CN107221334B - 一种音频带宽扩展的方法及扩展装置 - Google Patents

一种音频带宽扩展的方法及扩展装置 Download PDF

Info

Publication number
CN107221334B
CN107221334B CN201610973582.0A CN201610973582A CN107221334B CN 107221334 B CN107221334 B CN 107221334B CN 201610973582 A CN201610973582 A CN 201610973582A CN 107221334 B CN107221334 B CN 107221334B
Authority
CN
China
Prior art keywords
frequency
signal
low
band
signals
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201610973582.0A
Other languages
English (en)
Other versions
CN107221334A (zh
Inventor
胡瑞敏
姜林
文彬
王晓晨
江游
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Research Institute of Wuhan University
Original Assignee
Shenzhen Research Institute of Wuhan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Research Institute of Wuhan University filed Critical Shenzhen Research Institute of Wuhan University
Priority to CN201610973582.0A priority Critical patent/CN107221334B/zh
Publication of CN107221334A publication Critical patent/CN107221334A/zh
Application granted granted Critical
Publication of CN107221334B publication Critical patent/CN107221334B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G10MUSICAL INSTRUMENTS; ACOUSTICS
    • G10LSPEECH ANALYSIS OR SYNTHESIS; SPEECH RECOGNITION; SPEECH OR VOICE PROCESSING; SPEECH OR AUDIO CODING OR DECODING
    • G10L19/00Speech or audio signals analysis-synthesis techniques for redundancy reduction, e.g. in vocoders; Coding or decoding of speech or audio signals, using source filter models or psychoacoustic analysis

Abstract

本发明公开了一种音频带宽扩展的方法及扩展装置,方法包括检测当前帧信号在混合ACELP/TVC核心编码器中的编码模式来区分信号类型;基于信号类型分别对语音和音乐信号选择自适应的高频重建策略;若为语音信号,则采用基于LPC的带宽扩展方法;若为音乐信号,则采用基于高低频信号相关性的频带复制带宽扩展方法。扩展装置包括信号类型检测模块、语音信号带宽扩展模块和音乐信号带宽扩展模块。本发明充分考虑到了不同信号类型的特性,从信号类型的角度着手,以提高音频恢复质量,能够更准确的进行高频重建。

Description

一种音频带宽扩展的方法及扩展装置
技术领域
本发明涉及音频编码领域,具体是一种音频带宽扩展的方法及扩展装置。
背景技术
心理声学研究表明人们对于音频不同频率下的敏感性具有差异,对低频更敏感而对高频不敏感,因此在音频编码中常常不对高频进行编码以节省码率。而高频部分的完全缺失又会带来听感上的不适,因此往往采用带宽扩展的方式恢复高频。基于LPC的带宽扩展技术是目前低码率、低复杂度的代表技术。它通过提取表征高频包络的LPC参数,子带能量,然后对得到高频的低频信号进行调整,从而完成高频重建。我国自主研发的移动音频编解码器AVS-P10也采用了这种带宽扩展方法。
在对现有方法的研究和实践中,存在以下弊端:算法中对于信号的高频部分统一通过基于语音产生原理的LPC的带宽扩展算法进行编码,通过将低频信号的残差信号作为高频激励并结合线性预测编码技术实现高频的重建。从原理上来看,AVS-P10带宽扩展技术采用的一种典型的参数编码技术。其对语音信号的高频重建具有良好的效果,而对音乐信号的高频重建效果不佳,不能根据信号的类型与特征做自适应的调整。
发明内容
本发明的目的在于提供一种音频带宽扩展的方法及扩展装置,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种音频带宽扩展的方法,包括如下步骤:
步骤1,通过检测当前帧信号在混合ACELP/TVC核心编码器中的编码模式来区分信号类型;
若当前帧信号在核心编码器的编码模式为ACELP256,则当前帧为语音信号;
若当前帧信号在核心编码器的编码模式为TVC256、TVC512、TVC1024,则当前帧为音乐信号;
步骤2,同时基于信号类型分别对语音和音乐信号选择自适应的高频重建策略;
若为语音信号,则采用基于LPC的带宽扩展方法;
若为音乐信号,则采用基于高低频信号相关性的频带复制带宽扩展方法。
作为本发明进一步方案:所述对于语音信号,采用基于LPC的带宽扩展方法具体为:
(1)提取低频残差信号作为激励信号;
低带原始信号经过低带线性预测逆滤波器滤波后得到低带残差信号作为激励信号,低带的线性预测系数每帧更新一次;每一个1024样点超帧的低带激励信号通过长度为288样点,重叠区域为32样点的余弦窗分割为四个长度288样点的帧
(2)提取高频LPC系数,表征高频包络信息;
对每一帧高频原始信号进行一次八阶线性预测分析,得到一组八阶的线性预测编码系数,并转换为导抗频谱对系数,导抗频谱对系数进一步变换为导抗谱频率系数;量化后的导抗谱频率系数变换为量化后线性预测系数,并以此产生高频合成滤波器;假设高频合成滤波器288点的冲击响应为,用288点的快速傅里叶变换将变换到频域,以此表示原始高频信号的频谱包络;
(3)利用高频包络信息和低频残差信号得到准高频信号;
每一帧的低带激励信号和高带合成滤波器的冲击响应用288点的FFT变换到频域;高带合成滤波器冲击响应的288点FFT系数用其中的最大值归一化;将低带激励信号的FFT系数乘以归一化的高带合成滤波器的冲击响应FFT系数就可以得到频域的基础信号;
(4)提取高低频对应频带之间的增益信息;
计算288样点帧准高频信号和原始高频信号对应子带间的能量增益,
(5)利用高频信号的谱包络信息及增益信息调整原始低频信号生成的高频激励信号来重建高频信号。
作为本发明进一步方案:所述对于音乐信号,采用基于高低频信号相关性的频带复制带宽扩展方法具体为:
(1)对原始高低频信号进行加窗并变换到频域;
利用重叠区域为32样点的余弦窗对每一个256样点帧的原始高低频信号进行加窗,得到288样点帧;对加窗后的原始信号和高频信号通过FFT变换到频域;
(2)计算高低频信号对应频带之间的相关性,若相关性较高,则将低频信号复制到高频频段用于高频重建;若高低频信号之间的相关性较低,则将白噪声信号填充到高频频段用于高频重建;
针对每一个288样点帧,计算对应高低频信号之间的相关性,从而确定用低频信号还是白噪声信号来重建;
(3)提取能量参数;
若采用低频信号来复制高频信号,需提取对应低频子带的能量增益;若采用白噪声重建高频,则需提取高频子带平均能量;
(4)利用能量参数调整复制的低频信号或白噪声信号完成高频重建。
一种所述音频带宽扩展的扩展装置,包括信号类型检测模块、语音信号带宽扩展模块和音乐信号带宽扩展模块,
所述信号类型检测模块,用于检测当前帧信号在混合ACELP/TVC核心编码器中的编码模式来区分信号类型;
所述语音信号带宽扩展模块,用于完成语音帧信号的高频重建,
所述音乐信号带宽扩展模块,用于完成音乐帧信号的高频重建。
作为本发明进一步方案:所述语音信号带宽扩展模块包括:
低频残差提取模块,提取低频残差信号作为激励信号,低带原始信号经过低带线性预测逆滤波器滤波后得到低带残差信号作为激励信号,低带的线性预测系数每帧更新一次;每一个1024样点超帧的低带激励信号通过长度为288样点,重叠区域为32样点的余弦窗分割为四个长度288样点的帧;
包络信息提取模块,提取高频LPC系数,表征高频包络信息,提取高频LPC系数,表征高频包络信息,具体为,对每一帧高频原始信号进行一次八阶线性预测分析,得到一组八阶的线性预测编码系数,并转换为导抗频谱对系数,导抗频谱对系数进一步变换为导抗谱频率系数;量化后的ISF系数变换为量化后线性预测系数,并以此产生高频合成滤波器;假设高频合成滤波器288点的冲击响应为,用288点的快速傅里叶变换将变换到频域,以此表示原始高频信号的频谱包络;
增益提取模块,提取高频与准高频信号之间的对应频带之间的增益信息,计算288样点帧准高频信号和原对应子带间的能量增益,并进行编码传递到解码端;
重建模块,用于利用增益信息调整调整准高频信号完成高频重建。
作为本发明再进一步方案:所述音乐信号带宽扩展模块包括:
加窗转换模块,对原始高低频信号进行加窗并变换到频域,利用重叠区域为32样点的余弦窗对每一个256样点帧的原始高低频信号进行加窗,得到288样点帧;对加窗后的原始信号和高频信号通过FFT变换到频域;
相关性计算模块,计算高低频信号对应频带之间的相关性,针对每一个288样点帧,计算对应高低频信号之间的相关性,从而确定用低频信号还是白噪声信号来重建;
能量参数提取模块,提取指导高频重建所需的能量参数,采用低频信号来复制高频信号,需提取对应低频子带的能量增益;若采用白噪声重建高频,则需提取高频子带平均能量;
重建模块,用于利用能量参数调整低频或白噪声信号完成高频重建。
与现有技术相比,本发明的有益效果是:
本发明充分考虑到了不同信号类型的特性,从信号类型的角度着手,通过检测当前帧信号的ACELP/TVC编码模式判断当前帧的信号类型(语音/音乐),再基于信号类型分别对语音和音乐信号进行自适应的高频重建策略,以提高音频恢复质量。因此本发明实施例技术方案能够更准确的进行高频重建。
附图说明
图1是本发明实施例带宽扩展的方法流程图。
图2是本发明实施例语音帧信号高频重建策略流程图。
图3是本发明实施例音乐帧信号高频重建策略流程图。
图4是本发明实施例带宽扩展的模块装置图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图1所示,是本发明实施例的方法流程图,音频带宽扩展的方法,包括以下步骤:
步骤101:检测当前帧信号在混合ACELP/TVC核心编码器中的编码模式来区分信号类型,若当前帧信号在核心编码器的编码模式为ACELP256,则当前帧为语音信号;若当前帧信号在核心编码器的编码模式为TVC256、TVC512、TVC1024,则当前帧为音乐信号;
步骤102:基于信号类型分别对语音和音乐信号选择自适应的高频重建策略,若为语音信号,则采用基于LPC的带宽扩展策略;若为音乐信号,则采用基于高低频信号相关性的频带复制带宽扩展策略。
本发明针对语音帧信号和音乐帧信号分别采用不同的带宽扩展策略,下面将分别介绍。
如图2所示,是本发明实施例语音帧信号高频重建策略流程图,包括以下步骤:
步骤201,提取低频残差信号作为激励信号,低带原始信号经过低带线性预测逆滤波器滤波后得到低带残差信号作为激励信号,低带的线性预测系数每帧更新一次。每一个1024样点超帧的低带激励信号通过长度为288样点,重叠区域为32样点的余弦窗分割为四个长度288样点的帧。
步骤202,提取高频LPC系数表征高频包络信息,对每一帧高频原始信号进行一次八阶线性预测分析,得到一组八阶的线性预测编码(LPC)系数,并转换为导抗频谱对(ISP)系数,导抗频谱对系数进一步变换为导抗谱频率(ISF)系数。量化后的ISF系数变换为量化后线性预测系数,并以此产生高频合成滤波器。假设高频合成滤波器288点的冲击响应为,用288点的快速傅里叶变换(FFT)将变换到频域,以此表示原始高频信号的频谱包络。
步骤203,利用步骤202得到的高频包络信息和步骤201得到的低频残差信号得到准高频信号,每一帧的低带激励信号和高带合成滤波器的冲击响应用288点的FFT变换到频域。高带合成滤波器冲击响应的288点FFT系数用其中的最大值归一化。将低带激励信号的FFT系数乘以归一化的高带合成滤波器的冲击响应FFT系数就可以得到频域的准高频信号。
步骤204,提取增益信息,计算288样点帧准高频信号和原始高频信号对应子带间的能量增益。
步骤205,高频重建,利用步骤204得到的能量增益调整步骤203得到的准高频信号完成高频重建。
如图3所示,是本发明实施例音乐帧信号高频重建策略流程图,包括以下步骤:
步骤301,对原始高低频信号进行加窗并变换到频域,利用重叠区域为32样点的余弦窗对每一个256样点帧的原始高低频信号进行加窗,得到288样点帧。对加窗后的原始信号和高频信号通过FFT变换到频域。
步骤302,计算高低频信号对应频带之间的相关性,针对每一个288样点帧,通过计算对应高低频信号之间的相关性,从而确定用低频信号还是白噪声信号来重建。
步骤303,提取能量参数,根据步骤302相关性计算判断的结果,若采用低频信号来复制高频信号,需提取对应低频子带的能量增益。若采用白噪声重建高频,则需提取高频子带平均能量。
步骤304,高频重建,利用步骤303得到的能量参数调整步骤304得到的激励信号完成高频重建。
如图4所示,一种音频带宽扩展的装置,包括:信号类型检测模块401、语音信号带宽扩展模块402、音乐信号带宽扩展模块403。
信号类型检测模块401,用于检测当前帧信号在混合ACELP/TVC核心编码器中的编码模式来区分信号类型。
语音信号带宽扩展模块402,用于完成语音帧信号的高频重建;
音乐信号带宽扩展模块403,用于完成音乐帧信号的高频重建。
所述语音信号带宽扩展模块402,进一步包括:低频残差提取模块4021,包络信息提取模块4022,增益提取模块4023,重建模块4024。
低频残差提取模块4021,用于提取低频残差信号作为激励信号;
包络信息提取模块4022,用于提取高频LPC系数,表征高频包络信息;
增益提取模块4023,用于提取高频与准高频信号之间的对应频带之间的增益信息;
重建模块4024,用于利用增益信息调整调整准高频信号完成高频重建。
所述音乐信号带宽扩展模块,进一步包括:加窗转换模块4031,相关性计算模块4032,能量参数提取模块4033,重建模块4034。
加窗转换模块4031,用于对原始高低频信号进行加窗并变换到频域。
相关性计算模块4032,用于计算高低频信号对应频带之间的相关性。
能量参数提取模块4033,用于提取指导高频重建所需的能量参数。
重建模块4034,用于利用能量参数调整低频或白噪声信号完成高频重建。
对于本领域技术人员而言,显然本发明不限于上述示范性实施例的细节,而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现本发明。因此,无论从哪一点来看,均应将实施例看作是示范性的,而且是非限制性的,本发明的范围由所附权利要求而不是上述说明限定,因此旨在将落在权利要求的等同要件的含义和范围内的所有变化囊括在本发明内。不应将权利要求中的任何附图标记视为限制所涉及的权利要求。

Claims (5)

1.一种音频带宽扩展的方法,其特征在于,包括如下步骤:
步骤1,通过检测当前帧信号在混合ACELP/TVC核心编码器中的编码模式来区分信号类型;
若当前帧信号在核心编码器的编码模式为ACELP256,则当前帧为语音信号;
若当前帧信号在核心编码器的编码模式为TVC256、TVC512、TVC1024,则当前帧为音乐信号;
步骤2,同时基于信号类型分别对语音和音乐信号选择自适应的高频重建策略;
若为语音信号,则采用基于LPC的带宽扩展方法;
若为音乐信号,则采用基于高低频信号相关性的频带复制带宽扩展方法;
对于音乐信号,采用基于高低频信号相关性的频带复制带宽扩展方法具体为:
(1)对原始高低频信号进行加窗并变换到频域;
利用重叠区域为32样点的余弦窗对每一个256样点帧的原始高低频信号进行加窗,得到288样点帧;对加窗后的原始信号和高频信号通过FFT变换到频域;
(2)计算高低频信号对应频带之间的相关性,若相关性较高,则将低频信号复制到高频频段用于高频重建;若高低频信号之间的相关性较低,则将白噪声信号填充到高频频段用于高频重建;
针对每一个288样点帧,计算对应高低频信号之间的相关性,从而确定用低频信号还是白噪声信号来重建;
(3)提取能量参数;
若采用低频信号来复制高频信号,需提取对应低频子带的能量增益;若采用白噪声重建高频,则需提取高频子带平均能量;
(4)利用能量参数调整复制的低频信号或白噪声信号完成高频重建。
2.根据权利要求1所述的音频带宽扩展的方法,其特征在于,所述若为语音信号,采用基于LPC的带宽扩展方法具体为:
(1)提取低频残差信号作为激励信号;
低带原始信号经过低带线性预测逆滤波器滤波后得到低带残差信号作为激励信号,低带的线性预测系数每帧更新一次;每一个1024样点超帧的低带激励信号通过长度为288样点,重叠区域为32样点的余弦窗分割为四个长度288样点的帧
(2)提取高频LPC系数,表征高频包络信息;
对每一帧高频原始信号进行一次八阶线性预测分析,得到一组八阶的线性预测编码系数,并转换为导抗频谱对系数,导抗频谱对系数进一步变换为导抗谱频率系数;量化后的导抗谱频率系数变换为量化后线性预测系数,并以此产生高频合成滤波器;假设高频合成滤波器288点的冲击响应为,用288点的快速傅里叶变换将变换到频域,以此表示原始高频信号的频谱包络;
(3)利用高频包络信息和低频残差信号得到准高频信号;
每一帧的低带激励信号和高带合成滤波器的冲击响应用288点的FFT变换到频域;高带合成滤波器冲击响应的288点FFT系数用其中的最大值归一化;将低带激励信号的FFT系数乘以归一化的高带合成滤波器的冲击响应FFT系数就可以得到频域的基础信号;
(4)提取高低频对应频带之间的增益信息;
计算288样点帧准高频信号和原始高频信号对应子带间的能量增益,
(5)利用高频信号的谱包络信息及增益信息调整原始低频信号生成的高频激励信号来重建高频信号。
3.一种如权利要求1或2所述音频带宽扩展的方法的扩展装置,其特征在于,包括信号类型检测模块、语音信号带宽扩展模块和音乐信号带宽扩展模块,
所述信号类型检测模块,用于检测当前帧信号在混合ACELP/TVC核心编码器中的编码模式来区分信号类型;
所述语音信号带宽扩展模块,用于完成语音帧信号的高频重建,
所述音乐信号带宽扩展模块,用于完成音乐帧信号的高频重建。
4.根据权利要求3所述的扩展装置,其特征在于,所述语音信号带宽扩展模块包括:
低频残差提取模块,提取低频残差信号作为激励信号,低带原始信号经过低带线性预测逆滤波器滤波后得到低带残差信号作为激励信号,低带的线性预测系数每帧更新一次;每一个1024样点超帧的低带激励信号通过长度为288样点,重叠区域为32样点的余弦窗分割为四个长度288样点的帧;
包络信息提取模块,提取高频LPC系数,表征高频包络信息,提取高频LPC系数,表征高频包络信息,具体为,对每一帧高频原始信号进行一次八阶线性预测分析,得到一组八阶的线性预测编码系数,并转换为导抗频谱对系数,导抗频谱对系数进一步变换为导抗谱频率系数;量化后的ISF系数变换为量化后线性预测系数,并以此产生高频合成滤波器;假设高频合成滤波器288点的冲击响应为,用288点的快速傅里叶变换将变换到频域,以此表示原始高频信号的频谱包络;
增益提取模块,提取高频与准高频信号之间的对应频带之间的增益信息,计算288样点帧准高频信号和原对应子带间的能量增益,并进行编码传递到解码端;
重建模块,用于利用增益信息调整调整准高频信号完成高频重建。
5.根据权利要求3所述的扩展装置,其特征在于,所述音乐信号带宽扩展模块包括:
加窗转换模块,对原始高低频信号进行加窗并变换到频域,利用重叠区域为32样点的余弦窗对每一个256样点帧的原始高低频信号进行加窗,得到288样点帧;对加窗后的原始信号和高频信号通过FFT变换到频域;
相关性计算模块,计算高低频信号对应频带之间的相关性,针对每一个288样点帧,计算对应高低频信号之间的相关性,从而确定用低频信号还是白噪声信号来重建;
能量参数提取模块,提取指导高频重建所需的能量参数,采用低频信号来复制高频信号,需提取对应低频子带的能量增益;若采用白噪声重建高频,则需提取高频子带平均能量;
重建模块,用于利用能量参数调整低频或白噪声信号完成高频重建。
CN201610973582.0A 2016-11-01 2016-11-01 一种音频带宽扩展的方法及扩展装置 Active CN107221334B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610973582.0A CN107221334B (zh) 2016-11-01 2016-11-01 一种音频带宽扩展的方法及扩展装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201610973582.0A CN107221334B (zh) 2016-11-01 2016-11-01 一种音频带宽扩展的方法及扩展装置

Publications (2)

Publication Number Publication Date
CN107221334A CN107221334A (zh) 2017-09-29
CN107221334B true CN107221334B (zh) 2020-12-29

Family

ID=59928154

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201610973582.0A Active CN107221334B (zh) 2016-11-01 2016-11-01 一种音频带宽扩展的方法及扩展装置

Country Status (1)

Country Link
CN (1) CN107221334B (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107886966A (zh) * 2017-10-30 2018-04-06 捷开通讯(深圳)有限公司 终端及其优化语音命令的方法、存储装置
CN108630212B (zh) * 2018-04-03 2021-05-07 湖南商学院 非盲带宽扩展中高频激励信号的感知重建方法与装置
EP3874492B1 (en) * 2018-10-31 2023-12-06 Nokia Technologies Oy Determination of spatial audio parameter encoding and associated decoding
CN113299313B (zh) * 2021-01-28 2024-03-26 维沃移动通信有限公司 音频处理方法、装置及电子设备
CN113345406B (zh) * 2021-05-19 2024-01-09 苏州奇梦者网络科技有限公司 神经网络声码器语音合成的方法、装置、设备以及介质

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458930A (zh) * 2007-12-12 2009-06-17 华为技术有限公司 带宽扩展中激励信号的生成及信号重建方法和装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050004793A1 (en) * 2003-07-03 2005-01-06 Pasi Ojala Signal adaptation for higher band coding in a codec utilizing band split coding
US7830921B2 (en) * 2005-07-11 2010-11-09 Lg Electronics Inc. Apparatus and method of encoding and decoding audio signal
CN101276587B (zh) * 2007-03-27 2012-02-01 北京天籁传音数字技术有限公司 声音编码装置及其方法和声音解码装置及其方法
CN101471072B (zh) * 2007-12-27 2012-01-25 华为技术有限公司 高频重建方法、编码装置和解码装置
CN101281749A (zh) * 2008-05-22 2008-10-08 上海交通大学 可分级的语音和乐音联合编码装置和解码装置
BR112013016350A2 (pt) * 2011-02-09 2018-06-19 Ericsson Telefon Ab L M codificação/decodificação eficaz de sinais de áudio
CN102254562B (zh) * 2011-06-29 2013-04-03 北京理工大学 一种相邻高低速率编码模式间切换的变速率音频编码方法
CN104347067B (zh) * 2013-08-06 2017-04-12 华为技术有限公司 一种音频信号分类方法和装置
CN103646647B (zh) * 2013-12-13 2016-03-16 武汉大学 混合音频解码器中帧差错隐藏的谱参数代替方法及系统
CN103957216B (zh) * 2014-05-09 2017-10-03 武汉大学 基于音频信号特性分类的无参考音频质量评价方法和系统
CN105513601A (zh) * 2016-01-27 2016-04-20 武汉大学 一种音频编码带宽扩展中频带复制的方法及装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101458930A (zh) * 2007-12-12 2009-06-17 华为技术有限公司 带宽扩展中激励信号的生成及信号重建方法和装置

Also Published As

Publication number Publication date
CN107221334A (zh) 2017-09-29

Similar Documents

Publication Publication Date Title
JP7383067B2 (ja) 高度なスペクトラム拡張を使用して量子化ノイズを低減するための圧縮伸張装置および方法
CN107221334B (zh) 一种音频带宽扩展的方法及扩展装置
CN107077858B (zh) 使用具有全带隙填充的频域处理器以及时域处理器的音频编码器和解码器
EP2352145B1 (en) Transient speech signal encoding method and device, decoding method and device, processing system and computer-readable storage medium
KR100958144B1 (ko) 오디오 압축
US9697840B2 (en) Enhanced chroma extraction from an audio codec
JP4740260B2 (ja) 音声信号の帯域幅を疑似的に拡張するための方法および装置
CN106796800B (zh) 音频编码器、音频解码器、音频编码方法和音频解码方法
RU2680352C1 (ru) Способ и устройство для определения режима кодирования, способ и устройство для кодирования аудиосигналов и способ и устройство для декодирования аудиосигналов
JP6185085B2 (ja) 利得制御を行うシステムおよび方法
JP6775064B2 (ja) オーディオ信号復号器における改善された周波数帯域拡張
KR20140023389A (ko) 파라메트릭 오디오 코딩 방식들의 포렌식 검출
US9552823B2 (en) Apparatus and method for generating a frequency enhancement signal using an energy limitation operation
EP2772911A1 (en) Method and device for quantizing voice signals in a band-selective manner
KR101108955B1 (ko) 오디오 신호 처리 방법 및 장치
KR101352608B1 (ko) 음성 신호의 대역폭 확장 방법 및 그 장치
CN115966218A (zh) 一种骨导辅助的气导语音处理方法、装置、介质及设备

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant