率桩侧土极限摩阻力τm(z);
步骤3:将步骤2中获取的参数S(z)、Scu(z)代入公式计算出D(z),然后将D(z)以及步骤2中测得的参数Scu(z)、S0(z)、τm(z)代入公式:
得到深度Z处,相对位移量为S(z)的桩侧土的摩阻力τm(z);
步骤4:将计算所得的桩侧土摩阻力τ(z)与桩侧土极限摩阻力τm(z)进行比较,判断桩侧土损伤情况。
本发明的技术效果在于:利用桩侧土相对位移量指标来定义桩土接触面损伤指数,从而进行桩土损伤作用分析,并可以计算桩侧土摩阻力,其结果与实际测量结果相近,具有较高的可靠性,采用该方法分析桩侧土摩擦阻力,能够大大简化桩基复杂受力损伤分析过程,提高分析效率。
附图说明
图1是本发明的实施例所提供的级配良好砂土与混凝土接触面各工况测试τ-S曲线;
图2是本发明的实施例所提供的级配良好砂土与混凝土接触面各工况测试D-S曲线;
图3是本发明的实施例所提供的级配良好砂土与混凝土接触面各工况测试与接触面损伤模型计算值对比图;
图4是本发明的实施例所提供的级配不良砂土与混凝土接触面各工况测试τ-S曲线;
图5是本发明的实施例所提供的级配不良砂土与混凝土接触面各工况测试D-S曲线;
图6是本发明的实施例所提供的级配不良砂土与混凝土接触面各工况测试与接触面损伤模型计算值对比图;
图7是本发明的实施例所提供的亚粘土与混凝土接触面各工况测试τ-S曲线;
图8是本发明的实施例所提供的亚粘土与混凝土接触面各工况测试D-S曲线;
图9是本发明的实施例所提供的亚粘土与混凝土接触面各工况测试与接触面损伤模型计算值对比图;
图10是本发明的实施例所提供的粘性土与混凝土接触面各工况测试τ-S曲线;
图11是本发明的实施例所提供的粘性土与混凝土接触面各工况测试D-S曲线;
图12是本发明的实施例所提供的粘性土与混凝土接触面各工况测试与接触面损伤模型计算值对比图;
图13是本发明的实施例所提供的亚砂土与混凝土接触面各工况测试τ-S曲线;
图14是本发明的实施例所提供的亚砂土与混凝土接触面各工况测试D-S曲线;
图15是本发明的实施例所提供的亚砂土与混凝土接触面各工况测试与接触面损伤模型计算值对比图。
具体实施方式
以下结合附图对本发明进行详细的描述。
一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法,其特征在于包括如下步骤:
步骤1:建立桩土损伤分析模型,设立桩侧任意深度Z处桩土损伤指数D(z),并使:
其中:
S(z)为桩土相对位移量;
Scu(z)为桩侧土体极限位移量;
则桩侧土摩阻力的双曲线损伤荷载传递函数为:
式中:
S0(z)为桩侧土的初始相对位移量;
为双曲线中S0(z)→0时的斜率;
τm(z)为桩侧土极限摩阻力;
步骤2:通过计算和测量,获取深度Z处的桩土相对位移量S(z)、桩侧土体极限位移量Scu(z)、桩侧土的初始相对位移量S0(z)、双曲线中S0(z)→0时的斜率桩侧土极限摩阻力τm(z);
步骤3:将步骤2中获取的参数S(z)、Scu(z)代入公式计算出D(z),然后将D(z)以及步骤2中测得的参数Scu(z)、S0(z)、τm(z)代入公式:
得到深度Z处,相对位移量为S(z)的桩侧土的摩阻力τm(z);
步骤4:将计算所得的桩侧土摩阻力τ(z)与桩侧土极限摩阻力τm(z)进行比较,判断桩侧土损伤情况。
以下结合具体实施例对本发明的技术方案进行详细说明:
土-混凝土摩擦损伤机理试验
一、试验概况
为研究桩与桩侧土体受力损伤机理,本研究进行了土-混凝土摩擦试验,分别模拟了不同深度土—混凝土间的相对摩擦损伤作用。本模型试验采用固结快剪试验方法实施测试工作。
剪切试验根据对剪切盒内土体竖向应力与相应深度土体侧向压应力相等的原则模拟不同深度土体。选取5种土样:级配良好砂土、级配不良砂土、粘土、亚粘土、亚砂土进行测试,试验前先对各土样进行含水率测试。
二、试验结果分析
(1)级配良好砂土—混凝土接触面测试结果
级配良好砂土—混凝土接触面损伤模型试验各工况测试τ-S曲线见图1,各工况测试D-S曲线见图2,各工况下实测值和接触面损伤模型计算值见图3。
(2)级配不良砂土—混凝土接触面测试结果
级配不良砂土—混凝土接触面损伤模型试验各工况测试τ-S曲线见图4,各工况测试D-S曲线见图5,各工况下实测值和接触面损伤模型计算值见图6。
(3)亚粘土—混凝土接触面测试结果
亚粘土—混凝土接触面损伤模型试验各工况测试τ-S曲线见图7,各工况测试D-S曲线见图8,各工况下实测值和接触面损伤模型计算值见图9。
(4)粘性土—混凝土接触面测试结果
粘性土—混凝土接触面损伤模型试验各工况测试τ-S曲线见图10,各工况测试D-S曲线见图11,各工况下实测值和接触面损伤模型计算值见图12。
(5)亚砂土—混凝土接触面测试结果
亚砂土—混凝土接触面损伤模型试验各工况测试τ-S曲线见图13,各工况测试D-S曲线见图14,各工况下实测值和接触面损伤模型计算值见图15。
三、土-混凝土摩擦损伤机理试验结论
通过以上5种土样(级配良好砂土、级配不良砂土、粘土、亚粘土、亚砂土)的23组土—混凝土体摩擦损伤机理试验结果表明:
(1)各组土样测试结果表明土—混凝土体τ-S曲线呈现双曲线性状明显;
(2)土—混凝土体摩擦作用开始处于弹性阶段,但很快就进入弹塑性阶段,最后达到极限发生剪切破坏;
(3)各组土样在不同深度工况测试D-S曲线结果表明,同一土样在不同深度状况下其最大损伤对应的剪切位移比较接近;
(4)各组土样实测τ-S曲线与本研究提出的损伤模型计算值吻合较好,验证了本研究损伤模型的可靠性。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (1)

1.一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法,其特征在于,包括如下步骤:
步骤1:建立桩土损伤分析模型,设立桩侧任意深度Z处桩土损伤指数D(z),并使:
其中:
S(z)为桩土相对位移量;
Scu(z)为桩侧土体极限位移量;
则桩侧土摩阻力的双曲线损伤荷载传递函数为:
式中:
S0(z)为桩侧土的初始相对位移量;
为双曲线中S0(z)→0时的斜率;
τm(z)为桩侧土极限摩阻力;
步骤2:通过计算和测量,获取深度Z处的桩土相对位移量S(z)、桩侧土体极限位移量Scu(z)、桩侧土的初始相对位移量S0(z)、双曲线中S0(z)→0时的斜率桩侧土极限摩阻力τm(z);
步骤3:将步骤2中获取的参数S(z)、Scu(z)代入公式计算出D(z),然后将D(z)以及步骤2中测得的参数Scu(z)、S0(z)、τm(z)代入公式:
得到深度Z处,相对位移量为S(z)的桩侧土的摩阻力τ(z);
步骤4:将计算所得的桩侧土摩阻力τ(z)与桩侧土极限摩阻力τm(z)进行比较,判断桩侧土损伤情况。
CN201710589901.2A 2017-07-19 2017-07-19 一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法 Active CN107229810B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710589901.2A CN107229810B (zh) 2017-07-19 2017-07-19 一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710589901.2A CN107229810B (zh) 2017-07-19 2017-07-19 一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法

Publications (2)

Publication Number Publication Date
CN107229810A CN107229810A (zh) 2017-10-03
CN107229810B true CN107229810B (zh) 2018-08-28

Family

ID=59957550

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710589901.2A Active CN107229810B (zh) 2017-07-19 2017-07-19 一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法

Country Status (1)

Country Link
CN (1) CN107229810B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109724886A (zh) * 2019-02-14 2019-05-07 重庆交通大学 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析系统
CN109724887A (zh) * 2019-02-14 2019-05-07 重庆交通大学 循环载荷与氯离子腐蚀耦合的rc桥墩抗震性能分析方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965987A (zh) * 2015-07-08 2015-10-07 中国路桥工程有限责任公司 一种膨胀土地基土膨胀引起桩位移和内力的测量方法
CN105735373A (zh) * 2016-03-11 2016-07-06 青岛理工大学 预制桩单桩极限承载力的测定方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102660967B (zh) * 2012-04-26 2015-01-07 兰州交通大学 寒区单桩经验流变预报方程的确定方法
CN104652497B (zh) * 2014-12-26 2016-03-30 交通运输部公路科学研究所 一种水中混凝土桩基础损伤分析评价方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104965987A (zh) * 2015-07-08 2015-10-07 中国路桥工程有限责任公司 一种膨胀土地基土膨胀引起桩位移和内力的测量方法
CN105735373A (zh) * 2016-03-11 2016-07-06 青岛理工大学 预制桩单桩极限承载力的测定方法

Also Published As

Publication number Publication date
CN107229810A (zh) 2017-10-03

Similar Documents

Publication Publication Date Title
Tsuha et al. Behaviour of displacement piles in sand under cyclic axial loading
Li et al. Static response of monopile to lateral load in overconsolidated dense sand
Buckley et al. Full-scale observations of dynamic and static axial responses of offshore piles driven in chalk and tills
Chow et al. Penetrometer testing in a calcareous silt to explore changes in soil strength
Hodder et al. An effective stress framework for the variation in penetration resistance due to episodes of remoulding and reconsolidation
CN102587426B (zh) 基于触探技术估算桩基承载力的分析方法
CN107229810B (zh) 一种跨海大桥主墩基础受竖向荷载桩土损伤分析方法
Randolph Offshore design approaches and model tests for sub-failure cyclic loading of foundations
Stróżyk et al. The elastic undrained modulus e for stiff consolidated clays related to the concept of stress history and normalized soil properties
Lau et al. Centrifuge testing of monopile in clay under monotonic loads
Hong et al. Loss of soil structure for natural sedimentary clays
Conlee Dynamic properties of colloidal silica soils using centrifuge model tests and a full-scale field test
Henke et al. Numerical modeling of pile installation
Bhat et al. Creeping Displacement Behavior of Clayey Soils in A New Creep Test Apparatus
Lim et al. Shearing resistance during pile installation in sand
Figueiredo et al. An overview on existing dynamic cone penetration test research related to the Central Area of Brazil
Gustafsson et al. Numerical study of different creep models used for soft soils
Youssef et al. Calibration of Verley and Sotberg soil resistance model for pipelines placed on calcareous soils
Liao et al. An analytical model for deflection of laterally loaded piles
Pra-ai et al. Post-cyclic behavior of granular soil-structure interface direct shear tests
Izawa et al. A fundamental study on soil laboratory testing method for nonlinear seismic ground response analysis
El-Mossallamy Pile group action under vertical compression loads
Jardine Time-Dependent Axial Capacity of Piles Driven in Clays and Sands
Barounis et al. Estimation of vertical subgrade reaction modulus for sands from CPT investigations
Fonseca et al. New Method for Determining PY Curves on Rigid Piles—A Theoretical and Numerical Investigation of the Interaction of Soil with Large Scale Piles

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant