CN107203702B - 一种分析蛋白质侧链构象含时动力学演化的方法 - Google Patents

一种分析蛋白质侧链构象含时动力学演化的方法 Download PDF

Info

Publication number
CN107203702B
CN107203702B CN201710026473.2A CN201710026473A CN107203702B CN 107203702 B CN107203702 B CN 107203702B CN 201710026473 A CN201710026473 A CN 201710026473A CN 107203702 B CN107203702 B CN 107203702B
Authority
CN
China
Prior art keywords
protein
amino acid
acid residue
side chain
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201710026473.2A
Other languages
English (en)
Other versions
CN107203702A (zh
Inventor
何建锋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Institute of Technology BIT
Original Assignee
Beijing Institute of Technology BIT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Beijing Institute of Technology BIT filed Critical Beijing Institute of Technology BIT
Priority to CN201710026473.2A priority Critical patent/CN107203702B/zh
Publication of CN107203702A publication Critical patent/CN107203702A/zh
Application granted granted Critical
Publication of CN107203702B publication Critical patent/CN107203702B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16BBIOINFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR GENETIC OR PROTEIN-RELATED DATA PROCESSING IN COMPUTATIONAL MOLECULAR BIOLOGY
    • G16B20/00ICT specially adapted for functional genomics or proteomics, e.g. genotype-phenotype associations

Landscapes

  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Biophysics (AREA)
  • Chemical & Material Sciences (AREA)
  • Molecular Biology (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Bioinformatics & Computational Biology (AREA)
  • Analytical Chemistry (AREA)
  • Evolutionary Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Theoretical Computer Science (AREA)
  • Peptides Or Proteins (AREA)

Abstract

本发明涉及一种分析蛋白质侧链构象含时动力学演化的方法,属于蛋白质结构与动力学研究领域。通过计算蛋白质运动过程中氨基酸残基侧链在每一个时刻的相对扭转角,获得氨基酸残基侧链扭转为主的重要信息,步骤为:步骤1:获取蛋白质初始结构;步骤2:采用步骤1的蛋白质初始结构进行含时分子动力学模拟,得到蛋白质运动轨迹文件;步骤3:从步骤2的蛋白质运动轨迹文件,提取氨基酸残基侧链,计算第N时刻的氨基酸残基侧链的相对扭转角;步骤4:计算第一时刻后所有时刻的氨基酸残基侧链的相对扭转角,给出相对扭转角随时间的演化。本发明解决了传统方法以及工具难以观察蛋白质侧链构象含时动力学演化的难题。

Description

一种分析蛋白质侧链构象含时动力学演化的方法
技术领域
本发明涉及分析蛋白质折叠或其他动力学过程中空间结构的变化,尤其涉及一种分析蛋白质侧链构象含时动力学演化的方法,属于蛋白质结构与动力学研究领域。
背景技术
蛋白质是最重要的生物大分子之一,它在生物体内承担着物质输运、信号传递和能量供给等生物学功能。蛋白质的生物学功能是由其自然折叠而成的空间结构决定的。实验上,采用X射线衍射、多维核磁共振等技术可以测定蛋白质的结构。理论上,人们发展了分子动力学技术研究蛋白质折叠和动力学过程。它通过计算蛋白质分子中原子的运动轨迹、原子间的相互作用等,在原子尺度上阐明蛋白质实现生物学功能过程中空间结构演化的微观动力学机制。然而,蛋白质分子的组成与结构非常复杂,其折叠和动力学过程涉及大量原子的集体运动,发展一些结构分析方法非常必要。目前已发展了一些理论方法,以及空间结构可视化分析软件,如Cn3D、VMD、Jmol等。这些方法和工具在展示蛋白质分子三维空间构象、揭示结构特征、分析原子或基团间相互作用等方面非常有用。但是,它们是对某一时刻或某一帧的空间结构进行分析,缺乏展现蛋白质分子空间结构含时演化的能力。
由于组成蛋白质的各种氨基酸主要区别是侧链基团,每个蛋白质所具有的独特空间结构和功能与侧链紧构型密相关。在蛋白质实现其生物学功能的过程中,相关侧链构型的伴随变化(如旋转、扭转、弯曲等)是一个重要的方面。因而,在蛋白质折叠或其他动力学过程模拟中,分析蛋白质的侧链构象含时演化显得非常重要,目前这方面的研究还很少。蛋白质的空间结构演化是主链和侧链的协同运动,目前的结构分析工具没有将主链和侧链运动分离,难以观测特定侧链的构象演化,还需要更有效的分析手段和方法。
发明内容
本发明的目的是针对目前还没有分析蛋白质折叠和其他动力学过程中侧链结构变化的技术现状,提出了一种分析蛋白质侧链构象含时动力学演化的方法。
本发明所提方法通过计算蛋白质运动过程中氨基酸残基侧链在每一个时刻的相对扭转角,获得氨基酸残基侧链扭转为主的重要信息。
为实现上述目的,一种分析蛋白质侧链构象含时动力学演化的方法,步骤如下:
步骤1:获取蛋白质初始结构;
其中,蛋白质初始结构可以从蛋白质数据银行(PDB,http://www.rcsb.org)获取,也可以通过蛋白质结构建模的方法与工具获取;
步骤2:采用步骤1的蛋白质初始结构进行含时分子动力学模拟,得到蛋白质运动轨迹文件,具体为:
以步骤1的蛋白质初始结构,利用分子动力学模拟软件,选择合适的力场,对蛋白质进行含时分子动力学模拟,得到蛋白质中各原子的运动轨迹信息,保存运动轨迹文件;
其中,力场的一种优选方案是全原子力场和联合原子力场;
其中,模拟积分步长取Δt飞秒,对整个系统进行T纳秒的分子动力学模拟;每隔W个积分步输出一次蛋白质的结构,即每Δt×W飞秒记录一次蛋白质结构的信息;运动轨迹文件共保存K=(T×106)/(Δt×W)个时刻的结构,依次编号为N=1,2,3,…,K;
其中,Δt、W、K值为大于1的正整数;
步骤3:从步骤2的蛋白质运动轨迹文件,提取氨基酸残基侧链,计算第N时刻的氨基酸残基侧链的相对扭转角,具体为:
从步骤2得到的蛋白质运动轨迹文件,获得第N时刻蛋白质的结构,输出坐标数据文件;从坐标数据文件中,提取两个待考察氨基酸残基中主链碳原子、侧链第一个碳原子的坐标;计算这四个碳原子形成的二面角,即为两个待考察氨基酸残基侧链的相对扭转角;
其中,第N时刻对应步骤2中编号N等于1的时刻;
其中,主链碳原子、侧链第一个碳原子记为Cα、Cβ,它们从蛋白质的氮末端到碳末端根据氨基酸残基顺序编号;两个待考察氨基酸残基的编号记为i和j,i和j为1到M的正整数,M是蛋白质中氨基酸残基总数;i表示编号靠前的氨基酸残基,j表示编号靠后的氨基酸残基,j大于i;j与i的差等于1表示两个氨基酸残基相邻,j与i的差大于1表示两个氨基酸残基非相邻;
其中,第i个氨基酸残基的主链碳原子、侧链第一个碳原子记为Ci α、Ci β;它们坐标分别记为ri α、ri β;第j个氨基酸残基的主链碳原子、侧链第一个碳原子记为Cj α、Cj β;它们坐标分别记为rj α、rj β
两个待考察氨基酸残基侧链的相对扭转角,具体通过如下步骤计算:
步骤3.1计算第i个氨基酸残基的Ci α原子指向第j个氨基酸残基的Cj α原子的单位矢量xij α,表述为如下公式(1):
Figure BDA0001209676890000021
步骤3.2计算第i个氨基酸残基的Ci α原子指向侧链Ci β原子的单位矢量ai β,表述为如下公式(2):
Figure BDA0001209676890000031
步骤3.3计算步骤3.2的单位矢量ai β在步骤3.1的单位矢量xij α法平面上的单位投影矢量ai,表述为如下公式(3):
Figure BDA0001209676890000032
步骤3.4计算第j个氨基酸残基的Cj α原子指向侧链Cj β原子的单位矢量bj β,表述为如下公式(4):
Figure BDA0001209676890000033
步骤3.5计算步骤3.4的单位矢量bj β在步骤3.1的单位矢量xij α法平面上的单位投影矢量bj,表述为如下公式(5):
Figure BDA0001209676890000034
步骤3.6由步骤3.3和步骤3.5的单位投影矢量ai、bj,计算Ci β-Ci α-Cj α-Cj β原子形成的二面角φ,即第i和j个氨基酸残基侧链的相对扭转角,表述为如下公式(6):
cosφ=ai·bj (6)
步骤4:计算第一时刻后所有时刻的氨基酸残基侧链的相对扭转角,给出相对扭转角随时间的演化,即:重复步骤3,并且N对应N=2,3,…,K,具体为:
从步骤2得到的蛋白质运动轨迹文件,获得第一时刻后所有时刻的蛋白质结构,输出相应的坐标数据文件;采用与步骤3相同的方法,计算两个待考察氨基酸残基侧链在这些时刻的相对扭转角,输出保存这些时刻相对扭转角的值;以时间为横轴,相对扭转角的值为纵轴,画出从第一时刻到最终时刻氨基酸残基侧链的相对扭转角的变化图;
其中,两个待考察氨基酸残基与步骤3中的提取过程一致;
其中,第一时刻后所有时刻对应步骤2描述中的N=2,3,…,K时刻;
至此,从步骤1到步骤4,完成了一种分析蛋白质侧链构象含时动力学演化的方法。
有益效果
一种分析蛋白质侧链构象含时动力学演化的方法,与现有技术及方法相比,具有如下有益效果:
(1)能够分析蛋白质折叠和其他动力学过程中蛋白质结构的含时演化;
(2)能够将蛋白质含时动力学过程中主链和侧链运动分离,分析特定侧链的构象演化;
(3)不仅能够分析非相邻的氨基酸残基侧链的含时动力学演化,也可分析所有相邻的氨基酸残基侧链的含时动力学演化;
(4)对研究蛋白质折叠过程中二级结构的形成、蛋白质生物学功能实现与构型变化内在联系等具有基础和应用价值;
(5)便于在与蛋白质折叠和动力学、蛋白质结构和功能相关的生命科学及生物医药学领域广泛应用。
附图说明
图1为一种分析蛋白质侧链构象含时动力学演化的方法流程图;
图2为原癌基因c-myc蛋白质的含时动力学演化过程中Leu951与Ala955侧链相对扭转角变化计算的流程示意图;
图3为原癌基因c-myc蛋白质中Leu951与Ala955的侧链相对扭转角随时间的演化图;
图4是原癌基因c-myc蛋白质中所有相邻氨基酸残基侧链的相对扭转角在N=[300-1300]时刻的演化图。
具体实施方式
下面结合附图和实施例对本发明的方法作进一步说明。
实施例1
本实施例详细阐述了本发明“一种分析蛋白质侧链构象含时动力学演化的方法”在具体实施时针对原癌基因c-myc蛋白质的含时动力学演化过程中Leu951与Ala955侧链相对扭转角变化计算的流程。
图1是一种分析蛋白质侧链构象含时动力学演化的方法的流程图。从图中可以看出,本方法包含的过程为:步骤(1):获取蛋白质初始结构;步骤(2):采用步骤(1)的蛋白质初始结构进行含时分子动力学模拟,保存蛋白质运动轨迹文件;步骤(3):计算第一个时刻的氨基酸残基侧链的相对扭转角;步骤(4):计算其他时刻的氨基酸残基侧链的相对扭转角,给出相对扭转角随时间的演化;
图2为本实施例的流程图,从图中可以看出,原癌基因c-myc蛋白质的含时动力学演化过程中Leu951与Ala955侧链相对扭转角变化计算包含如下步骤:
步骤一、从蛋白质数据银行(PDB,http://www.rcsb.org)下载代码为1nkp的结构数据文件,提取原癌基因c-myc蛋白质的结构,保存为1nkp.pdb;
步骤二、以步骤一的1nkp.pdb为初始结构,利用GROMACS 4.6.3软件,采用Gromos53a6力场,对原癌基因c-myc蛋白质进行含时分子动力学模拟,得到蛋白质中各原子的运动轨迹,保存为1nkp_md.trr;
其中,蛋白质置于长方体水盒子中,蛋白质到水盒子壁的距离设为2.0纳米;水分子采用SPC模型;NaCl浓度设为0.15摩尔/升;模拟中,采用周期性边界条件;温度设为290开,压强取1个标准大气压,平衡时采用Berendsen方法控温控压,分子动力学计算时采用vrescale方法控温、Parrinelo-Rahman方法控压;长程相互作用的截断半径取0.9埃;积分步长取2飞秒,对整个系统进行50纳秒的分子动力学模拟;
其中,每20皮秒记录一次蛋白质结构的信息,1nkp_md.trr文件中共保存2500个时刻的结构,依次编号为N=1,2,3,…,2500,对应着时间t=20,40,60,…,50000皮秒时蛋白质的结构;
步骤三、计算第1个时刻Leu951与Ala955侧链的相对扭转角,具体为:
从步骤二得到的蛋白质中各原子的运动轨迹1nkp_md.trr文件,获得N=1时刻蛋白质的结构,提取非相邻的两个氨基酸残基Leu951与Ala955中主链Cα、侧链Cβ原子的坐标r951 α、r951 β、r955 α、r955 β;按照发明内容步骤(3)中步骤(3).1到步骤(3).5所述,采用公式(1)到公式(6),计算出N=1时刻两个氨基酸残基Leu951与Ala955侧链的相对扭转角,记为
Figure BDA0001209676890000051
其中,
Figure BDA0001209676890000052
的下标与步骤二中N的编号一致;
步骤四、计算第2到2500时刻Leu951与Ala955侧链的相对扭转角,给出相对扭转角随时间的演化,具体为:
从步骤二得到的蛋白质中各原子的运动轨迹1nkp_md.trr文件,获得N=2,3,…,2500时刻蛋白质的结构,提取这些时刻氨基酸残基Leu951与Ala955中主链Cα、侧链Cβ原子的坐标;在每一个时刻,采用发明内容步骤(3)中步骤(3).1到步骤(3).5所述的公式(1)到公式(6),计算出两个氨基酸残基Leu951与Ala955侧链的相对扭转角,其值按照时刻编号顺序记为
Figure BDA0001209676890000053
以时刻编号N为横轴,相对扭转角的值为纵轴,画出氨基酸残基Leu951与Ala955侧链的相对扭转角的变化图;
图3是原癌基因c-myc蛋白质中Leu951与Ala955的侧链相对扭转角随时间的演化图;图中横坐标X Axis是时刻编号N,纵坐标Y Axis是Leu951与Ala955的侧链相对扭转角;图中实线是相应时间区间中相对扭转角的平均值,虚线是该时间区间中相对扭转角的平均波动;Bend表示弯曲构型,Turn表示转角构型;从图中相对扭转角随时间的演化可以分析出:N=[1,400]区间的相对扭转角平均值约为0.52,N=[400,500]区间的相对扭转角平均值约为-0.29,N=[500,700]区间的相对扭转角平均值约为0.46,N=[700,800]区间的相对扭转角平均值约为0.30和-0.45;这个结果反映出,在该动力学过程中,Leu951与Ala955的侧链开始处于较小的相对扭转,到N=[400,500]时会出现小的反向相对扭转,N=[500,700]会变回与[1,400]相近的扭转角,[700,800]时存在正反扭转之间快速变换;
至此,从步骤一到步骤四,完成了原癌基因c-myc蛋白质的含时动力学演化过程中Leu951与Ala955侧链相对扭转角变化计算。
实施例2
本实施例按照本发明“一种分析蛋白质侧链构象含时动力学演化的方法”的步骤和实例例1所述流程,阐述原癌基因c-myc蛋白质的含时动力学演化过程中所有相邻氨基酸残基侧链的相对扭转角变化计算及其结果。
原癌基因c-myc蛋白质的含时动力学演化过程中所有相邻氨基酸残基侧链的相对扭转角变化计算,步骤A、B与实施例1步骤一、二相同;在进行氨基酸残基侧链相对扭转角随时间的演化计算时,需依次选取原癌基因c-myc蛋白质的氨基酸残基对,方法是从第1个氨基酸残基开始按顺序选择:1与2、2与3、3与4、…、M-1与M,遇到甘氨酸残基跳过不计,M是蛋白质中氨基酸残基总数;每个氨基酸残基对的侧链相对扭转角计算与实施例1步骤三、四相同;最终给出的是,所有时刻、所有相邻的氨基酸残基侧链相对扭转角;
图4是原癌基因c-myc蛋白质中所有相邻氨基酸残基侧链的相对扭转角在N=[300-1300]时刻的演化图;图中横坐标X Axis是时刻编号N,纵坐标Y Axis是的氨基酸残基编号;一种优选的办法是,用相对扭转角值与颜色的对应表示角度值变化,蓝色到红色依次对应着-π到+π弧度;图中显示出,在N=[560,800]区间,959-960、960-961、961-962的氨基酸残基对的侧链相对扭转角会明显增大;在N=[800,900]区间,955-956氨基酸残基对的侧链相对扭转角也会变大;
以上所述为本发明的两个典型实施例而已,本发明不应该局限于该实施例和附图所公开的内容。凡是不脱离本发明所公开的精神下完成的等效或修改,都落入本发明保护的范围。

Claims (5)

1.一种分析蛋白质侧链构象含时动力学演化的方法,其特征在于:步骤如下:
步骤1:获取蛋白质初始结构;
步骤2:采用步骤1的蛋白质初始结构进行含时分子动力学模拟,得到蛋白质运动轨迹文件;
步骤3:从步骤2的蛋白质运动轨迹文件,提取氨基酸残基侧链,计算第N时刻的氨基酸残基侧链的相对扭转角,具体为:
从步骤2得到的蛋白质运动轨迹文件,获得第N时刻蛋白质的结构,输出坐标数据文件;从坐标数据文件中,提取两个待考察氨基酸残基中主链碳原子、侧链第一个碳原子的坐标;计算这四个碳原子形成的二面角,即为两个待考察氨基酸残基侧链的相对扭转角;
其中,第N时刻对应步骤2中编号N等于1的时刻;
其中,主链碳原子、侧链第一个碳原子记为Cα、Cβ,它们从蛋白质的氮末端到碳末端根据氨基酸残基顺序编号;两个待考察氨基酸残基的编号记为i和j,i和j为1到M的正整数,M是蛋白质中氨基酸残基总数;i表示编号靠前的氨基酸残基,j表示编号靠后的氨基酸残基,j大于i;j与i的差等于1表示两个氨基酸残基相邻,j与i的差大于1表示两个氨基酸残基非相邻;
其中,第i个氨基酸残基的主链碳原子、侧链第一个碳原子记为Ci α、Ci β;它们坐标分别记为ri α、ri β;第j个氨基酸残基的主链碳原子、侧链第一个碳原子记为Cj α、Cj β;它们坐标分别记为rj α、rj β
步骤4:计算第一时刻后所有时刻的氨基酸残基侧链的相对扭转角,给出相对扭转角随时间的演化;
至此,从步骤1到步骤4,完成了一种分析蛋白质侧链构象含时动力学演化的方法。
2.根据权利要求1所述的一种分析蛋白质侧链构象含时动力学演化的方法,其特征在于:步骤1中,蛋白质初始结构可以从蛋白质数据银行PDB,http://www.rcsb.org获取,也可以通过蛋白质结构建模的方法与工具获取。
3.根据权利要求1所述的一种分析蛋白质侧链构象含时动力学演化的方法,其特征还在于:步骤2,具体为:以步骤1的蛋白质初始结构,利用分子动力学模拟软件,选择全原子力场和联合原子力场,对蛋白质进行含时分子动力学模拟,得到蛋白质中各原子的运动轨迹信息,保存运动轨迹文件;
其中,模拟积分步长取Δt飞秒,对整个系统进行T纳秒的分子动力学模拟;每隔W个积分步输出一次蛋白质的结构,即每Δt×W飞秒记录一次蛋白质结构的信息;运动轨迹文件共保存K=(T×106)/(Δt×W)个时刻的结构,依次编号为N=1,2,3,…,K;
其中,Δt、W、K值为大于1的正整数。
4.根据权利要求1所述的一种分析蛋白质侧链构象含时动力学演化的方法,其特征在于:
两个待考察氨基酸残基侧链的相对扭转角,具体通过如下步骤计算:
步骤3.1计算第i个氨基酸残基的Ci α原子指向第j个氨基酸残基的Cj α原子的单位矢量xij α,表述为如下公式(1):
Figure FDA0002363039850000021
步骤3.2计算第i个氨基酸残基的Ci α原子指向侧链Ci β原子的单位矢量ai β,表述为如下公式(2):
Figure FDA0002363039850000022
步骤3.3计算步骤3.2的单位矢量ai β在步骤3.1的单位矢量xij α法平面上的单位投影矢量ai,表述为如下公式(3):
Figure FDA0002363039850000023
步骤3.4计算第j个氨基酸残基的Cj α原子指向侧链Cj β原子的单位矢量bj β,表述为如下公式(4):
Figure FDA0002363039850000024
步骤3.5计算步骤3.4的单位矢量bj β在步骤3.1的单位矢量xij α法平面上的单位投影矢量bj,表述为如下公式(5):
Figure FDA0002363039850000025
步骤3.6由步骤3.3和步骤3.5的单位投影矢量ai、bj,计算Ci β-Ci α-Cj α-Cj β原子形成的二面角φ,即第i和j个氨基酸残基侧链的相对扭转角,表述为如下公式(6):
cosφ=ai·bj (6)。
5.根据权利要求1所述的一种分析蛋白质侧链构象含时动力学演化的方法,其特征还在于:步骤4为:重复步骤3,并且N对应N=2,3,…,K,具体为:
从步骤2得到的蛋白质运动轨迹文件,获得第一时刻后所有时刻的蛋白质结构,输出相应的坐标数据文件;采用与步骤3相同的方法,计算两个待考察氨基酸残基侧链在这些时刻的相对扭转角,输出保存这些时刻相对扭转角的值;以时间为横轴,相对扭转角的值为纵轴,画出从第一时刻到最终时刻氨基酸残基侧链的相对扭转角的变化图;
其中,两个待考察氨基酸残基与步骤3中的提取过程一致;
其中,第一时刻后所有时刻对应步骤2描述中的N=2,3,…,K时刻。
CN201710026473.2A 2017-01-13 2017-01-13 一种分析蛋白质侧链构象含时动力学演化的方法 Active CN107203702B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710026473.2A CN107203702B (zh) 2017-01-13 2017-01-13 一种分析蛋白质侧链构象含时动力学演化的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710026473.2A CN107203702B (zh) 2017-01-13 2017-01-13 一种分析蛋白质侧链构象含时动力学演化的方法

Publications (2)

Publication Number Publication Date
CN107203702A CN107203702A (zh) 2017-09-26
CN107203702B true CN107203702B (zh) 2020-04-21

Family

ID=59904860

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710026473.2A Active CN107203702B (zh) 2017-01-13 2017-01-13 一种分析蛋白质侧链构象含时动力学演化的方法

Country Status (1)

Country Link
CN (1) CN107203702B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108573123B (zh) * 2018-05-09 2021-07-30 深圳晶泰科技有限公司 药物晶体结构全景分析系统及其全景分析方法
CN111755064A (zh) * 2020-06-28 2020-10-09 北京大学深圳研究生院 基于cmap势函数的耦合二面角参数优化方法及蛋白质力场
CN114496063B (zh) * 2022-01-13 2023-05-23 北京博康健基因科技有限公司 基于天然氨基酸序列的信号肽设计与二级结构从头算建模方法和装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099809A (zh) * 2008-06-20 2011-06-15 诺华公司 识别蛋白质中大分子结合区域和易聚集区域的方法及其用途
CN103093117A (zh) * 2013-01-16 2013-05-08 湖州师范学院 一种蛋白质侧链预测的层次化建模方法
CN103514382A (zh) * 2013-10-18 2014-01-15 苏州大学 一种蛋白质侧链预测方法及预测装置
WO2015173803A2 (en) * 2014-05-11 2015-11-19 Ofek - Eshkolot Research And Development Ltd A system and method for generating detection of hidden relatedness between proteins via a protein connectivity network
CN105891170A (zh) * 2015-02-16 2016-08-24 北京大学 活体动物双光子激发延时检测荧光成像分析方法及设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102099809A (zh) * 2008-06-20 2011-06-15 诺华公司 识别蛋白质中大分子结合区域和易聚集区域的方法及其用途
CN103093117A (zh) * 2013-01-16 2013-05-08 湖州师范学院 一种蛋白质侧链预测的层次化建模方法
CN103514382A (zh) * 2013-10-18 2014-01-15 苏州大学 一种蛋白质侧链预测方法及预测装置
WO2015173803A2 (en) * 2014-05-11 2015-11-19 Ofek - Eshkolot Research And Development Ltd A system and method for generating detection of hidden relatedness between proteins via a protein connectivity network
CN105891170A (zh) * 2015-02-16 2016-08-24 北京大学 活体动物双光子激发延时检测荧光成像分析方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Towards multistage modelling of protein dynamics with monomeric Myc oncoprotein as an example;Jiaojiao Liu et al.;《arXiv》;20161205;第1-12页 *

Also Published As

Publication number Publication date
CN107203702A (zh) 2017-09-26

Similar Documents

Publication Publication Date Title
CN107203702B (zh) 一种分析蛋白质侧链构象含时动力学演化的方法
Stott et al. Tail-mediated collapse of HMGB1 is dynamic and occurs via differential binding of the acidic tail to the A and B domains
Fang et al. Molecular mechanism underlying transport and allosteric inhibition of bicarbonate transporter SbtA
Mendonça et al. An atomic model for the human septin hexamer by cryo-EM
CN110400598B (zh) 基于mm/pbsa模型的蛋白质-配体结合自由能计算方法
Goundaroulis et al. Chromatin is frequently unknotted at the megabase scale
Welsh et al. Structure of the capsid of Pf3 filamentous phage determined from X-ray fibre diffraction data at 3.1 Å resolution
Kasprzak et al. Use of RNA structure flexibility data in nanostructure modeling
Maurer et al. Calculation of relative binding free energy in the water-filled active site of oligopeptide-binding protein A
Zhao et al. Molecular dynamics simulation exploration of unfolding and refolding of a ten-amino acid miniprotein
Ezzeldin et al. Modeling of the major gas vesicle protein, GvpA: from protein sequence to vesicle wall structure
Grotz et al. Dispersion correction alleviates dye stacking of single-stranded DNA and RNA in simulations of single-molecule fluorescence experiments
Aachmann et al. NMR structure of the R-module: A parallel β-roll subunit from an Azotobacter vinelandii mannuronan C-5 epimerase
Mukherjee et al. Protamine binding site on DNA: molecular dynamics simulations and free energy calculations with full atomistic details
Lee et al. Value of models for membrane budding
Tu et al. A possible molecular mechanism for the pressure reversal of general anaesthetics: Aggregation of halothane in POPC bilayers at high pressure
Kozlova et al. Common mechanism of activated catalysis in P-loop fold nucleoside triphosphatases—United in diversity
Zhou et al. Mapping free energy pathways for ATP Hydrolysis in the E. coli ABC Transporter HlyB by the String Method
Araujo-Rocha et al. Computational studies of a DNA-based Aptasensor: toward theory-driven transduction improvement
Lin et al. Probing interactions between uranyl ions and lipid membrane by molecular dynamics simulation
Byron Hydrodynamic modeling: the solution conformation of macromolecules and their complexes
WO2017138591A1 (ja) 空間的な近さの概念を用いた生体分子データの3次元構造の再構成方法
Deng et al. Multiscale computational prediction of β-sheet peptide self-assembly morphology
Biton et al. Lac repressor mediated DNA looping: Monte Carlo simulation of constrained DNA molecules complemented with current experimental results
Azuma et al. All-atom molecular dynamics of film supported flat-shaped DNA origami in water

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant