CN107203215A - A kind of gesture and Voice command quadrotor method - Google Patents

A kind of gesture and Voice command quadrotor method Download PDF

Info

Publication number
CN107203215A
CN107203215A CN201710309254.5A CN201710309254A CN107203215A CN 107203215 A CN107203215 A CN 107203215A CN 201710309254 A CN201710309254 A CN 201710309254A CN 107203215 A CN107203215 A CN 107203215A
Authority
CN
China
Prior art keywords
msub
mrow
mover
mtd
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710309254.5A
Other languages
Chinese (zh)
Inventor
袁广民
程宇威
何洋
薛宇
孙旭阳
苏靖然
郗经纬
苑伟政
常洪龙
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN201710309254.5A priority Critical patent/CN107203215A/en
Publication of CN107203215A publication Critical patent/CN107203215A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/08Control of attitude, i.e. control of roll, pitch, or yaw
    • G05D1/0808Control of attitude, i.e. control of roll, pitch, or yaw specially adapted for aircraft
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)

Abstract

The present invention relates to a kind of by gesture and the method for Voice command quadrotor, belong to the control field of quadrotor.Its control end uses accelerometer 1, minisize gyroscopes 2, magnetometer 3, and barometer 4 to constitute ten axle posture detecting units;Data processing and transmission unit are constituted using microprocessor 5 and radio frequency chip 6;Speech detection unit is constituted using voice recognition chip 7 and miaow first 8.This method collection sensing data carries out attitude algorithm, and solution obtains hand gestures data, is translated into controlled quentity controlled variable, is sent by control signal and is transferred to quadrotor, voice then by the way of down trigger, is translated into controlled quentity controlled variable, is transmitted.Control end of the invention by being worn on hand, realizes control of the singlehanded gesture of operator to the quadrotor direction of motion, control of the phonetic order to quadrotor working condition, flexible four rotors control method is that operator brings brand-new operating experience.

Description

A kind of gesture and Voice command quadrotor method
Technical field
The present invention relates to a kind of by gesture and the method for Voice command quadrotor, belong to quadrotor Control field.
Background technology
Quadrotor is widely used in taking photo by plane due to can freely hover with VTOL, inspection, and monitoring etc. is multiple Aspect.According to control mode, quadrotor can be divided into autonomous type, semi-autonomous formula, distance type.Wherein, fly for distance type Row device, operator generally controls taking off for quadrotor using double rocking lever, and all around motion and landing etc., double to shake Bar is promoted up and down, realizes the control moved to quadrotor.
Operated however, this control mode generally requires both hands, remote control mode fixed single, operator generally requires Can stability contorting quadrotor after certain exercise.
The content of the invention
For the operating experience of further lifting quadrotor, the remote control difficulty of operator is reduced, the present invention is proposed A kind of method of gesture and the rotor of Voice command four, can be achieved one hand and is operated, and make the remote control of four rotors more flexibly, simply With it is convenient.
Method proposed by the present invention is different from traditional both hands rocking bar and controlled, but control end is worn on into hand, controls End detects the inertial data of hand, i.e. 3-axis acceleration using inertance element, and three axis angular rates, three axis magnetometer is solved and obtained The angle of pitch, roll angle and yaw angle.Control end detects phonetic order, obtained phonetic order and hand by voice recognition unit Quadrotor is passed to after portion's inertial data fusion, with reference to Fig. 4.
A kind of gesture and Voice command quadrotor method, specific rate-determining steps are as follows:
Step 1:Hand initial attitude is determined.Using 3-axis acceleration data, arcsine computing is carried out to acceleration of gravity Solution obtains hand initial pitch angleRoll angleSo as to obtain posture battle arrayWith attitude quaternion Q (t0), specifically ask Solution formula is as follows:
Wherein, ax is x-axis directional acceleration, and ay is y directional accelerations, and g is acceleration of gravity.
If Q (tk)=[q0 q1 q2 q3]T, Q (t0) can be determined by formula below:
Wherein TijRepresentIn the i-th row jth arrange element.
Step 2:Phonetic order is set.Using lists of keywords identification technology (ASR), with reference to Fig. 2.The pass of identification will be needed Keyword is converted into pinyin character.Pinyin character after conversion is write into nonspecific voice recognition chip.To different phonetic words Symbol defines different identification output characteristics:
Wherein TH be four rotor fuel gate value, △ h be hand high variable quantity, θ, γ, ψ be hand gestures Eulerian angles.
Step 3:Gyroscope is sampled.Three axis angular rates are acquired according to cycle T, angular velocity signal is obtained
Step 4:Gyroscope posture renewal.Utilize the initial value Q (t of quaternary number0) and gyro output angle rate signal, Using the increment optimized algorithm of equivalent rotating vector three, recursion resolves attitude quaternion Q (tk) and three attitude angle instantaneous value ψk、θk、 γk
If time interval [tk-1,tk] in, Δ θi(i=1,2,3) it is top in posture renewal cycle h trisection time interval The angle increment output of spiral shellThen optimize three increment rotating vector algorithm formula as follows:
By Q (tk) obtain successivelyWith attitude angle ψk、θk、γk
Step 5:Accelerometer is sampled.3-axis acceleration is gathered according to cycle T, by formula (10) (11), θ ' is obtained, γ’。
θ '=arcsin (ax/g) (11)
γ '=arcsin (ay/g) (12)
Wherein, ax is x-axis directional acceleration, and ay is y directional accelerations, and g is acceleration of gravity.
Step 6:Magnetometer is sampled.To three axis magnetometer according to periodic sampling, instantaneous value is obtained Calculating obtains ψk
If current magnetic declination is αk, according to ψ '=ψkkObtain the instantaneous value ψ ' of yaw angle;
Step 7:Calculation error.Error delta θ, △ γ, the △ ψ for three Eulerian angles that computing gyroscope is exported with accelerometer:
Step 8:Mutually fusion.By PI controllers, using formula (15), final θ, γ, ψ are obtained:That is operator's hand three Individual Eulerian angles:The angle of pitch (pitch), roll angle (roll), yaw angle (yaw).Such as Fig. 1.
Wherein T is collection period, and kp is proportioner coefficient, and ki is integrator coefficient.
Step 9:Voice flow is collected by miaow head, matched with the voice lists of keywords set by step 2, if matching Success, then carry out matching assignment according to formula (5), and directly performs step 11, if it fails to match, performs step 10.
Step 10:Hand gestures data assignment.When quadrotor smooth flight, it expects the angle of pitch and roll Angle is 0, when flight before and after quadrotor, and it expects that the angle of pitch is not 0, is set to θtar, the hand angle of pitch is above to obtain The θ arrived, obtains transitive relation:
According to the transitive relation of (16) formula, the angle of pitch of hand gestures is entered as to the expectation pitching of quadrotor Angle, realizes moving forward and backward for quadrotor.
When quadrotor or so flight, it expects that roll angle is not 0, is set to γtar, before the hand angle of pitch is The γ that face is obtained, obtains transitive relation:
According to the transitive relation of (17) formula, the roll angle of hand gestures is entered as to the expectation roll of quadrotor Angle, realizes the side-to-side movement of quadrotor.
Four rotors expect yaw angle ψtarIt is directly corresponding with hand gestures yaw angle ψ, i.e.,:
ψtar=ψ (18)
Control end gathers hand elevation information simultaneously, if the variable quantity of hand height is △ h, quadrotor highly becomes Change amount is △ H, then meets:
△ H=△ h*10 (19)
According to formula 19, by the height change of hand, the motion on quadrotor vertical direction is realized.
Step 11:Control instruction is sent.Wirelessly, by obtained expectation Eulerian angles θtartartar, with And hand high variable quantity △ h pass to quadrotor.
Control method proposed by the invention, by hand gestures and voice messaging, can be achieved quadrotor complete The control of process.
The present invention hardware configuration be:Control end hardware is made up of three parts, miniature using accelerometer 1 with reference to Fig. 3 Gyroscope 2, magnetometer 3, and barometer 4 constitute ten axle posture detecting units;Using microprocessor 5 and radio frequency chip 6 Constitute data processing and transmission unit;Speech detection unit is constituted using voice recognition chip 7 and miaow first 8.
The present invention software configuration be:Peripheral hardware initialization is carried out first, followed by the collection of sensing data, to adopting The data of collection carry out attitude algorithm, and solution obtains hand gestures data, is translated into controlled quentity controlled variable, is sent and passed by control signal Quadrotor is defeated by, voice then by the way of down trigger, is translated into controlled quentity controlled variable, is transmitted.Specific algorithm Flow refers to Fig. 4.
Present invention has the advantages that the control end by being worn on hand, realizes the singlehanded gesture of operator to four rotor flyings The control of the device direction of motion, control of the phonetic order to quadrotor working condition, flexible four rotors control method is Operator brings brand-new operating experience.
The present invention will be further described with example below in conjunction with the accompanying drawings.
Brief description of the drawings
Fig. 1 is that control end wears explanation
Fig. 2 is speech recognition technology theory diagram.
Fig. 3 is the system pie graph of control end.
Fig. 4 is control method block diagram.
Fig. 5 is the system pie graph that representative instance is applied.
In Fig. 3,1,2,3,4 constitutes ten axle posture detecting units;5,6 constitute data processing and transmission unit;7,8 constitute language Sound detection unit.
Embodiment
Control end hardware circuit of the present invention is made up of three parts, and with reference to Fig. 5, wherein posture detecting unit is selected MPU6050 3-axis accelerations and angular-rate sensor, HMC5883 magnetometers, MS5611 barometers;Data processing and transmission unit From STM32F103RCT6 single-chip microcomputers, radio frequency chip selects NRF24L01;Voice recognition unit carries out voice using miaow head Collection, LD3320 chips carry out speech processes.Control end is originated using lithium battery as energy, is supplied by LDO voltage stabilizings to 3.3V Give equipment work.
Specific rate-determining steps are as follows:
Step 1:Hand initial attitude is determined.Using 3-axis acceleration data, arcsine computing is carried out to acceleration of gravity Solution obtains hand initial pitch angleRoll angleSo as to obtain posture battle arrayWith attitude quaternion Q (t0), specifically ask Solution formula is as follows:
Wherein, ax is x-axis directional acceleration, and ay is y directional accelerations, and g is acceleration of gravity.
If Q (tk)=[q0 q1 q2 q3]T, Q (t0) can be determined by formula below:
Wherein TijRepresentIn the i-th row jth arrange element.
Step 2:Phonetic order is set.Using lists of keywords identification technology (ASR), with reference to Fig. 2.The pass of identification will be needed Keyword " takes off ", and " hovering ", " landing ", " closing " is converted into pinyin character, i.e.,:" qifei ", " xuanting ", " jiangluo ", " guanbi ".Pinyin character after conversion is write into nonspecific voice recognition chip.To different phonetic words Symbol defines different identification output characteristics:
Wherein TH be four rotor fuel gate value, △ h be hand high variable quantity, θ, γ, ψ be hand gestures Eulerian angles.
Step 3:Gyroscope is sampled.Three axis angular rates are acquired according to cycle T=10ms, angular velocity signal is obtained
Step 4:Gyroscope posture renewal.Utilize the initial value Q (t of quaternary number0) and gyro output angle rate signal, Using the increment optimized algorithm of equivalent rotating vector three, recursion resolves attitude quaternion Q (tk) and three attitude angle instantaneous value ψk、θk、 γk
If time interval [tk-1,tk] in, Δ θi(i=1,2,3) it is top in posture renewal cycle h trisection time interval The angle increment output of spiral shellThen optimize three increment rotating vector algorithm formula as follows:
By Q (tk) obtain successivelyWith attitude angle ψk、θk、γk
Step 5:Accelerometer is sampled.3-axis acceleration is gathered according to cycle T=10ms, by formula (10) (11), Obtain θ ', γ '.
θ '=arcsin (ax/g) (30)
γ '=arcsin (ay/g) (31)
Wherein, ax is x-axis directional acceleration, and ay is y directional accelerations, and g is acceleration of gravity.
Step 6:Magnetometer is sampled.Three axis magnetometer is sampled according to cycle T=10ms, instantaneous value is obtainedCalculating obtains ψk
If current magnetic declination is αk, according to ψ '=ψkkObtain the instantaneous value ψ ' of yaw angle;
Step 7:Calculation error.Error delta θ, the △ γ, △ for three Eulerian angles that computing gyroscope is exported with accelerometer ψ:
Step 8:Mutually fusion.By PI controllers, using formula (34), final θ, γ, ψ are obtained:That is operator's hand three Individual Eulerian angles:The angle of pitch (pitch), roll angle (roll), yaw angle (yaw).Such as Fig. 1.
Wherein T=10ms, kp=1.0, ki=0.02.
Step 9:Voice flow is collected by miaow head, matched with the voice lists of keywords set by step 2, if matching Success, then carry out matching assignment according to formula (24), and directly performs step 11, if it fails to match, performs step 10.
Step 10:When quadrotor smooth flight, it expects that the angle of pitch and roll angle are 0, when four rotors fly Before and after row device during flight, it expects that the angle of pitch is not 0, is set to θtar, the hand angle of pitch is the θ being previously obtained, and obtains transmission and closes System:
According to the transitive relation of (16) formula, the angle of pitch of hand gestures is entered as to the expectation pitching of quadrotor Angle, realizes moving forward and backward for quadrotor.
When quadrotor or so flight, it expects that roll angle is not 0, is set to γtar, before the hand angle of pitch is The γ that face is obtained, obtains transitive relation:
According to the transitive relation of (36) formula, the roll angle of hand gestures is entered as to the expectation roll of quadrotor Angle, realizes the side-to-side movement of quadrotor.
Four rotors expect yaw angle ψtarIt is directly corresponding with hand gestures yaw angle ψ, i.e.,:
ψtar=ψ (37)
Control end gathers hand elevation information simultaneously, if the variable quantity of hand height is △ h, quadrotor highly becomes Change amount is △ H, then meets:
△ H=△ h*10 (38)
According to formula 38, by the height change of hand, the motion on quadrotor vertical direction is realized.
Step 11:Control instruction is sent.Wirelessly, by obtained expectation Eulerian angles θtartartar, with And hand high variable quantity △ h pass to quadrotor.
In summary, the present invention proposes a kind of control mode of new quadrotor, can pass through gesture posture The control to quadrotor is realized with elevation information and voice command, is that operator brings four new rotor flying remote controls Mode, reduces manipulation difficulty.

Claims (1)

1. a kind of gesture and Voice command quadrotor method, specific rate-determining steps are as follows:
Step 1:Hand initial attitude is determined;Using 3-axis acceleration data, arcsine computing solution is carried out to acceleration of gravity Obtain hand initial pitch angleRoll angleSo as to obtain posture battle arrayWith attitude quaternion Q (t0), it is specific to solve public affairs Formula is as follows:
<mrow> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mo>=</mo> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>a</mi> <mi>x</mi> <mo>/</mo> <mi>g</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mo>=</mo> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mi>a</mi> <mi>y</mi> <mo>/</mo> <mi>g</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>2</mn> <mo>)</mo> </mrow> </mrow>
Wherein, ax is x-axis directional acceleration, and ay is y directional accelerations, and g is acceleration of gravity;
<mrow> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <mi>cos</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mo>+</mo> <mi>sin</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mo>-</mo> <mi>cos</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>cos</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mo>+</mo> <mi>sin</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mo>-</mo> <mi>cos</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>c</mi> <mi>o</mi> <mi>s</mi> <msub> <mover> <mi>&amp;psi;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>sin</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mo>-</mo> <mi>sin</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mi>sin</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> </mrow> </mtd> <mtd> <mrow> <mi>cos</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> <mi>cos</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mn>0</mn> </msub> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>3</mn> <mo>)</mo> </mrow> </mrow>
If Q (tk)=[q0 q1 q2 q3]T, Q (t0) can be determined by formula below:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>q</mi> <mn>0</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <msqrt> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mn>11</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>22</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>33</mn> </msub> </mrow> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mn>32</mn> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>23</mn> </msub> <mo>)</mo> </mrow> <msqrt> <mrow> <mn>1</mn> <mo>+</mo> <msub> <mi>T</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>22</mn> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>33</mn> </msub> </mrow> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mn>13</mn> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>31</mn> </msub> <mo>)</mo> </mrow> <msqrt> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>T</mi> <mn>11</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>22</mn> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>33</mn> </msub> </mrow> </msqrt> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>=</mo> <mfrac> <mn>1</mn> <mn>2</mn> </mfrac> <mi>s</mi> <mi>i</mi> <mi>g</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mn>21</mn> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>12</mn> </msub> <mo>)</mo> </mrow> <msqrt> <mrow> <mn>1</mn> <mo>-</mo> <msub> <mi>T</mi> <mn>11</mn> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>22</mn> </msub> <mo>+</mo> <msub> <mi>T</mi> <mn>33</mn> </msub> </mrow> </msqrt> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>4</mn> <mo>)</mo> </mrow> </mrow>
Wherein TijRepresentIn the i-th row jth arrange element;
Step 2:Phonetic order is set;Using lists of keywords identification technology (ASR);The keyword for needing to recognize is converted into spelling Sound character;Pinyin character after conversion is write into nonspecific voice recognition chip;Different pinyin characters is defined different Recognize output characteristics:
Wherein TH be four rotor fuel gate value, △ h be hand high variable quantity, θ, γ, ψ be hand gestures Eulerian angles;
Step 3:Gyroscope is sampled;Three axis angular rates are acquired according to cycle T, angular velocity signal is obtained
Step 4:Gyroscope posture renewal;Utilize the initial value Q (t of quaternary number0) and gyro output angle rate signal, use The increment optimized algorithm of equivalent rotating vector three, recursion resolves attitude quaternion Q (tk) and three attitude angle instantaneous value ψk、θk、γk
If time interval [tk-1,tk] in, Δ θi(i=1,2,3) it is gyro in posture renewal cycle h trisection time interval Angle increment is exportedThen optimize three increment rotating vector algorithm formula as follows:
<mrow> <mi>&amp;Phi;</mi> <mrow> <mo>(</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>&amp;Delta;&amp;theta;</mi> <mn>1</mn> </msub> <mo>+</mo> <msub> <mi>&amp;Delta;&amp;theta;</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>&amp;Delta;&amp;theta;</mi> <mn>3</mn> </msub> <mo>+</mo> <mfrac> <mn>9</mn> <mn>20</mn> </mfrac> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;&amp;theta;</mi> <mn>1</mn> </msub> <mo>&amp;times;</mo> <msub> <mi>&amp;Delta;&amp;theta;</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mn>27</mn> <mn>40</mn> </mfrac> <msub> <mi>&amp;Delta;&amp;theta;</mi> <mn>2</mn> </msub> <mo>&amp;times;</mo> <mrow> <mo>(</mo> <msub> <mi>&amp;Delta;&amp;theta;</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>&amp;Delta;&amp;theta;</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>q</mi> <mrow> <mo>(</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>=</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mi>&amp;Phi;</mi> <mo>|</mo> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>+</mo> <mfrac> <mi>&amp;Phi;</mi> <mrow> <mo>|</mo> <mi>&amp;Phi;</mi> <mo>|</mo> </mrow> </mfrac> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <mfrac> <mrow> <mo>|</mo> <mi>&amp;Phi;</mi> <mo>|</mo> </mrow> <mn>2</mn> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>7</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mi>Q</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mi>Q</mi> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mrow> <mi>k</mi> <mo>-</mo> <mn>1</mn> </mrow> </msub> <mo>)</mo> </mrow> <mo>&amp;CircleTimes;</mo> <mi>q</mi> <mrow> <mo>(</mo> <mi>h</mi> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>8</mn> <mo>)</mo> </mrow> </mrow>
By Q (tk) obtain successivelyWith attitude angle ψk、θk、γk
<mrow> <msubsup> <mi>C</mi> <mi>b</mi> <mi>n</mi> </msubsup> <mrow> <mo>(</mo> <msub> <mi>t</mi> <mi>k</mi> </msub> <mo>)</mo> </mrow> <mo>=</mo> <mfenced open = "[" close = "]"> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>1</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>-</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>2</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <mn>2</mn> <mrow> <mo>(</mo> <msub> <mi>q</mi> <mn>2</mn> </msub> <msub> <mi>q</mi> <mn>3</mn> </msub> <mo>+</mo> <msub> <mi>q</mi> <mn>0</mn> </msub> <msub> <mi>q</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> <mtd> <mrow> <msubsup> <mi>q</mi> <mn>0</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>1</mn> <mn>2</mn> </msubsup> <mo>-</mo> <msubsup> <mi>q</mi> <mn>2</mn> <mn>2</mn> </msubsup> <mo>+</mo> <msubsup> <mi>q</mi> <mn>3</mn> <mn>2</mn> </msubsup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>=</mo> <msub> <mrow> <mo>&amp;lsqb;</mo> <msub> <mi>T</mi> <mrow> <mi>i</mi> <mi>j</mi> </mrow> </msub> <mo>&amp;rsqb;</mo> </mrow> <mrow> <mn>3</mn> <mo>&amp;times;</mo> <mn>3</mn> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>9</mn> <mo>)</mo> </mrow> </mrow>
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>&amp;theta;</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>s</mi> <mi>i</mi> <mi>n</mi> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mn>32</mn> </msub> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <msub> <mi>T</mi> <mn>31</mn> </msub> <msub> <mi>T</mi> <mn>33</mn> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>&amp;psi;</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>arctan</mi> <mrow> <mo>(</mo> <mfrac> <msub> <mi>T</mi> <mn>12</mn> </msub> <msub> <mi>T</mi> <mn>22</mn> </msub> </mfrac> <mo>)</mo> </mrow> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>10</mn> <mo>)</mo> </mrow> </mrow>
Step 5:Accelerometer is sampled;3-axis acceleration is gathered according to cycle T, by formula (10) (11), θ ', γ ' is obtained;
θ '=arcsin (ax/g) (11)
γ '=arcsin (ay/g) (12)
Wherein, ax is x-axis directional acceleration, and ay is y directional accelerations, and g is acceleration of gravity;
Step 6:Magnetometer is sampled;To three axis magnetometer according to periodic sampling, instantaneous value is obtained Calculating obtains ψk
<mrow> <msub> <mi>&amp;psi;</mi> <mi>k</mi> </msub> <mo>=</mo> <mi>a</mi> <mi>r</mi> <mi>c</mi> <mi>t</mi> <mi>a</mi> <mi>n</mi> <mrow> <mo>(</mo> <mo>-</mo> <mfrac> <mrow> <mi>c</mi> <mi>o</mi> <mi>s</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>H</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>k</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>H</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>k</mi> </mrow> <mi>b</mi> </msubsup> </mrow> <mrow> <mi>s</mi> <mi>i</mi> <mi>n</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>H</mi> <mrow> <mi>x</mi> <mo>,</mo> <mi>k</mi> </mrow> <mi>b</mi> </msubsup> <mo>+</mo> <mi>c</mi> <mi>o</mi> <mi>s</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>H</mi> <mrow> <mi>y</mi> <mo>,</mo> <mi>k</mi> </mrow> <mi>b</mi> </msubsup> <mo>-</mo> <mi>cos</mi> <msub> <mover> <mi>&amp;gamma;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <mi>s</mi> <mi>i</mi> <mi>n</mi> <msub> <mover> <mi>&amp;theta;</mi> <mo>~</mo> </mover> <mi>k</mi> </msub> <mo>&amp;CenterDot;</mo> <msubsup> <mi>H</mi> <mrow> <mi>z</mi> <mo>,</mo> <mi>k</mi> </mrow> <mi>b</mi> </msubsup> </mrow> </mfrac> <mo>)</mo> </mrow> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>13</mn> <mo>)</mo> </mrow> </mrow>
If current magnetic declination is αk, according to ψ '=ψkkObtain the instantaneous value ψ ' of yaw angle;
Step 7:Calculation error;Error delta θ, △ γ, the △ ψ for three Eulerian angles that computing gyroscope is exported with accelerometer:
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;theta;</mi> <mo>=</mo> <msub> <mi>&amp;theta;</mi> <mi>k</mi> </msub> <mo>-</mo> <msup> <mi>&amp;theta;</mi> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;gamma;</mi> <mo>=</mo> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <mo>-</mo> <msup> <mi>&amp;gamma;</mi> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;Delta;</mi> <mi>&amp;psi;</mi> <mo>=</mo> <msub> <mi>&amp;psi;</mi> <mi>k</mi> </msub> <mo>-</mo> <msup> <mi>&amp;psi;</mi> <mo>&amp;prime;</mo> </msup> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>14</mn> <mo>)</mo> </mrow> </mrow>
Step 8:Mutually fusion.By PI controllers, using formula (15), final θ, γ, ψ are obtained:That is three Europe of operator's hand Draw angle:The angle of pitch (pitch), roll angle (roll), yaw angle (yaw);
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <mi>&amp;theta;</mi> <mi>=</mi> <msub> <mi>&amp;theta;</mi> <mi>k</mi> </msub> <mo>+</mo> <mi>k</mi> <mi>p</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>&amp;theta;</mi> <mo>+</mo> <mi>k</mi> <mi>i</mi> <mo>*</mo> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </msubsup> <mi>&amp;Delta;</mi> <mi>&amp;theta;</mi> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;gamma;</mi> <mi>=</mi> <msub> <mi>&amp;gamma;</mi> <mi>k</mi> </msub> <mo>+</mo> <mi>k</mi> <mi>p</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>&amp;gamma;</mi> <mo>+</mo> <mi>k</mi> <mi>i</mi> <mo>*</mo> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </msubsup> <mi>&amp;Delta;</mi> <mi>&amp;gamma;</mi> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <mi>&amp;psi;</mi> <mi>=</mi> <msub> <mi>&amp;psi;</mi> <mi>k</mi> </msub> <mo>+</mo> <mi>k</mi> <mi>p</mi> <mo>*</mo> <mi>&amp;Delta;</mi> <mi>&amp;psi;</mi> <mo>+</mo> <mi>k</mi> <mi>i</mi> <mo>*</mo> <mfrac> <mn>1</mn> <mi>T</mi> </mfrac> <msubsup> <mo>&amp;Integral;</mo> <mn>0</mn> <mi>t</mi> </msubsup> <mi>&amp;Delta;</mi> <mi>&amp;psi;</mi> <mi>d</mi> <mi>t</mi> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>15</mn> <mo>)</mo> </mrow> </mrow>
Wherein T is collection period, and kp is proportioner coefficient, and ki is integrator coefficient;
Step 9:Voice flow is collected by miaow head, matched with the voice lists of keywords set by step 2, if matching into Work(, then carry out matching assignment according to formula (5), and directly performs step 11, if it fails to match, performs step 10;
Step 10:Hand gestures data assignment;When quadrotor smooth flight, it expects that the angle of pitch and roll angle are 0, when flight before and after quadrotor, it expects that the angle of pitch is not 0, is set to θtar, the hand angle of pitch is what is be previously obtained θ, obtains transitive relation:
According to the transitive relation of (16) formula, the angle of pitch of hand gestures is entered as to the expectation angle of pitch of quadrotor, it is real Show moving forward and backward for quadrotor;
When quadrotor or so flight, it expects that roll angle is not 0, is set to γtar, the hand angle of pitch is above to obtain The γ arrived, obtains transitive relation:
According to the transitive relation of (17) formula, the roll angle of hand gestures is entered as to the expectation roll angle of quadrotor, it is real The side-to-side movement of existing quadrotor;
Four rotors expect yaw angle ψtarIt is directly corresponding with hand gestures yaw angle ψ, i.e.,:
ψtar=ψ (18)
Control end gathers hand elevation information simultaneously, if the variable quantity of hand height is △ h, quadrotor high variable quantity For △ H, then meet:
△ H=△ h*10 (19)
According to formula 19, by the height change of hand, the motion on quadrotor vertical direction is realized;
Step 11:Control instruction is sent;Wirelessly, by obtained expectation Eulerian angles θtartartar, and hand Portion high variable quantity △ h pass to quadrotor.
CN201710309254.5A 2017-05-04 2017-05-04 A kind of gesture and Voice command quadrotor method Pending CN107203215A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710309254.5A CN107203215A (en) 2017-05-04 2017-05-04 A kind of gesture and Voice command quadrotor method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710309254.5A CN107203215A (en) 2017-05-04 2017-05-04 A kind of gesture and Voice command quadrotor method

Publications (1)

Publication Number Publication Date
CN107203215A true CN107203215A (en) 2017-09-26

Family

ID=59906462

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710309254.5A Pending CN107203215A (en) 2017-05-04 2017-05-04 A kind of gesture and Voice command quadrotor method

Country Status (1)

Country Link
CN (1) CN107203215A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703950A (en) * 2017-10-30 2018-02-16 燕山大学 A kind of underwater robot and control method using motion sensing control
CN107831791A (en) * 2017-11-17 2018-03-23 南方科技大学 Unmanned aerial vehicle control method and device, control equipment and storage medium
CN109074168A (en) * 2018-01-23 2018-12-21 深圳市大疆创新科技有限公司 Control method, equipment and the unmanned plane of unmanned plane

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090870A (en) * 2013-01-21 2013-05-08 西北工业大学 Spacecraft attitude measurement method based on MEMS (micro-electromechanical systems) sensor
CN103426282A (en) * 2013-07-31 2013-12-04 深圳市大疆创新科技有限公司 Remote control method and terminal
CN104850127A (en) * 2015-03-13 2015-08-19 哈尔滨工程大学 Method for dynamic control of quad-rotor aircraft
CN104898681A (en) * 2015-05-04 2015-09-09 浙江工业大学 Tetra-rotor aircraft attitude obtaining method by use of three-order approximation Picard quaternion
CN205396532U (en) * 2016-02-26 2016-07-27 厦门大学嘉庚学院 A pronunciation remote control system and lift vertically type remote control flight ware for going straight up to type aircraft
CN106200679A (en) * 2016-09-21 2016-12-07 中国人民解放军国防科学技术大学 Single operation person's multiple no-manned plane mixing Active Control Method based on multi-modal natural interaction
CN106377228A (en) * 2016-09-21 2017-02-08 中国人民解放军国防科学技术大学 Monitoring and hierarchical-control method for state of unmanned aerial vehicle operator based on Kinect

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103090870A (en) * 2013-01-21 2013-05-08 西北工业大学 Spacecraft attitude measurement method based on MEMS (micro-electromechanical systems) sensor
CN103426282A (en) * 2013-07-31 2013-12-04 深圳市大疆创新科技有限公司 Remote control method and terminal
CN104850127A (en) * 2015-03-13 2015-08-19 哈尔滨工程大学 Method for dynamic control of quad-rotor aircraft
CN104898681A (en) * 2015-05-04 2015-09-09 浙江工业大学 Tetra-rotor aircraft attitude obtaining method by use of three-order approximation Picard quaternion
CN205396532U (en) * 2016-02-26 2016-07-27 厦门大学嘉庚学院 A pronunciation remote control system and lift vertically type remote control flight ware for going straight up to type aircraft
CN106200679A (en) * 2016-09-21 2016-12-07 中国人民解放军国防科学技术大学 Single operation person's multiple no-manned plane mixing Active Control Method based on multi-modal natural interaction
CN106377228A (en) * 2016-09-21 2017-02-08 中国人民解放军国防科学技术大学 Monitoring and hierarchical-control method for state of unmanned aerial vehicle operator based on Kinect

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107703950A (en) * 2017-10-30 2018-02-16 燕山大学 A kind of underwater robot and control method using motion sensing control
CN107831791A (en) * 2017-11-17 2018-03-23 南方科技大学 Unmanned aerial vehicle control method and device, control equipment and storage medium
CN107831791B (en) * 2017-11-17 2020-12-15 深圳意动航空科技有限公司 Unmanned aerial vehicle control method and device, control equipment and storage medium
CN109074168A (en) * 2018-01-23 2018-12-21 深圳市大疆创新科技有限公司 Control method, equipment and the unmanned plane of unmanned plane
CN109074168B (en) * 2018-01-23 2022-06-17 深圳市大疆创新科技有限公司 Unmanned aerial vehicle control method and device and unmanned aerial vehicle

Similar Documents

Publication Publication Date Title
US20210141395A1 (en) Stable flight control method for multi-rotor unmanned aerial vehicle based on finite-time neurodynamics
TWI459234B (en) Handheld device and method for controlling a unmanned aerial vehicle using the handheld device
WO2017157313A1 (en) Wearable device, unmanned aerial vehicle control apparatus and control implementation method
US11531336B2 (en) Systems and methods for automatically customizing operation of a robotic vehicle
CN107203215A (en) A kind of gesture and Voice command quadrotor method
Rajappa et al. Design and implementation of a novel architecture for physical human-UAV interaction
CN106780608A (en) Posture information method of estimation, device and movable equipment
CN104914874A (en) Unmanned aerial vehicle attitude control system and method based on self-adaption complementation fusion
Liu et al. Multi-HMM classification for hand gesture recognition using two differing modality sensors
CN106293103A (en) Four-axle aircraft gesture control device based on inertial sensor and control method
CN107831791B (en) Unmanned aerial vehicle control method and device, control equipment and storage medium
Menshchikov et al. Data-driven body-machine interface for drone intuitive control through voice and gestures
Shamsudin et al. Identification of an unmanned helicopter system using optimised neural network structure
CN102331778B (en) Handheld device and method for controlling unmanned vehicle by utilizing same
Al-Fetyani et al. Design of an executable anfis-based control system to improve the attitude and altitude performances of a quadcopter drone
Moeini et al. A backstepping disturbance observer control for multirotor UAVs: theory and experiment
US20130060516A1 (en) Trace-generating devices and methods thereof
Yu et al. End-side gesture recognition method for UAV control
Tao et al. Modeling and control of swing oscillation of underactuated indoor miniature autonomous blimps
Sanchez et al. Safe navigation control for a quadcopter using user's arm commands
CN108008645A (en) Six-degree-of-freedom simulation modeling method
Renuka et al. Online hand written character recognition using digital pen for static authentication
Huang et al. Virtual interaction and manipulation control of a hexacopter through hand gesture recognition from a data glove
CN111290574B (en) Method and device for controlling unmanned aerial vehicle by using gestures and readable storage medium
Kemper et al. Impact of center of gravity in quadrotor helicopter controller design

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170926