CN107197225A - Color digital camera white balance correcting based on chromatic adaptation model - Google Patents

Color digital camera white balance correcting based on chromatic adaptation model Download PDF

Info

Publication number
CN107197225A
CN107197225A CN201710442492.3A CN201710442492A CN107197225A CN 107197225 A CN107197225 A CN 107197225A CN 201710442492 A CN201710442492 A CN 201710442492A CN 107197225 A CN107197225 A CN 107197225A
Authority
CN
China
Prior art keywords
mrow
msup
msub
color
msubsup
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710442492.3A
Other languages
Chinese (zh)
Other versions
CN107197225B (en
Inventor
徐海松
邱珏沁
叶正男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University ZJU
Original Assignee
Zhejiang University ZJU
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University ZJU filed Critical Zhejiang University ZJU
Priority to CN201710442492.3A priority Critical patent/CN107197225B/en
Publication of CN107197225A publication Critical patent/CN107197225A/en
Application granted granted Critical
Publication of CN107197225B publication Critical patent/CN107197225B/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/80Camera processing pipelines; Components thereof
    • H04N23/84Camera processing pipelines; Components thereof for processing colour signals
    • H04N23/88Camera processing pipelines; Components thereof for processing colour signals for colour balance, e.g. white-balance circuits or colour temperature control

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Processing Of Color Television Signals (AREA)
  • Color Image Communication Systems (AREA)

Abstract

The invention discloses a kind of color digital camera white balance correcting based on chromatic adaptation model, the present invention calculates color correction matrix using radical sign polynomial regression (Root Polynomial Regression) method, so that the equipment relevant response value RGB under several common light sources (hereinafter referred to as Calibrating source) is changed to same light source into device-independent CIE1931 tristimulus values XYZ.The RGB responses of unknown light source in actual scene (hereinafter referred to as testing light source) are changed into XYZ color space using the color correction matrix demarcated in advance, and its corresponding color under reference light source is calculated using CAT02 chromatic adaptation transformation models, the correspondence color is that observer produces the color that chromatic adaptation after-vision system is perceived to testing light source.

Description

Color digital camera white balance correcting based on chromatic adaptation model
Technical field
The method that color digital camera white balance correction result is adjusted chromatic adaptation model is the present invention relates to the use of, should Method can make color digital camera realize the color rendition for more meeting human eye perception to photographed scene.
Background technology
Same object often has different chromatic values under different light sources.Because human visual system has color Difference in shape constancy, these colourities can automatically be compensated by human eye and brain to a certain extent, so as to not share the same light The color of object " true " is recovered under source.In color digital camera picture signal handling process (ISP Pipeline) White balance module, by calculating the difference between actual light source chromaticity and standard sources chromaticity, to the object under non-standard light source Colour cast phenomenon is corrected, so as to simulate the color constancy of human visual system.
Acquisition of the current color digital camera to light source chromaticity is mainly derived from two ways:1) it is empty in the storage of camera Between in pre-set several type light source mode, in actual photographed as the light source type belonging to user's given scenario. This kind of light source chromaticity acquisition modes are referred to as " manual white balance mode ";2) image photographed is analyzed, passes through some light Source algorithm for estimating is predicted by outer sensor to the color of light source.This kind of light source chromaticity acquisition modes are referred to as " automatic White balance mode ".No matter work in what mode, white balance correction module is generally all to utilize two or three gain coefficients Red (Red), blue (Blue) or red, green (Green), blue channel to colour cast image enter horizontal-linearity control so that imaginary in scene The reflecting surface (the spectral reflectance perseverance at any wavelength improves reflecting surface for 1) that improves have after white balance correction Identical (or consistent with reference to white point) triple channel response.
If to any lighting source, the more apparent light source deviateed with reference to white point of especially some chromaticities, all using unification Reference light source can produce following drawback as white balance correction target to the image after white balance correction:1) output image mistake The reduction of color does not meet human eye perception in " white ", scene;2) render effect of the light source to scene atmosphere is suppressed completely;3) will The more serious light source of colour cast is corrected to reference light source by force, can increase subsequent module (such as camera lens in picture signal handling process Shadow correction, color correction etc.) intractability, even result in picture quality and deteriorate.
The content of the invention
In order that the white balance correction module of digital camera realizes more real scene color reproduction, the present invention utilizes original The gain coefficient obtained in beginning white balance correction moduleCalculate the color of light source in actual photographed scene.For table State for the sake of unification, light source colour is characterized using the object color of reflecting surface is improved in the present invention, can because improving reflecting surface Without wavelength selectivity reflection source whole energy.Converted using the CAT02 chromatic adaptations in CIECAM02 colored quantum noises to this Corresponding color of the object color under reference light source is calculated, so as to obtain the white balance correction gain coefficient after chromatic adaptationTo realize the white balance correction for image more conform to human eye visual perception.
The present invention calculates color correction using radical sign polynomial regression (Root-Polynomial Regression) method Matrix, so that the equipment relevant response value RGB under several common light sources (hereinafter referred to as Calibrating source) is changed to same light Device-independent CIE1931 tristimulus values XYZ under source.Will be to be corrected in actual scene using the color correction matrix demarcated in advance The RGB responses of unknown light source (hereinafter referred to as testing light source) change into XYZ color space, and use CAT02 chromatic adaptations Transformation model calculates its corresponding color under reference light source, and the correspondence color is that observer produces chromatic adaptation backsight to testing light source The color that feel system is perceived.
Concrete technical scheme of the present invention is as follows:
Color digital camera white balance correcting based on chromatic adaptation model, step is as follows:
S1:Using radical sign polynomial regression color calibration method by the equipment relevant response value RGB under different Calibrating sources Change to device-independent tristimulus values CIE1931 XYZ under same light source;
S2:The white balance correction gain coefficient of the image shot under light source to be corrected is obtained, light source to be corrected is calculated and existsCoordinate in plane, in cameraSearch and the nearest Calibrating source of the coordinate distance, call the demarcation in plane The corresponding color correction matrix of light source, the device-dependent camera response of the light source is changed into CIE1931 XYZ spaces, Light source colour is considered as object color;
S3:Standard of the object color after chromatic adaptation is calculated using the chromatic adaptation conversion CAT02 in CIECAM02 colored quantum noises Corresponding color under light source:
S4:Correspondence color is remapped back camera rgb space using the inverse matrix of the color correction matrix, and counted again Calculate the white balance correction gain coefficient after chromatic adaptation.
Based on above-mentioned technical proposal, each step can use following specific implementation:
Preferably, described S1 is specially:
S101:For the Calibrating source L that spectral power distribution is P (λ), constitute model using camera response and calculate standard Camera rgb value r of i-th of the color lump of colour atla under light source illuminationi、giAnd bi
ρ in formulai(λ) represents the spectral reflectance of i-th of color lump, Sk(λ) represents the spectral sensitivity of k-th of passage of camera Function, k=R, G, B, Ω ' are the wave-length coverage of camera spectral response;For there is the standard color card of N number of color lump, calculating obtains one The camera response Matrix C (L) of individual N × 3, the camera rgb value of each of which row one color lump of correspondence;
