CN107200700A - 一种多取代β‑酮硫醚的制备方法 - Google Patents

一种多取代β‑酮硫醚的制备方法 Download PDF

Info

Publication number
CN107200700A
CN107200700A CN201710120278.6A CN201710120278A CN107200700A CN 107200700 A CN107200700 A CN 107200700A CN 201710120278 A CN201710120278 A CN 201710120278A CN 107200700 A CN107200700 A CN 107200700A
Authority
CN
China
Prior art keywords
compound
preparation
cdcl
nmr
reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201710120278.6A
Other languages
English (en)
Inventor
徐小波
林子华
刘玉印
郭键
贺耘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chongqing University
Original Assignee
Chongqing University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chongqing University filed Critical Chongqing University
Priority to CN201710120278.6A priority Critical patent/CN107200700A/zh
Publication of CN107200700A publication Critical patent/CN107200700A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C319/00Preparation of thiols, sulfides, hydropolysulfides or polysulfides
    • C07C319/14Preparation of thiols, sulfides, hydropolysulfides or polysulfides of sulfides
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B45/00Formation or introduction of functional groups containing sulfur
    • C07B45/06Formation or introduction of functional groups containing sulfur of mercapto or sulfide groups
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/22Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and doubly-bound oxygen atoms bound to the same carbon skeleton
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/52Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton the carbon skeleton being acyclic and saturated
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C323/00Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups
    • C07C323/50Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton
    • C07C323/51Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton
    • C07C323/60Thiols, sulfides, hydropolysulfides or polysulfides substituted by halogen, oxygen or nitrogen atoms, or by sulfur atoms not being part of thio groups containing thio groups and carboxyl groups bound to the same carbon skeleton having the sulfur atoms of the thio groups bound to acyclic carbon atoms of the carbon skeleton with the carbon atom of at least one of the carboxyl groups bound to nitrogen atoms

Abstract

本发明涉及多取代β‑酮硫醚类化合物的制备方法,以芳炔化合物、硫醚化合物和氟化物作为反应试剂组合物,在温和的反应条件下制备一系列含多取代β‑酮硫醚骨架结构的化合物。本发明反应所用试剂易于制备、价格低廉、后处理简单,具有很高的原子经济性。本发明为制备该系列化合物提供了一种简洁、高效、价格低廉、选择性高并适于产业化的技术手段。

Description

一种多取代β-酮硫醚的制备方法
技术领域
本发明涉及一种用原位产生的苯炔和硫醚进行Stevens重排反应合成多取代β-酮硫醚类化合物的制备方法,其中苯炔前体化合物和硫醚为反应原料,属于药物化学与有机合成领域。
背景技术
含有C-S键的片段结构经常出现在天然产物和药物分子中。在这些化合物中,多取代的β-酮硫醚占据很重要的位置,它们不仅有很好的生物活性,而且还是有机合成化学中的重要中间体(如下式)。
上式Examples of biologically activeβ-keto thioethers
最常见的制备多取代β-酮硫醚的方法是α-卤代物与硫醇的亲核取代反应。最近几年化学家们也发展了其他制备这类化合物的新方法。其中有王剑波课题组发展的Rh卡宾进攻烯丙基硫醚得到硫叶立德盐,然后再发生[2,3]-σ重排反应得到多取代的β-酮硫醚(Green Chem.,2007,9,184);Liming Zhang课题组发现的由末端炔产生的Au卡宾与烯丙基硫醚反应得到目标产物(Chem.Commun.,2014,50,4130);在Pd/Au联合催化剂的作用下末端炔丙醇和硫醇发生串联反应也可以生成多取代的β-酮硫醚(Org.Lett.,2014,16, 5556)。就在最近,Burtoloso还描述了一种通过硫叶立德盐和芳基硫醇在无催化剂的条件下反应得到目标产物的新方法(Org.Lett.,2016,18,3034)。然而这些方法也有一些缺点,例如需要昂贵的过渡金属催化剂、高毒性的反应试剂和过长的反应时间等都限制了方法的应用。因此,找到一种温和的、适用性更好的制备多取代的β-酮硫醚的方法是急需的。
发明内容
芳炔作为一种高活性的反应中间体已经频繁的在有机合成中应用。特别是随着温和的芳炔前体2-三甲基硅基苯酚三氟甲磺酸酯的问世带动了该领域的迅猛发展。就在最近已经有文献报道了温和条件下无催化剂的芳炔和三级胺的Stevens重排反应。
本发明设计了通过芳炔和硫醚的Stevens重排反应来制备多取代β-酮硫醚的新方法。
本发明提供一种原位产生的苯炔和简单硫醚化合物经过Stevens重排反应来制备多取代β-酮硫醚结构的新方法,具体而言是以苯炔前体化合物和硫醚作为原料,在氟源的作用下生成得到多取代β-酮硫醚类化合物。
本发明通过对底物的扩展研究,提高了底物的适应性。并且,该方法有望用于药物活性分子和复杂结构天然产物全合成中。
本发明所涉及的多取代β-酮硫醚类化合物,其反应方程式如下:
其中,R1为甲基、叔丁基、甲氧基、二甲氨基、苯基,苯甲基,苯甲氧基、萘基、苯并环己基等结构;R2为氢原子、苯基、苯并环己基结构;R3为苯基,苯甲基、乙烯基,使用本发明方法可以便捷高效的制备高纯度的多取代β-酮硫醚类化合物;R2为氢原子、甲基、二甲基、甲氧基、二甲氧基、乙基、环丙基、苯基、稠环结构等。
所述的技术方案实施操作包括以下:将反应底物硫醚化合物及氟源置于单颈圆底烧瓶中,干燥、氮气保护,加入适量溶剂溶解,准确量取苯炔前体化合物加入烧瓶中。烧瓶置于室温搅拌反应,用薄层色谱TLC 检测至原料液中无原料时为反应结束。旋除反应体系中的溶剂,经重结晶或柱层析纯化,得到固体产物。
本发明中,反应温度选择20-65℃。
本发明中,本发明中,所用氟源优选氟化铯、氟化钾、四正丁基铵二氟代三苯基硅酸盐,最优选氟化钾;氟源用量与底物的摩尔比优选为2:1-6:1,最优选2.5:1。
本发明中,所用溶剂优选四氢呋喃,使用量2mL/mmol。。
本发明具有以下优点和有益效果:
本发明制备方法简单,操作方便,与Burtoloso课题组报道的方法相比,本发明选用了更为简单易制备的硫醚类化合物和苯炔前体化合物为原料,在氟源的作用下,经过Stevens重排反应来构建多取代β-酮硫醚类母核结构,无需复杂的原料制备,本发明也无需过渡金属、酸碱催化,反应迅速,条件温和,操作方便,大大降低了反应成本,符合绿色化学的要求。
本发明具有很好的底物适用性,大大地拓展了底物的适用范围,从而便于更好的应用。
本发明在生物医药合成中间体方面有很大的应用潜力。
具体实施方式
本发明的任一实施方案中的监控方法是:薄层层析法。
结构确证技术手段均为本领域技术人员知晓的通用技术手段,核磁共振技术,高分辨质谱。
实施例1:
化合物3aa的制备
步骤:
将反应物2a(72mg,0.24mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物1a(48mg,0.2 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3aa 52mg,产率为82%。
白色固体(Rf=0.7EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.83(d,J=7.6Hz,2H),7.51(t,J= 7.2Hz,1H),7.39(t,J=7.6Hz,2H),7.32–7.15(m,10H),4.71(dd,J=8.4,6.4Hz,1H),3.42(dd,J=14.0,8.4 Hz,1H),3.15(dd,J=14.0,6.0Hz,1H);
13C NMR(100MHz,CDCl3):δ195.2,138.6,136.2,134.5,133.0,132.0,129.3,129.0,128.7,128.5,128.5, 128.5,126.6,52.9,37.3.
实施例2:
化合物3ab的制备
步骤:
将反应物2b(78mg,0.24mmol)和氟化铯(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物1a(48mg,0.2 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ab 47mg,产率为69%。
黄色油状物(Rf=0.7EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.70(d,J=7.2Hz,2H),7.47(t,J= 7.2Hz,1H),7.31(t,J=7.6Hz,2H),7.26–7.15(m,5H),7.02(d,J=8.0Hz,1H),6.98–6.94(m,2H),4.66 (dd,J=8.8,6.0Hz,1H),3.48(dd,J=14.0,8.8Hz,1H),3.18(dd,J=14.0,6.0Hz,1H),2.18(s,3H),2.17(s,3 H).);
13C NMR(100MHz,CDCl3):δ196.1,138.7,138.2,136.4,136.0,135.0,132.9,132.0,130.2,129.3,128.5, 128.4,128.3,126.6,53.2,37.6,20.7,20.3.HRMS(ESI):calcd for C23H22NaOS+[M+Na+]:369.1284,found 369.1281.
实施例3:
化合物3ac的制备
步骤:
将反应物2c(81mg,0.24mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物1a(48mg,0.2 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ac 51mg,产率为71%。
黄色油状物(Rf=0.6EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.84(d,J=7.6Hz,2H),7.51(t,J=7.6Hz,1H),7.38(t,J=8.0Hz,2H),7.25–7.15(m,5H),7.11(d,J=8.4Hz,2H),7.06(d,J=8.0Hz,1H), 4.64(dd,J=8.4,6.0Hz,1H),3.39(dd,J=14.0,8.0Hz,1H),3.19(dd,J=14.0,6.0Hz,1H),2.87(t,J=7.6Hz, 2H),2.83(dd,J=9.2,6.8Hz,2H),2.10–2.02(m,2H);
13C NMR(100MHz,CDCl3):δ195.2,145.6,145.2,138.9,136.3,133.0,132.9,131.2,129.3,128.6,128.5, 128.4,128.4,126.4,124.8,53.1,37.2,32.6,32.6,25.4.HRMS(ESI):calcd for C24H22NaOS+[M+Na+]:381.1284, found 381.1280.
实施例4:
化合物3ad的制备
步骤:
将反应物2d(86mg,0.24mmol)和四正丁基铵二氟代三苯基硅酸盐(35mg,0.5mmol)置于10mL 单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物1a(48mg,0.2mmol)注射到圆底烧瓶中,40℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ad 47mg,产率为63%。
无色油状物(Rf=0.6EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.84(d,J=7.2Hz,2H),7.53(t,J= 7.6Hz,1H),7.40(t,J=7.6Hz,2H),7.28–7.16(m,4H),6.88(dd,J=8.2,2.0Hz,1H),6.75(d,J=8.4Hz,1 H),6.65(d,J=2.0Hz,1H),4.60(dd,J=7.6,6.8Hz,1H),3.87(s,3H),3.72(s,3H),3.36(dd,J=14.0,8.0Hz, 1H),3.13(dd,J=14.0,6.8Hz,1H);
13C NMR(100MHz,CDCl3):δ195.1,150.0,148.6,138.8,136.2,133.0,129.4,128.7,128.5,128.5,128.4, 126.5,122.2,118.2,111.1,55.8,55.8,53.3,36.9.HRMS(ESI):calcd for C23H22NaO3S+[M+Na+]:401.1182, found 401.1179.
实施例5:
化合物3ae的制备
步骤:
将反应物2e(80mg,0.24mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物1a(48mg,0.2 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ae 55mg,产率为78%。
无色油状物(Rf=0.7EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.83(d,J=7.6Hz,2H),7.55(t,J= 7.2Hz,1H),7.42(t,J=7.6Hz,2H),7.30–7.18(m,5H),7.08–6.97(m,3H),4.66(dd,J=8.0,6.8Hz,1H), 3.36(dd,J=14.0,8.0Hz,1H),3.11(dd,J=14.0,6.4Hz,1H);
13C NMR(100MHz,CDCl3):δ194.8,138.2,135.9,133.3,131.7(dd,J=6.3,3.7Hz),129.3,128.6,128.5, 128.4,126.8,124.0(dd,J=16.0,2.5Hz),117.6(dd,J=16.8,1.6Hz),52.8,37.0.HRMS(ESI):calcd for C21H16F2NaOS+[M+Na+]:377.0782,found377.0781.
实施例6:
化合物3af的制备
步骤:
将反应物2f(86mg,0.24mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物1a(48mg,0.2 mmol)注射到圆底烧瓶中,30℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3af 50mg,产率为67%。
无色油状物(Rf=0.6EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.81(d,J=7.2Hz,2H),7.51(t,J= 7.6Hz,1H),7.38(t,J=7.6Hz,2H),7.27–7.16(m,5H),6.39–6.36(m,3H),4.72(dd,J=7.9,6.7Hz,1H), 3.68(s,6H),3.45(dd,J=14.0,8.0Hz,1H),3.17(dd,J=14.0,6.6Hz,1H);
13C NMR(100MHz,CDCl3):δ195.6,160.6,138.6,136.2,134.4,133.0,129.4,128.5,128.4,126.6,111.0, 101.2,55.4,55.4,53.3,37.5.HRMS(ESI):calcd forC23H22NaO3S+[M+Na+]:401.1182,found 401.1179.
实施例7:
化合物3ag和3ag′的制备
步骤:
将反应物2g(85mg,0.24mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物1a(48mg,0.2 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ag和3ag′(ratio=5:3)54mg,产率为73%。
无色油状物(Rf=0.7EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.83–7.80(m,2H),7.51(t,J=7.4 Hz,1H),7.37(t,J=7.8Hz,2H),7.34–7.09(m,9H),4.71–4.65(m,1H),3.44–3.36(m,1H),3.18–3.11(m, 1H),1.30(s,3.3H),1.24(s,5.7H);