S102:Calculate the camera rgb value r that reflecting surface is improved under the Calibrating sourceill、gillAnd bill
And record itsCoordinate in plane
S103:For the Calibrating source that spectral power distribution is P (λ), 2 ° of standard observer's colour matchings of CIE1931 are used FunctionCalculate CIE1931 XYZ tristimulus values of i-th of the color lump of standard color card under light source illumination:
Ω is the wave-length coverage of visible ray in formula;For there is the standard color card of N number of color lump, calculating obtains the three of N × 3 Stimulate value matrix T (L), the XYZ tristimulus values of each of which row one color lump of correspondence;
S104:The dimension of camera response Matrix C (L) is expanded into N × q, q by N × 3>3, wherein 4~q row correspondences The radical sign multinomial of each color lump response;
S105:By the use of least square method or other correction matrix optimization methods using aberration as object function, C ' is calculated (L) change to T (L) 6 × 3 color correction matrix M ' (L):
During using the root-mean-square error between C ' (L) M ' (L) and T (L) as optimization aim, using pseudoinverse technique to M ' (L) Calculated:
M ' (L)=[C 'T(L)C′(L)]-1C′T(L)·T(L),
During using the aberration between C ' (L) M ' (L) and T (L) as optimization aim, using nonlinear optimization method to M ' (L) calculated:
M ' (L)=arg min △ E (C ' (L) M ' (L), T (L)),
△ E (A, B) are the function for calculating the aberration between A and B in formula;
S106:3 × 3 color correction matrix M (L) under each Calibrating source are calculated using the method in S105;S107:It is right In all Calibrating sources, calculated using S101~S106 method and obtain respective color correction matrix M ' (L) and M (L), and deposited It is stored in camera internal memory.
Preferably, described S2 is specially:
S201:The white of the image shot under existing AWB algorithm acquisition light source to be corrected is set or utilized manually Balance correction gain coefficient
S202:Calculate rgb value of the light source to be corrected on camera raw domains:
In cameraIn plane search withClosest Calibrating source L, and stored from built in camera Its corresponding color correction matrix M ' (L) is called in device;
S203:The camera response for improving reflecting surface under the scene light source is turned using color correction matrix M ' (L) Shift in CIE1931 XYZ spaces:
X in formulaill,Yill,ZillTristimulus values respectively in XYZ space.
Preferably, described S3 is specially:
Object color [X is calculated using the chromatic adaptation conversion CAT02 in CIECAM02 colored quantum noisesill,Yill,Zill] suitable through color The corresponding color under standard sources after answering:
Chromatic adaptation transformation model f in formulaCAT02Four inputs be object color tristimulus values to be calculated successively, it is to be adapted to Light source tristimulus values, reference light source tristimulus values and ambient brightness factor LA
Further, the described ambient brightness factor is calculated using two sigmoid functions:
In formula, light source chromaticity is apart from d by calculating actual light source with reference light source chromaticity in CIELUV homogeneous color spaces In Euclidean distance obtain, a1、b1、K1、a2、b2、K2It is used as the undetermined parameter of adjustment sigmoid function shapes.
Preferably, described S4 is specially:
Described corresponding 3 × 3 color correction matrix M (L) of Calibrating source L are inverted, and will be perfect anti-after chromatic adaptation Beam tristimulus valuesRemap back in camera rgb space:
Thus, the white balance correction gain coefficient after chromatic adaptation is calculated
The present invention can be pierced the CIE1931 XYZ tri- after chromatic adaptation by being inverted to the color correction matrix demarcated Sharp value is converted back in camera RGB color, so that it is determined that the white balance correction gain coefficient after chromatic adaptation.
In order to which the implementation process to the present invention is got more information about, an embodiment cited below particularly, and coordinate appended illustrate It is described in detail.
Brief description of the drawings
Fig. 1 be Calibrating source used in the embodiment of the present invention byWithThe plane constituted as transverse and longitudinal coordinate (hereinafter referred to asPlane) on coordinate distribution.
Fig. 2 is the flow chart demarcated to the color correction matrix of some Calibrating sources in the present invention.
Fig. 3 is the CAT02 chromatic adaptation mode input parameters L used in the embodiment of the present inventionA(the ambient brightness factor) and d Corresponding relation schematic diagram between (Euclidean distance in CIELUV homogeneous color spaces), E (photographed scene illumination).
Fig. 4 is to carry out the flow that the white balance correction gain coefficient after chromatic adaptation is calculated in the present invention to a certain testing light source Figure.
Embodiment
The present invention is further elaborated and illustrated with reference to the accompanying drawings and detailed description.
The white balance correction module of current most of color digital cameras corrects the neutral point under any light source to ginseng The motivation value under light source is examined, this white balance correction mode had not both met perception of the human eye for color in real scene, and held yet The color after correction is easily caused obvious distortion occur.The present invention proposes the CAT02 in a kind of utilization CIECAM02 colored quantum noises The method that the original gain coefficient of chromatic adaptation conversion logarithmic code camera white balance correction module carries out chromatic adaptation regulation, so that in vain Image after balance correction more conforms to the color-aware of human eye.
The present invention uses radical sign polynomial regression color correction (Root-Polynomial Regression Color Correction) that the equipment relevant response value RGB under several common light sources is changed to same light source into equipment is unrelated for method Tristimulus values CIE1931 XYZ.Because the color correction matrix used in radical sign polynomial regression color correction depends on light Source function of spectral power distribution, so the present invention needs in advance to carry out several exemplary light sources the demarcation of color correction matrix.
Fig. 1 illustrates a kind of feasible Calibrating source choosing method, and depicts 39 kinds of Calibrating sources in camera Coordinate distribution in plane.
Fig. 2 is the flow chart demarcated in the present invention to the color correction matrixes of some Calibrating sources.Wherein, nominal light The quantity and species in source can be selected flexibly, in some application scenarios larger to storage overhead limitation, also can only choose D65 Light source is calculated color correction matrix as unique Calibrating source.
1. the calibration process of the present invention is comprised the steps of:
For camera response RGB is changed to device-independent tristimulus values XYZ, the present invention uses radical sign polynomial regression Color calibration method.
For the Calibrating source L that spectral power distribution is P (λ), constitute model using camera response and calculate standard color card Camera rgb value of i-th of color lump under light source illumination:
ρ in formulai(λ) represents the spectral reflectance of i-th of color lump, Sk(λ) represents the spectral sensitivity of k-th of passage of camera Related spectral sensitivity algorithm for estimating meter is obtained or utilized in function (k=R, G, B), nominal data when can be dispatched from the factory from camera Calculate and obtain, Ω ' is the wave-length coverage of camera spectral response.For there is the standard color card of N number of color lump, it can calculate and obtain a N × 3 camera response Matrix C (L), the camera rgb value of each of which row one color lump of correspondence.
Meanwhile, calculate the camera rgb value that reflecting surface is improved under the Calibrating source:
And record itsCoordinate in plane
For the Calibrating source that spectral power distribution is P (λ), 2 ° of standard observer's color matching functions of CIE1931 are usedCalculate CIE1931 XYZ tristimulus values of i-th of the color lump of standard color card under light source illumination:
Ω is the wave-length coverage of visible ray in formula.For there is the standard color card of N number of color lump, it can calculate and obtain N × 3 Tristimulus values matrix T (L), each of which row correspondence one color lump XYZ tristimulus values.
The dimension of camera response Matrix C (L) is expanded into N × q (q by N × 3>3), wherein 4~q row have been corresponded to respectively The radical sign multinomial of individual color lump response.By taking secondary radical sign multinomial as an example, now there is q=6, the camera response square after extension Battle array C ' (L) the i-th behavior
By the use of least square method or other correction matrix optimization methods using aberration as object function, calculate C ' (L) and turn Shift to T (L) 6 × 3 color correction matrix M ' (L):
, can be using pseudoinverse technique to M ' during using the root-mean-square error between C ' (L) M ' (L) and T (L) as optimization aim (L) calculated:
M ' (L)=[C 'T(L)C′(L)]-1C′T(L)·T(L).
During using the aberration between C ' (L) M ' (L) and T (L) as optimization aim, using non-thread such as Gauss-Newton methods Property optimization method is calculated M ' (L):
M ' (L)=arg min △ E (C ' (L) M ' (L), T (L))
△ E (A, B) are the function for calculating the aberration between A and B in formula;
Meanwhile, using similar method, calculate 3 × 3 color correction matrix M (L) under each Calibrating source.M (L) and M ' (L) difference is that M ' (L) is applied to response Matrix C ' (L) after radical sign polynomial expansion, and M (L) is suitable for original Response Matrix C (L).
For all Calibrating sources, calculated using as above method and obtain respective color correction matrix M ' (L) and M (L), and It is stored in camera internal memory.
2. the present invention carries out the mistake of the white balance correction based on chromatic adaptation model to the image shot under any unknown light source Journey is as follows:
The manual white balance correction gain coefficient for setting or the image being obtained using existing AWB algorithm
Calculate rgb value of the light source on camera raw domains in the scene:
In cameraIn plane search withClosest Calibrating source L, and stored from built in camera Its corresponding color correction matrix M ' (L) is called in device.
Using color correction matrix M ' (L) by the camera response for improving reflecting surface under the scene light source change to In CIE1931 XYZ spaces:
Object color [X is calculated using the chromatic adaptation conversion CAT02 in CIECAM02 colored quantum noisesill,Yill,Zill] suitable through color The corresponding color under standard sources after answering:
In formula, chromatic adaptation transformation model fCAT02Four inputs be object color tristimulus values to be calculated successively, wait to adapt to Light source tristimulus values, reference light source tristimulus values and LAThe ambient brightness factor.Because the present invention needs to calculate testing light source Perception color after chromatic adaptation, it is equivalent to calculate the corresponding color for improving reflecting surface under testing light source, therefore before the model Two inputs are the CIE1931 XYZ tristimulus values of testing light source.CIE D65 working flares are selected to be used as standard in the present embodiment Working flare, therefore
Ambient brightness factor LACan consider the chromaticity of actual light source and reference light source apart from d and scene illumination E this Two factors.Two sigmoid function pairs L are used in the present inventionACalculated:
In formula, light source chromaticity can be empty in CIELUV uniform colors with reference light source chromaticity by calculating actual light source apart from d Between in Euclidean distance obtain, a1、b1、K1、a2、b2、K2, can be according to reality as the undetermined parameter of adjustment sigmoid function shapes Border demand is demarcated.A kind of corresponding relation between feasible ambient brightness factor and d, E is as shown in Figure 3.
Finally, 3 × 3 color correction matrix M (L) corresponding to the testing light source is inverted, and will be perfect anti-after chromatic adaptation Beam tristimulus valuesRemap back in camera rgb space:
Thus, the white balance correction gain coefficient after chromatic adaptation is calculated:
Using the gain coefficient to the i.e. achievable white balance correction for image more conform to human eye visual perception.
The flow chart that the white balance correction gain coefficient calculating after chromatic adaptation is carried out to a certain testing light source is as shown in Figure 4.
Embodiment described above is a kind of preferably scheme of the present invention, and so it is not intended to limiting the invention.Have The those of ordinary skill for closing technical field, without departing from the spirit and scope of the present invention, can also make various changes Change and modification.Therefore the technical scheme that all modes for taking equivalent substitution or equivalent transformation are obtained, all falls within the guarantor of the present invention In the range of shield.

Claims (6)

1. a kind of color digital camera white balance correcting based on chromatic adaptation model, it is characterised in that step is as follows:
S1:The equipment relevant response value RGB under different Calibrating sources is changed using radical sign polynomial regression color calibration method Device-independent tristimulus values CIE1931XYZ under to same light source;
S2:The white balance correction gain coefficient of the image shot under light source to be corrected is obtained, light source to be corrected is calculated and existsIt is flat Coordinate on face, in cameraSearch and the nearest Calibrating source of the coordinate distance, call the Calibrating source pair in plane The color correction matrix answered, the device-dependent camera response of the light source is changed into CIE1931XYZ spaces, by light source Color is considered as object color;
S3:Standard sources of the object color after chromatic adaptation is calculated using the chromatic adaptation conversion CAT02 in CIECAM02 colored quantum noises Under corresponding color:
S4:Correspondence color is remapped back camera rgb space using the inverse matrix of the color correction matrix, and recalculates color White balance correction gain coefficient after adaptation.
2. the color digital camera white balance correcting as claimed in claim 1 based on chromatic adaptation model, it is characterised in that Described S1 is specially:
S101:For the Calibrating source L that spectral power distribution is P (λ), constitute model using camera response and calculate standard color card Camera rgb value r of i-th of color lump under light source illuminationi、giAnd bi
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>r</mi> <mi>i</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <msup> <mi>&amp;Omega;</mi> <mo>&amp;prime;</mo> </msup> </munder> <msub> <mi>&amp;rho;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msup> <mi>S</mi> <mi>R</mi> </msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>g</mi> <mi>i</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <msup> <mi>&amp;Omega;</mi> <mo>&amp;prime;</mo> </msup> </munder> <msub> <mi>&amp;rho;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msup> <mi>S</mi> <mi>G</mi> </msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>b</mi> <mi>i</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <msup> <mi>&amp;Omega;</mi> <mo>&amp;prime;</mo> </msup> </munder> <msub> <mi>&amp;rho;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msup> <mi>S</mi> <mi>B</mi> </msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
ρ in formulai(λ) represents the spectral reflectance of i-th of color lump, Sk(λ) represents the spectral sensitivity functions of k-th of passage of camera, K=R, G, B, Ω ' are the wave-length coverage of camera spectral response;For there is the standard color card of N number of color lump, calculating obtains N × 3 Camera response Matrix C (L), each of which row correspondence one color lump camera rgb value;
S102:Calculate the camera rgb value r that reflecting surface is improved under the Calibrating sourceill、gillAnd bill
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msup> <mi>r</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <msup> <mi>&amp;Omega;</mi> <mo>&amp;prime;</mo> </msup> </munder> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msup> <mi>S</mi> <mi>R</mi> </msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>g</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <msup> <mi>&amp;Omega;</mi> <mo>&amp;prime;</mo> </msup> </munder> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msup> <mi>S</mi> <mi>G</mi> </msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msup> <mi>b</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <msup> <mi>&amp;Omega;</mi> <mo>&amp;prime;</mo> </msup> </munder> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <msup> <mi>S</mi> <mi>B</mi> </msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
And record itsCoordinate in plane
S103:For the Calibrating source that spectral power distribution is P (λ), 2 ° of standard observer's color matching functions of CIE1931 are usedCalculate CIE1931XYZ tristimulus values of i-th of the color lump of standard color card under light source illumination:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msub> <mi>X</mi> <mi>i</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <mi>&amp;Omega;</mi> </munder> <msub> <mi>&amp;rho;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>x</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Y</mi> <mi>i</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <mi>&amp;Omega;</mi> </munder> <msub> <mi>&amp;rho;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>y</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> <mo>,</mo> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msub> <mi>Z</mi> <mi>i</mi> </msub> <mo>=</mo> <munder> <mo>&amp;Integral;</mo> <mi>&amp;Omega;</mi> </munder> <msub> <mi>&amp;rho;</mi> <mi>i</mi> </msub> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mover> <mi>z</mi> <mo>&amp;OverBar;</mo> </mover> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mi>d</mi> <mi>&amp;lambda;</mi> <mo>,</mo> </mrow> </mtd> </mtr> </mtable> </mfenced>
Ω is the wave-length coverage of visible ray in formula;For there is the standard color card of N number of color lump, the tristimulus for obtaining N × 3 is calculated Value matrix T (L), the XYZ tristimulus values of each of which row one color lump of correspondence;
S104:The dimension of camera response Matrix C (L) is expanded into N × q, q by N × 3>3, wherein 4~q row correspond to each The radical sign multinomial of color lump response;
S105:By the use of least square method or other correction matrix optimization methods using aberration as object function, calculate C ' (L) and turn Shift to T (L) 6 × 3 color correction matrix M ' (L):
<mrow> <msup> <mi>C</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mi>L</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mi>M</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mi>L</mi> <mo>)</mo> </mrow> <mo>&amp;cong;</mo> <mi>T</mi> <mrow> <mo>(</mo> <mi>L</mi> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
During using the root-mean-square error between C ' (L) M ' (L) and T (L) as optimization aim, M ' (L) is carried out using pseudoinverse technique Calculate:
M ' (L)=[C 'T(L)C′(L)]-1C′T(L)·T(L),
During using the aberration between C ' (L) M ' (L) and T (L) as optimization aim, M ' (L) is entered using nonlinear optimization method Row is calculated:
M ' (L)=argmin △ E (C ' (L) M ' (L), T (L)),
△ E (A, B) are the function for calculating the aberration between A and B in formula;
S106:3 × 3 color correction matrix M (L) under each Calibrating source are calculated using the method in S105;
S107:For all Calibrating sources, calculated using S101~S106 method and obtain respective color correction matrix M ' (L) With M (L), and it is stored in camera internal memory.
3. the color digital camera white balance correcting as claimed in claim 1 based on chromatic adaptation model, it is characterised in that Described S2 is specially:
S201:The white balance of the image shot under light source to be corrected is set or obtained using existing AWB algorithm manually Correcting gain coefficient
S202:Calculate rgb value of the light source to be corrected on camera raw domains:
<mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <msup> <mi>R</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <msubsup> <mi>R</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mi>A</mi> <mi>W</mi> <mi>B</mi> </mrow> </msubsup> </mfrac> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>G</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>=</mo> <mn>1</mn> <mo>,</mo> </mtd> </mtr> <mtr> <mtd> <msup> <mi>B</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>=</mo> <mfrac> <mn>1</mn> <msubsup> <mi>B</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mi>A</mi> <mi>W</mi> <mi>B</mi> </mrow> </msubsup> </mfrac> <mo>&amp;CenterDot;</mo> </mtd> </mtr> </mtable> </mfenced>
In cameraIn plane search withClosest Calibrating source L, and from camera internal memory Call its corresponding color correction matrix M ' (L);
S203:Using color correction matrix M ' (L) by the camera response for improving reflecting surface under the scene light source change to In CIE1931XYZ spaces:
<mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msup> <mi>X</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>Y</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>Z</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>=</mo> <msup> <mi>M</mi> <mo>&amp;prime;</mo> </msup> <mrow> <mo>(</mo> <mi>L</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msup> <mi>R</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>G</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>B</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>,</mo> <msqrt> <mrow> <msup> <mi>R</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <msup> <mi>G</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> </mrow> </msqrt> <mo>,</mo> <msqrt> <mrow> <msup> <mi>G</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <msup> <mi>B</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> </mrow> </msqrt> <mo>,</mo> <msqrt> <mrow> <msup> <mi>R</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <msup> <mi>B</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> </mrow> </msqrt> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>.</mo> </mrow>
X in formulaill,Yill,ZillTristimulus values respectively in XYZ space.
4. the color digital camera white balance correcting as claimed in claim 1 based on chromatic adaptation model, it is characterised in that Described S3 is specially:
Object color [X is calculated using the chromatic adaptation conversion CAT02 in CIECAM02 colored quantum noisesill,Yill,Zill] after chromatic adaptation Standard sources under corresponding color:
<mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>X</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>Y</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>Z</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>=</mo> <msub> <mi>f</mi> <mrow> <mi>C</mi> <mi>A</mi> <mi>T</mi> <mn>02</mn> </mrow> </msub> <mrow> <mo>(</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msup> <mi>X</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>Y</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>Z</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msup> <mi>X</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>Y</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>Z</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msup> <mi>X</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>Y</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msup> <mo>,</mo> <msup> <mi>Z</mi> <mrow> <mi>r</mi> <mi>e</mi> <mi>f</mi> </mrow> </msup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> <msub> <mi>L</mi> <mi>A</mi> </msub> <mo>)</mo> </mrow> <mo>,</mo> </mrow>
Chromatic adaptation transformation model f in formulaCAT02Four inputs be object color tristimulus values to be calculated, light source to be adapted to successively Tristimulus values, reference light source tristimulus values and ambient brightness factor LA
5. the color digital camera white balance correcting as claimed in claim 4 based on chromatic adaptation model, it is characterised in that The described ambient brightness factor is calculated using two sigmoid functions:
<mrow> <msub> <mi>L</mi> <mi>A</mi> </msub> <mo>=</mo> <mfrac> <msub> <mi>K</mi> <mn>1</mn> </msub> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>(</mo> <msub> <mi>a</mi> <mn>1</mn> </msub> <mi>d</mi> <mo>-</mo> <msub> <mi>b</mi> <mn>1</mn> </msub> <mo>)</mo> </mrow> </msup> </mrow> </mfrac> <mo>&amp;CenterDot;</mo> <mfrac> <msub> <mi>K</mi> <mn>2</mn> </msub> <mrow> <mn>1</mn> <mo>+</mo> <msup> <mi>e</mi> <mrow> <mo>(</mo> <msub> <mi>b</mi> <mn>2</mn> </msub> <mo>-</mo> <msub> <mi>a</mi> <mn>2</mn> </msub> <mi>E</mi> <mo>)</mo> </mrow> </msup> </mrow> </mfrac> <mo>,</mo> </mrow>
In formula, light source chromaticity is apart from d by calculating actual light source and reference light source chromaticity in CIELUV homogeneous color spaces Euclidean distance is obtained, a1、b1、K1、a2、b2、K2It is used as the undetermined parameter of adjustment sigmoid function shapes.
6. the color digital camera white balance correcting as claimed in claim 3 based on chromatic adaptation model, it is characterised in that Described S4 is specially:
Described corresponding 3 × 3 color correction matrix M (L) of Calibrating source L are inverted, and reflector will be improved after chromatic adaptation Tristimulus valuesRemap back in camera rgb space:
<mrow> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>R</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>G</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>B</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>=</mo> <msup> <mi>M</mi> <mrow> <mo>-</mo> <mn>1</mn> </mrow> </msup> <mrow> <mo>(</mo> <mi>L</mi> <mo>)</mo> </mrow> <mo>&amp;CenterDot;</mo> <msup> <mrow> <mo>&amp;lsqb;</mo> <msubsup> <mi>X</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>Y</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> <mo>,</mo> <msubsup> <mi>Z</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> <mo>&amp;rsqb;</mo> </mrow> <mi>T</mi> </msup> <mo>,</mo> </mrow>
Thus, the white balance correction gain coefficient after chromatic adaptation is calculated
<mrow> <mfenced open = "{" close = ""> <mtable> <mtr> <mtd> <mrow> <msubsup> <mi>R</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mi>C</mi> <mi>A</mi> <mi>T</mi> </mrow> </msubsup> <mo>=</mo> <mfrac> <msubsup> <mi>G</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> <msubsup> <mi>R</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> </mfrac> </mrow> </mtd> </mtr> <mtr> <mtd> <mrow> <msubsup> <mi>B</mi> <mrow> <mi>g</mi> <mi>a</mi> <mi>i</mi> <mi>n</mi> </mrow> <mrow> <mi>C</mi> <mi>A</mi> <mi>T</mi> </mrow> </msubsup> <mo>=</mo> <mfrac> <msubsup> <mi>G</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> <msubsup> <mi>B</mi> <mi>a</mi> <mrow> <mi>i</mi> <mi>l</mi> <mi>l</mi> </mrow> </msubsup> </mfrac> </mrow> </mtd> </mtr> </mtable> </mfenced> <mo>.</mo> </mrow> 3
CN201710442492.3A 2017-06-13 2017-06-13 Color digital camera white balance correcting based on chromatic adaptation model Expired - Fee Related CN107197225B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710442492.3A CN107197225B (en) 2017-06-13 2017-06-13 Color digital camera white balance correcting based on chromatic adaptation model

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710442492.3A CN107197225B (en) 2017-06-13 2017-06-13 Color digital camera white balance correcting based on chromatic adaptation model

Publications (2)

Publication Number Publication Date
CN107197225A true CN107197225A (en) 2017-09-22
CN107197225B CN107197225B (en) 2019-04-05

Family

ID=59877611

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710442492.3A Expired - Fee Related CN107197225B (en) 2017-06-13 2017-06-13 Color digital camera white balance correcting based on chromatic adaptation model

Country Status (1)

Country Link
CN (1) CN107197225B (en)

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109035346A (en) * 2018-08-13 2018-12-18 北京中科慧眼科技有限公司 A kind of camera color calibration method, apparatus and automated driving system
CN109218698A (en) * 2018-10-19 2019-01-15 浙江大学 A kind of color digital camera color calibration method of high fault tolerance
CN110060308A (en) * 2019-03-28 2019-07-26 杭州电子科技大学 A kind of color constancy method based on light source colour distribution limitation
CN110276129A (en) * 2019-06-21 2019-09-24 贵州大学 Method, system and device based on combustion control system control combustion furnace supply fuel equivalence ratio
CN110351537A (en) * 2019-07-31 2019-10-18 深圳前海达闼云端智能科技有限公司 White balance method, device, storage medium and the electronic equipment of Image Acquisition
CN110726536A (en) * 2019-09-25 2020-01-24 宁波永新光学股份有限公司 Color correction method for color digital reflection microscope
CN110751607A (en) * 2019-10-21 2020-02-04 浙江大华技术股份有限公司 Skin color correction method and device, storage medium and electronic device
CN110807812A (en) * 2019-09-29 2020-02-18 浙江大学 Digital image sensor system error calibration method based on prior noise model
CN110807817A (en) * 2019-10-29 2020-02-18 长春融成智能设备制造股份有限公司 Machine vision method for target color recognition adapting to illumination change
CN110896452A (en) * 2018-09-13 2020-03-20 奇酷互联网络科技(深圳)有限公司 Flash lamp correction method of mobile terminal, mobile terminal and device
CN111008942A (en) * 2019-12-16 2020-04-14 吴成 Image processing method based on light change
CN111429827A (en) * 2020-03-19 2020-07-17 展讯通信(上海)有限公司 Display screen color calibration method and device, electronic equipment and readable storage medium
CN112714300A (en) * 2020-12-01 2021-04-27 南京理工大学 Color correction method based on spectral response under ultralow illumination
CN113487681A (en) * 2021-07-01 2021-10-08 浙江大学 Camera color calibration method based on spectral sensitivity curve and light source spectrum optimization
CN113628135A (en) * 2021-07-28 2021-11-09 Oppo广东移动通信有限公司 Image color correction method, image color correction device, computer device, and storage medium
CN113763257A (en) * 2020-11-13 2021-12-07 齐鲁工业大学 Rapid extraction and migration application method of color correction model
CN114902644A (en) * 2019-12-31 2022-08-12 皇家飞利浦有限公司 Method and system for full slide imaging
CN115100082A (en) * 2022-08-24 2022-09-23 浙江大学 High-precision color display system based on hyperspectral camera
WO2022199332A1 (en) * 2021-03-26 2022-09-29 Oppo广东移动通信有限公司 Color correction method, correctable display method, electronic device, and chip
CN115937207A (en) * 2023-01-09 2023-04-07 江苏恒力化纤股份有限公司 Image-based method for measuring color of dyed polyester fabric
CN116437060A (en) * 2021-12-31 2023-07-14 荣耀终端有限公司 Image processing method and related electronic equipment
EP4261771A4 (en) * 2021-12-31 2024-07-03 Honor Device Co Ltd Image processing method and related electronic device
US12047689B2 (en) 2022-06-28 2024-07-23 Acer Incorporated White balance coefficient correction method and electronic device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141737A (en) * 2005-11-21 2007-06-07 Sharp Corp Lighting system, liquid crystal display device, control method of lighting system, lighting system control program and recording medium
CN101039439A (en) * 2007-04-23 2007-09-19 北京中星微电子有限公司 Method and apparatus for realizing correction of white balance
JP4960597B2 (en) * 2005-02-22 2012-06-27 キヤノン株式会社 White balance correction apparatus and method, and imaging apparatus
CN103200410A (en) * 2013-04-01 2013-07-10 上海富瀚微电子有限公司 White balance control method and white balance control device
CN103905803A (en) * 2014-03-18 2014-07-02 中国科学院国家天文台 Image color correcting method and device
CN104010176A (en) * 2014-03-26 2014-08-27 云南师范大学 Method for achieving color correction from display to printer through human eyes

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4960597B2 (en) * 2005-02-22 2012-06-27 キヤノン株式会社 White balance correction apparatus and method, and imaging apparatus
JP2007141737A (en) * 2005-11-21 2007-06-07 Sharp Corp Lighting system, liquid crystal display device, control method of lighting system, lighting system control program and recording medium
CN101039439A (en) * 2007-04-23 2007-09-19 北京中星微电子有限公司 Method and apparatus for realizing correction of white balance
CN103200410A (en) * 2013-04-01 2013-07-10 上海富瀚微电子有限公司 White balance control method and white balance control device
CN103905803A (en) * 2014-03-18 2014-07-02 中国科学院国家天文台 Image color correcting method and device
CN104010176A (en) * 2014-03-26 2014-08-27 云南师范大学 Method for achieving color correction from display to printer through human eyes

Cited By (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109035346A (en) * 2018-08-13 2018-12-18 北京中科慧眼科技有限公司 A kind of camera color calibration method, apparatus and automated driving system
CN110896452A (en) * 2018-09-13 2020-03-20 奇酷互联网络科技(深圳)有限公司 Flash lamp correction method of mobile terminal, mobile terminal and device
CN109218698A (en) * 2018-10-19 2019-01-15 浙江大学 A kind of color digital camera color calibration method of high fault tolerance
CN110060308A (en) * 2019-03-28 2019-07-26 杭州电子科技大学 A kind of color constancy method based on light source colour distribution limitation
CN110060308B (en) * 2019-03-28 2021-02-02 杭州电子科技大学 Color constancy method based on light source color distribution limitation
CN110276129A (en) * 2019-06-21 2019-09-24 贵州大学 Method, system and device based on combustion control system control combustion furnace supply fuel equivalence ratio
CN110276129B (en) * 2019-06-21 2022-11-29 贵州大学 Method, system and device for controlling equivalence ratio of fuel supplied to combustion furnace based on combustion control system
CN110351537A (en) * 2019-07-31 2019-10-18 深圳前海达闼云端智能科技有限公司 White balance method, device, storage medium and the electronic equipment of Image Acquisition
CN110351537B (en) * 2019-07-31 2021-09-24 深圳前海达闼云端智能科技有限公司 White balance method and device for image acquisition, storage medium and electronic equipment
CN110726536A (en) * 2019-09-25 2020-01-24 宁波永新光学股份有限公司 Color correction method for color digital reflection microscope
CN110726536B (en) * 2019-09-25 2021-08-06 宁波永新光学股份有限公司 Color correction method for color digital reflection microscope
CN110807812A (en) * 2019-09-29 2020-02-18 浙江大学 Digital image sensor system error calibration method based on prior noise model
CN110807812B (en) * 2019-09-29 2022-04-05 浙江大学 Digital image sensor system error calibration method based on prior noise model
CN110751607A (en) * 2019-10-21 2020-02-04 浙江大华技术股份有限公司 Skin color correction method and device, storage medium and electronic device
CN110807817A (en) * 2019-10-29 2020-02-18 长春融成智能设备制造股份有限公司 Machine vision method for target color recognition adapting to illumination change
CN110807817B (en) * 2019-10-29 2023-01-03 长春融成智能设备制造股份有限公司 Machine vision method for target color recognition adapting to illumination change
CN111008942A (en) * 2019-12-16 2020-04-14 吴成 Image processing method based on light change
CN114902644A (en) * 2019-12-31 2022-08-12 皇家飞利浦有限公司 Method and system for full slide imaging
CN111429827B (en) * 2020-03-19 2022-11-29 展讯通信(上海)有限公司 Display screen color calibration method and device, electronic equipment and readable storage medium
CN111429827A (en) * 2020-03-19 2020-07-17 展讯通信(上海)有限公司 Display screen color calibration method and device, electronic equipment and readable storage medium
CN113763257B (en) * 2020-11-13 2024-02-02 齐鲁工业大学 Quick extraction and migration application method of color correction model
CN113763257A (en) * 2020-11-13 2021-12-07 齐鲁工业大学 Rapid extraction and migration application method of color correction model
CN112714300A (en) * 2020-12-01 2021-04-27 南京理工大学 Color correction method based on spectral response under ultralow illumination
WO2022199332A1 (en) * 2021-03-26 2022-09-29 Oppo广东移动通信有限公司 Color correction method, correctable display method, electronic device, and chip
CN113487681A (en) * 2021-07-01 2021-10-08 浙江大学 Camera color calibration method based on spectral sensitivity curve and light source spectrum optimization
CN113487681B (en) * 2021-07-01 2022-10-04 浙江大学 Camera color calibration method based on spectral sensitivity curve and light source spectrum optimization
CN113628135A (en) * 2021-07-28 2021-11-09 Oppo广东移动通信有限公司 Image color correction method, image color correction device, computer device, and storage medium
CN116437060A (en) * 2021-12-31 2023-07-14 荣耀终端有限公司 Image processing method and related electronic equipment
CN116437060B (en) * 2021-12-31 2024-04-12 荣耀终端有限公司 Image processing method and related electronic equipment
EP4261771A4 (en) * 2021-12-31 2024-07-03 Honor Device Co Ltd Image processing method and related electronic device
US12047689B2 (en) 2022-06-28 2024-07-23 Acer Incorporated White balance coefficient correction method and electronic device
CN115100082A (en) * 2022-08-24 2022-09-23 浙江大学 High-precision color display system based on hyperspectral camera
CN115937207A (en) * 2023-01-09 2023-04-07 江苏恒力化纤股份有限公司 Image-based method for measuring color of dyed polyester fabric
CN115937207B (en) * 2023-01-09 2023-08-01 江苏恒力化纤股份有限公司 Image type dyed polyester fabric color measurement method

Also Published As

Publication number Publication date
CN107197225B (en) 2019-04-05

Similar Documents

Publication Publication Date Title
CN107197225A (en) Color digital camera white balance correcting based on chromatic adaptation model
US10535125B2 (en) Dynamic global tone mapping with integrated 3D color look-up table
CN1874410B (en) Imaging device and method for processing imaging result in imaging device
US20070110304A1 (en) Projector color correcting method
CN113170028B (en) Method for generating image data of machine learning based imaging algorithm
US9386189B2 (en) Device for converting color gamut and method thereof
US20090060326A1 (en) Image processing apparatus and method
US20090046171A1 (en) Non-linear color correction
US9961236B2 (en) 3D color mapping and tuning in an image processing pipeline
CN110830778A (en) Imaging device color correction method, imaging device color correction device, electronic device and storage medium
JP2016006954A (en) Color correction parameter calculation method, color correction parameter calculation device and image output system
CN109218698B (en) Color correction method of high-fault-tolerance color digital camera
CN101290755A (en) Display apparatus and color data processing method thereof
CN107680142B (en) Method for improving out-of-gamut color overlay mapping
CN104320641A (en) Apparatus and method for automated self-training of white balance by electronic cameras
CN118175274A (en) Image processing method, device, storage medium and electronic equipment
US20100156929A1 (en) Ridge-based color gamut mapping
US10242461B1 (en) Method to improve overlay mapping of out-of-gamut
JP3835517B2 (en) White balance control device and white balance control method
Yu et al. A method for color calibration based on simulated annealing optimization
JP5097927B2 (en) Color conversion matrix calculation method
TWI513326B (en) Method for correcting high dynamic range synthetic images
KR100827128B1 (en) Method of forming image in a portable display apparatus
JP2011188319A (en) Color correction method and color correction device
WO2009091500A1 (en) A method for chromatic adaptation of images

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190405

CF01 Termination of patent right due to non-payment of annual fee