13C NMR(100MHz,CDCl3):δ195.3,152.0,138.7,136.2,134.5,133.0,131.9,131.5,129.3,128.7,128.5, 128.4,126.5,126.0,125.8,53.0,37.1,34.7,31.1(3C).HRMS(ESI):calcd for C25H26NaOS+[M+Na+]:397.1597, found 397.1596.
实施例8:
化合物3ah和3ah′的制备
步骤:
将反应物2h(78mg,0.24mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物1a(48mg,0.2 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ah和3ah′(ratio=4:3)41mg,产率为60%。
无色油状物(Rf=0.6EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.86(d,J=7.6Hz,2H),7.82(d,J= 7.6Hz,2.6H),7.54–7.48(m,2.4H),7.42–7.32(m,4.8H),7.27–7.15(m,15.6H),6.88–6.76(m,5.6H), 4.71(dd,J=7.9,6.6Hz,1H),4.58(dd,J=8.4,6.0Hz,1.4H),3.79(s,4.3H),3.70(s,2.9H),3.43(dd,J=14.0, 8.2Hz,1H),3.33(dd,J=14.0,8.4Hz,1.4H),3.16(dd,J=14.0,6.4Hz,1H),3.09(dd,J=14.0,6.0Hz,1.4H);
13C NMR(100MHz,CDCl3):δ195.4,194.8,160.6,159.6,138.8,138.6,137.4,136.2,136.0,133.3,133.0, 132.9,129.7,129.3,129.2,128.5,128.4,128.4,126.6,126.5,126.2,121.5,118.9,114.8,114.4,55.2,53.0,52.8, 37.3,36.8.HRMS(ESI):calcdfor C22H20NaO2S+[M+Na+]:371.1076,found 371.1076.
实施例9:
化合物3ba的制备
步骤:
将反应物1b(51mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,50℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ba 48mg,产率为73%。
无色油状物(Rf=0.5EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.74(d,J=8.0Hz,2H),7.31–7.15 (m,12H),4.68(dd,J=8.0,6.4Hz,1H),3.39(dd,J=14.0,8.4Hz,1H),3.12(dd,J=14.0,6.1Hz,1H),2.38(s, 3H);
13C NMR(100MHz,CDCl3):δ195.1,150.0,148.6,138.8,136.2,133.0,129.4,128.7,128.5,128.5,128.4, 126.5,122.2,118.2,111.1,55.8,55.8,53.3,36.9.HRMS(ESI):calcdfor C22H20NaOS+[M+Na+]:355.1127,found 355.1126.
实施例10:
化合物3ca的制备
步骤:
将反应物1c(54mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ca 45mg,产率为65%。
无色油状物(Rf=0.4EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.82(d,J=8.8Hz,2H),7.30–7.14 (m,10H),6.85(d,J=8.8Hz,2H),4.67(dd,J=8.2,6.4Hz,1H),3.83(s,3H),3.40(dd,J=14.0,6.1Hz,1H), 3.12(dd,J=14.0,6.1Hz,1H);
13C NMR(100MHz,CDCl3):δ194.0,163.5,138.8,134.2,132.5,130.8,129.3,129.0,128.9,128.5,128.4, 126.5,113.7,55.4,52.7,37.5.HRMS(ESI):calcd forC22H20NaO2S+[M+Na+]:371.1076,found 371.1073.
实施例11:
化合物3da的制备
步骤:
将反应物1d(52mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,20℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3da 51mg,产率为76%。
无色油状物(Rf=0.5EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.85–7.80(m,2H),7.33–7.15(m, 10H),7.03(t,J=8.6Hz,2H),4.64(dd,J=8.5,6.1Hz,1H),3.40(dd,J=14.0,8.5Hz,1H),3.14(dd,J=14.0, 6.1Hz,1H);
13C NMR(100MHz,CDCl3):δ193.8,165.6(d,J=53.7Hz),138.5,134.5,132.5(d,J=13.0Hz),131.9, 131.1(d,J=92.4Hz),129.3,129.0,128.8,128.5,126.6,115.6(d,J=21.8Hz),53.0,37.3.HRMS(ESI):calcd for C21H17FNaOS+[M+Na+]:359.0876,found359.0874.
实施例12:
化合物3ea的制备
步骤:
将反应物1e(64mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ea 57mg,产率为72%。
无色油状物(Rf=0.5EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.67(d,J=8.5Hz,2H),7.50(d,J= 8.4Hz,2H),7.33–7.16(m,10H),4.61(dd,J=8.4,6.1Hz,1H),3.39(dd,J=14.0,8.8Hz,1H),3.14(dd,J= 14.0,6.1Hz,1H);
13C NMR(100MHz,CDCl3):δ194.2,138.5,134.9,134.6,131.8,131.7,130.0,129.3,129.1,128.9,128.5, 128.2,126.7,53.0,37.2.HRMS(ESI):calcd forC21H17BrNaOS+[M+Na+]:419.0076,found 419.0072.
实施例13:
化合物3fa的制备
步骤:
将反应物1f(58mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3fa 51mg,产率为70%。
黄色油状物(Rf=0.5EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ8.22(s,1H),7.95(dd,J=8.7,1.6 Hz,1H),7.84(d,J=8.5Hz,2H),7.78(d,J=8.1Hz,1H),7.57(ddd,J=8.2,6.9,1.3Hz,1H),7.50(ddd,J= 8.1,6.8,1.3Hz,1H),7.33–7.23(m,9H),7.21–7.16(m,1H),4.83(dd,J=8.2,6.3Hz,1H),3.47(dd,J= 14.0,8.2Hz,1H),3.21(dd,J=14.0,6.3Hz,1H);
13C NMR(100MHz,CDCl3):δ195.1,138.7,135.5,134.6,133.3,132.3,132.2,130.1,129.6,129.4,129.0, 128.8,128.5,128.3,127.7,126.6,126.6,124.3,53.3,37.3.HRMS(ESI):calcd for C25H20NaOS+[M+Na+]: 391.1127,found 391.1127.
实施例14:
化合物3ga的制备
步骤:
将反应物1g(53mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ga 42mg,产率为61%。
无色油状物(Rf=0.6EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ8.11(d,J=7.8Hz,1H),7.46–7.38 (m,4H),7.36–7.29(m,3H),7.20–7.10(m,6H),3.62(d,J=13.6Hz,1H),3.47(ddd,J=17.5,12.7,5.0Hz, 1H),2.92(d,J=13.6Hz,1H),2.80(ddd,J=17.3,5.1,2.4Hz,1H),2.28(td,J=13.5,13.1,5.0Hz,1H),2.16 (ddd,J=14.4,5.1,2.4Hz,1H);
13C NMR(100MHz,CDCl3):δ191.1,142.3,137.5,137.1,133.0,131.7,131.0,129.7,129.3,128.8,128.5, 128.4,128.0,126.7,126.5,58.9,42.6,31.9,25.5.HRMS(ESI):calcd for C23H20NaOS+[M+Na+]:367.1127, found 367.1125.
实施例15:
化合物3ha的制备
步骤:
将反应物1h(36mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ha 31mg,产率为62%。
无色油状物(Rf=0.5EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.37–7.16(m,10H),3.90(dd,J= 8.3,6.8Hz,1H),3.17(dd,J=14.2,8.4Hz,1H),3.00(dd,J=14.2,6.8Hz,1H),2.20(s,3H).
实施例16:
化合物3ia的制备
步骤:
将反应物1i(44mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ia 35mg,产率为59%。
无色油状物(Rf=0.5EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.42–7.38(m,2H),7.35–7.31(m, 3H),7.25–7.14(m,3H),7.09(d,J=7.4Hz,2H),4.19(dd,J=10.2,4.8Hz,1H),3.21(dd,J=13.3,10.1Hz, 1H),3.00(dd,J=13.3,4.8Hz,1H),0.93(s,9H);
13C NMR(100MHz,CDCl3):δ210.3,138.6,133.8,132.9,129.5,129.0,128.4,128.4,126.6,51.9,44.1, 39.1,26.3.HRMS(ESI):calcd for C19H22NaOS+[M+Na+]:321.1284,found 321.1280.
实施例17:
化合物3ja的制备
步骤:
将反应物1j(42mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ja 32mg,产率为57%。
无色油状物(Rf=0.7EtOAc/PE=1:1)1H NMR(400MHz,CDCl3):δ7.48–7.44(m,2H),7.33–7.15(m,8 H),4.13(dd,J=9.6,5.2Hz,1H),3.37(dd,J=13.5,9.5Hz,1H),3.02(dd,J=13.5,5.1Hz,1H),2.86(s,2H), 2.68(s,3H);
13C NMR(100MHz,CDCl3):δ170.3,138.8,133.5,133.3,129.1,129.0,128.4,128.2,126.6,49.5,39.0, 37.2,36.0.HRMS(ESI):calcd for C17H19NNaOS+[M+Na+]:308.1080,found 308.1078.
实施例18:
化合物3la的制备
步骤:
将反应物1l(39mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3la 28mg,产率为53%。
无色油状物(Rf=0.7EtOAc/PE=1:1)1H NMR(400MHz,CDCl3):δ7.46–7.16(m,10H),3.90(dd,J= 9.2,6.3Hz,1H),3.58(s,3H),3.20(dd,J=13.9,9.2Hz,1H),3.06(dd,J=13.9,6.3Hz,1H);
13C NMR(100MHz,CDCl3):δ172.1,137.7,133.1,132.7,129.0,128.9,128.5,128.2,126.9,52.2,52.1, 38.0.HRMS(ESI):calcd for C16H16NaO2S+[M+Na+]:295.0763,found 295.0762.
实施例19:
化合物3ma的制备
步骤:
将反应物1m(59mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ma 50mg,产率为67%。
无色油状物(Rf=0.6EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.85–7.81(m,2H),7.54–7.46(m, 1H),7.41–7.35(m,2H),7.31–7.23(m,7H),7.17–7.13(m,2H),4.69(dd,J=8.3,6.2Hz,1H),3.38(dd,J =14.1,8.3Hz,1H),3.12(dd,J=14.1,6.2Hz,1H),1.27(s,9H);
13C NMR(100MHz,CDCl3):δ195.3,149.4,136.2,135.6,134.4,132.9,132.2,128.9,128.6,128.5,128.5, 125.4,53.1,36.8,34.4,31.3.HRMS(ESI):calcd forC25H26NaOS+[M+Na+]:397.1597,found 397.1594.
实施例20:
化合物3na的制备
步骤:
将反应物1n(54mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3na 28mg,产率为41%。
无色油状物(Rf=0.5EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.85–7.80(m,2H),7.54–7.48(m, 1H),7.39(t,J=7.7Hz,2H),7.33–7.22(m,5H),7.16–7.11(m,2H),6.81–6.75(m,2H),4.66(dd,J=8.6, 6.0Hz,1H),3.75(s,3H),3.34(dd,J=14.1,8.6Hz,1H),3.08(dd,J=14.1,6.0Hz,1H);
13C NMR(100MHz,CDCl3):δ195.3,158.2,136.2,134.5,133.0,132.0,130.6,130.3,129.0,128.7,128.5, 113.8,55.2,53.0,36.4.HRMS(ESI):calcd for C22H20NaO2S+[M+Na+]:371.1076,found 371.1077.
实施例21:
化合物3oa的制备
步骤:
将反应物1o(55mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3oa 50mg,产率为71%。
无色油状物(Rf=0.5EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.83(d,J=7.6Hz,2H),7.53(t,J= 7.4Hz,1H),7.39(t,J=7.7Hz,2H),7.35–7.24(m,5H),7.21(d,J=8.4Hz,2H),7.15(d,J=8.4Hz,2H), 4.65(dd,J=8.6,6.0Hz,1H),3.36(dd,J=14.1,8.6Hz,1H),3.10(dd,J=14.1,6.0Hz,1H);
13C NMR(100MHz,CDCl3):δ194.9,137.1,136.0,134.7,133.1,132.4,131.6,130.7,129.0,128.9,128.6, 128.6,128.5,52.6,36.6.HRMS(ESI):calcd forC21H17ClNaOS+[M+Na+]:375.0581,found 375.0577.
实施例22:
化合物3qa的制备
步骤:
将反应物1q(38mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3qa 46mg,产率为86%。
无色油状物(Rf=0.6EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.94–7.89(m,2H),7.55(t,J=7.4 Hz,1H),7.44(t,J=7.7Hz,2H),7.37–7.24(m,5H),5.88(ddt,J=17.1,10.3,6.8Hz,1H),5.15–5.05(m,2 H),4.50(t,J=7.3Hz,1H),2.76(dt,J=14.7,7.3Hz,1H),2.59(dt,J=14.3,6.9Hz,1H);
13C NMR(100MHz,CDCl3):δ195.2,136.1,134.8,133.1,131.5,128.9,128.8,128.6,128.6,117.7,50.8, 35.1.
实施例23:
化合物3ra的制备
步骤:
将反应物1r(32mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3ra 29mg,产率为62%。
无色油状物(Rf=0.6EtOAc/PE=10:1)1H NMR(400MHz,CDCl3):δ7.49–7.44(m,2H),7.34–7.27(m, 3H),5.81(ddt,J=17.1,10.2,6.9Hz,1H),5.17–5.06(m,2H),4.11(qd,J=7.1,1.8Hz,2H),3.70(dd,J=8.7, 6.4Hz,1H),2.67–2.58(m,1H),2.57–2.45(m,1H),1.17(t,J=7.1Hz,3H);
13C NMR(100MHz,CDCl3):δ171.6,133.8,133.1,133.0,128.9,128.0,118.0,61.1,50.2,35.8,14.1.
实施例24:
化合物3sa的制备
步骤:
将反应物1s(31mg,0.2mmol)和氟化钾(29mg,0.5mmol)置于10mL单颈圆底烧瓶中,加热干燥后用氮气保护,加入3mL干燥的四氢呋喃溶剂使其溶解,用微量注射器准确量取化合物2a(72mg,0.24 mmol)注射到圆底烧瓶中,65℃搅拌反应4小时后经TLC检测无原料,反应完成,旋出四氢呋喃,经柱层析后即得到化合物3sa 25mg,产率为53%。
无色油状物(Rf=0.7EtOAc/PE=1:1)1H NMR(400MHz,CDCl3):δ7.50–7.44(m,2H),7.34–7.27(m,3 H),5.81(ddt,J=17.0,10.1,6.9Hz,1H),5.14–5.02(m,2H),3.90(dd,J=8.7,5.9Hz,1H),2.94(s,6H),2.76 (dt,J=14.8,7.7Hz,1H),2.47(dt,J=13.8,6.6Hz,1H);
13C NMR(100MHz,CDCl3):δ170.2,135.1,134.0,132.6,128.9,128.3,117.5,47.2,37.4,36.5,36.0. HRMS(ESI):calcdfor C13H17NNaOS+[M+Na+]:258.0923,found 258.0924.
在此说明的是,以上实施例仅用以说明本发明的技术方案而非限制,尽管通过参照本发明的优选实施例已经对本发明进行了描述,但本领域的普通技术人员应当理解,可以在形式上和细节上对其做出各种各样的改变,而不偏离本发明的精神和范围。

Claims (10)

1.一种多取代β-酮硫醚类化合物的制备方法,其反应式为:
其特征在于,R1为甲基、叔丁基、甲氧基、二甲氨基、苯基,苯甲基,苯甲氧基、萘基、苯并环己基结构;R2为氢原子、苯基、苯并环己基结构;R3为苯基,苯甲基、乙烯基;R为氢原子、甲基、二甲基、甲氧基、二甲氧基、乙基、环丙基、苯基、稠环结构。
2.如权利要求1所述的制备方法,其特征在于,氟源选择氟化铯、氟化钾、四正丁基铵二氟代三苯基硅酸盐。
3.如权利要求2所述的制备方法,其特征在于,氟源选择氟化钾。
4.如权利要求1所述的制备方法,其特征在于,反应温度为20℃-65℃。
5.如权利要求4所述的制备方法,其特征在于,反应温度为65℃。
6.如权利要求1-3任一项所述的制备方法,其特征在于,反应底物与氟源的用量摩尔比为2:1-6:1。
7.如权利要求6所述的制备方法,其特征在于,反应底物与氟源的用量摩尔比为2.5:1。
8.如权利要求1-3任一项所述的制备方法,其特征在于,有机溶剂反应体系为四氢呋喃、乙腈、二氧六环。
9.如权利要求8所述的制备方法,其特征在于,有机溶剂反应体系为四氢呋喃。
10.如权利要求1-3任一项所述的制备方法所制得的化合物。
CN201710120278.6A 2017-03-02 2017-03-02 一种多取代β‑酮硫醚的制备方法 Pending CN107200700A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710120278.6A CN107200700A (zh) 2017-03-02 2017-03-02 一种多取代β‑酮硫醚的制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710120278.6A CN107200700A (zh) 2017-03-02 2017-03-02 一种多取代β‑酮硫醚的制备方法

Publications (1)

Publication Number Publication Date
CN107200700A true CN107200700A (zh) 2017-09-26

Family

ID=59904872

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710120278.6A Pending CN107200700A (zh) 2017-03-02 2017-03-02 一种多取代β‑酮硫醚的制备方法

Country Status (1)

Country Link
CN (1) CN107200700A (zh)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557957A (zh) * 2013-10-09 2015-04-29 华东师范大学 螺-氧化吲哚环氧乙烷衍生物的合成方法
CN106316900A (zh) * 2016-08-18 2017-01-11 重庆大学 一种1,2,3‑三取代苯及其合成方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104557957A (zh) * 2013-10-09 2015-04-29 华东师范大学 螺-氧化吲哚环氧乙烷衍生物的合成方法
CN106316900A (zh) * 2016-08-18 2017-01-11 重庆大学 一种1,2,3‑三取代苯及其合成方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DOUGLASS F. TABER 等: "Simple Preparation of α-Diazo Esters", 《J.ORG.CHEM.》 *
JIABIN LI 等: "(Expanding the horizon of intermolecular trapping of in situ generated a-oxo gold carbenes: efficient oxidative union of allylic sulfides and terminal alkynes via C–C bond formation", 《CHEM. COMMUN》 *
RAHUL A. WATILE 等: "An aqueous and recyclable copper(I)-catalyzed route to α-sulfenylated carbonyl compounds from propargylic alcohols and aryl thiols", 《GREEN CHEM.》 *
SCOTT E. DENMARK 等: "Catalytic, Enantioselective Sulfenylation of Ketone-Derived Enoxysilanes", 《JOURNAL OF THE AMERICAN CHEMICAL SOCIETY》 *

Similar Documents

Publication Publication Date Title
WO2016202894A1 (en) Method of converting alcohol to halide
Gibbs et al. Syntheses and Conformations of the p-tert-Butylcalix [4] arenethiols
Firouzabadi et al. ZrCl4 dispersed on dry silica gel provides a useful reagent for S-alkylation of thiols with alcohols under solvent-free conditions
CN104829493B (zh) 一种合成氨基甲酸芳香酯的方法
US2510893A (en) Production of organo-thiyl compounds
Gafur et al. Efficient synthesis of sulfinate esters and sulfinamides via activated esters of p-toluenesulfinic acid
Gouault-Bironneau et al. Thiophilic nucleophilic trifluoromethylation of α-substituted dithioesters. Access to S-trifluoromethyl ketene dithioacetals and their reactivity with electrophilic species
Sharma et al. An Efficient Derivation of the Versatile Chiron Antipode 1-tert-Butyldimethylsilylpenta-1, 4-diyn-3-ol: Application to the Synthesis of (15 E, R, R)-Duryne
Dawood et al. Electrolytic Partial Fluorination of Organic Compounds. 55.1 Highly Regio-and Stereoselective Anodic Monofluorination of 2, 3-Dihydrochroman-4-one and Chromone Derivatives
Sneddon et al. Double conjugate addition of dithiols to propargylic carbonyl systems to generate protected 1, 3-dicarbonyl compounds
CN107200700A (zh) 一种多取代β‑酮硫醚的制备方法
US9902674B2 (en) Process of production of 2,5-dimethylphenol
D'hooghe et al. Ring opening reactions of 1-arenesulfonyl-2-(bromomethyl) aziridines
D'yakonov et al. The facile first total synthesis of a deuterated analog of natural muricadienin
Tang et al. Efficient palladium-catalyzed Suzuki-Miyaura cross-coupling of iodoethynes with arylboronic acids under aerobic conditions
CN110183382A (zh) 新型三氟甲基吡唑类化合物合成方法
Entezari et al. Direct and facile synthesis of acyl isothiocyanates from carboxylic acids using trichloroisocyanuric acid/triphenylphosphine system
Exner et al. Concise Synthesis of Complicated Polypropionates through One‐Pot Dissymmetrical Two‐Directional Chain Elongation
Montijn et al. Chemistry of acetylenic ethers 87: Preparation of cumulenyl ethers by 1, 4‐elimination
CN108947995B (zh) 一种多取代噁二嗪衍生物的制备方法
Ogura et al. Stereoselective formation of α-fluoro-α-trifluoromethyl-γ-lactones starting from γ-hydroxy-α, β-unsaturated sulfones and a hexafluoropropene-diethylamine adduct (PPDA)
CN106478478B (zh) 基于茚醇胺骨架衍生的手性双官能有机硒硫催化剂及其制备方法与在不对称反应中的应用
CN108912083B (zh) 一种制备2-氨基-3-亚甲基-3,6-二氢吡喃衍生物的方法
JP2007031344A (ja) 光学活性β−アミノアルコール化合物の製法及び触媒
CN104327025A (zh) 一种4-芳基萘内酯类衍生物的制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20170926

WD01 Invention patent application deemed withdrawn after publication