CN107191793A - 一种白光的合成方法及系统 - Google Patents

一种白光的合成方法及系统 Download PDF

Info

Publication number
CN107191793A
CN107191793A CN201710398466.5A CN201710398466A CN107191793A CN 107191793 A CN107191793 A CN 107191793A CN 201710398466 A CN201710398466 A CN 201710398466A CN 107191793 A CN107191793 A CN 107191793A
Authority
CN
China
Prior art keywords
spectrum
mrow
luminous power
junction temperature
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201710398466.5A
Other languages
English (en)
Other versions
CN107191793B (zh
Inventor
陈焕庭
陈耀庭
林硕
熊传兵
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minnan Normal University
Original Assignee
Minnan Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minnan Normal University filed Critical Minnan Normal University
Priority to CN201710398466.5A priority Critical patent/CN107191793B/zh
Publication of CN107191793A publication Critical patent/CN107191793A/zh
Application granted granted Critical
Publication of CN107191793B publication Critical patent/CN107191793B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V23/00Arrangement of electric circuit elements in or on lighting devices
    • F21V23/02Arrangement of electric circuit elements in or on lighting devices the elements being transformers, impedances or power supply units, e.g. a transformer with a rectifier
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B45/00Circuit arrangements for operating light-emitting diodes [LED]
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Abstract

本发明公开了一种白光的合成方法及系统。方法包括确定白光光谱与器件结温和负载电功率的关系式;确定白光光谱中的蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式;根据获取的待合成白光LED光谱,及待合成白光工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载功率的关系式和所述蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式,确定待合成白光的LED光谱中的蓝光光谱的光功率和荧光粉光谱的光功率,完成白光的合成;充分考虑了白光的LED光谱与负载电功率和器件结温的关系,实现了一定负载电功率和器件结温下的白光的准确合成。

Description

一种白光的合成方法及系统
技术领域
本发明涉及光合成领域,特别涉及一种白光的合成方法及系统。
背景技术
功率型LED照明系统产品是一种基于半导体发光原理的新型固态冷光源。以绿色生态照明为核心的LED照明产业正在迅速发展。目前白光LED通常采用两种方法形成,第一种是利用"蓝光技术"与荧光粉配合形成白光;第二种是多种单色光混合方法,而第一种方法中蓝色LED芯片涂抹YAG荧光粉, 为白光LED产生的一种主要方式。而且白光LED光谱存在不同的光谱分布,不同的光谱分布可产生不同的颜色,从暖白色到冷白色,其色温数值范围从 2800K-7000K。白光LED光谱是LED的一个重要特性,它确定了光谱的光通量、色温和光功率,但是白光的LED光谱与负载电功率和器件结温有紧密的关系,如何结合白光的LED光谱与负载电功率和器件结温的关系,进行白光的准确合成,目前还是一个技术难度。
发明内容
本发明的目的是,为了结合白光的LED光谱与负载电功率和器件结温的关系,进行白光的准确合成,提供一种白光的合成方法及系统。
为实现上述目的,本发明提供了如下方案:
一种白光的合成方法,包括如下步骤:
确定白光光谱与器件结温和负载电功率的关系式;
确定白光光谱中的蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式;
获取待合成白光的LED光谱,及待合成白光工作的器件结温和负载电功率;
根据获取的待合成白光LED光谱,及待合成白光工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载功率的关系式和所述蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式,确定待合成白光的 LED光谱中的蓝光光谱的光功率和荧光粉光谱的光功率;
根据所述蓝光光谱的光功率和荧光粉的光功率合成待合成白光。
可选的,所述确定白光光谱与外部因素的关系式的具体步骤包括:
采用实验的方法确定蓝光光谱的峰值波长λpeak_b与负载电功率Pd的关系式:
其中,a,b为蓝光光谱峰值波长的相关物理特性系数,βpeak_b是在室温25 度情况下蓝光光谱峰值波长值;
采用控温热沉的实验方法确定荧光粉光谱的峰值波长λpeak_phosphor与器件结温Tj的关系式:
λpeak_phosphor=kpeak_phosphor(Tj-To)+βpeak_phosphor (2)
其中,kpeak_phosphor为荧光粉光谱峰值波长的器件结温变化系数,βpeak_phosphor是在器件结温T0情况下荧光粉光谱峰值波长值;
采用控温热沉的实验方法确定蓝光光谱的半高宽σ_b与器件结温Tj的关系式:
σ_b=k_b(Tj-T0)+β_b (3)
k_b为蓝光光谱的半高宽的器件结温变化系数,β_b是在器件结温T0情况下蓝光光谱的半高宽;
采用控温热沉的实验方法确定荧光粉光谱的半高宽σ_phosphor与器件结温Tj的关系式:
σ_phosphor=k_phosphor(Tj-T0)+β_phosphor (4)
k_phosphor为荧光粉光谱的半高宽的器件温度变化系数,β_phosphor是在器件结温T0情况下荧光粉光谱的半高宽;
采用高斯函数,构建包括蓝光光谱和荧光粉光谱的白光光谱P(λ),
其中,Popt_b,Popt_phosphor分别为蓝光光谱、荧光粉光谱的光功率;λpeak_b,λpeak_phosphor分别为蓝光光谱、荧光粉光谱的峰值波长;σ_b,σ_phosphor分别为蓝光光谱、荧光粉光谱的半高宽。
可选的,所述确定白光光谱中的荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式的具体步骤包括:
采用控温热沉的实验方法确定白光光谱中的荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式:
其中,kopt为荧光粉光谱光功率与蓝光光谱光功率比例的器件结温变化系数,βopt是在器件结温在T0情况下荧光粉光谱光功率与蓝光光谱光功率的比例值。
可选的,所述确定待合成白光LED光谱中的蓝光光谱的光功率和荧光粉光谱的光功率的具体步骤包括:
根据获取的所述待合成白光工作的器件结温,利用荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式,确定所述待合成LED白光光谱中荧光粉光谱光功率和蓝光光谱光功率的比例;
根据待合成LED白光中荧光粉光谱光功率和蓝光光谱光功率的比例和获取的待合成白光LED光谱、待合成白光LED光谱工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载电功率的关系式,确定合成所述待合成LED白光光谱的荧光粉光谱的光功率和蓝光光谱的光功率。
一种白光的合成系统,其特征在于,所述系统包括:
第一关系式确定模块,用于确定白光光谱与器件结温和负载电功率的关系式;
第二关系式确定模块,用于确定白光光谱中的蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式;
参数获取模块,用于获取待合成白光LED光谱,及待合成白光LED光谱工作的器件结温和负载电功率;
光功率确定模块,用于根据获取的待合成白光LED光谱,及待合成白光 LED光谱工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载功率的关系式和所述蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式,确定待合成白光LED光谱中的蓝光光谱的光功率和荧光粉光谱的光功率;
白光合成模块,用于根据所述蓝光光谱的光功率和荧光粉的光功率合成待合成白光。
可选的,所述第一关系式确定模块包括:
蓝光光谱的峰值波长与负载电功率的关系式确定子模块,用于采用实验的方法确定蓝光光粉的峰值波长λpeak_b与负载电功率Pd的关系式:
其中,a,b为蓝光光谱峰值波长的相关物理特性系数,βpeak_b是在室温25 度情况下蓝光光谱峰值波长值;
荧光粉光谱的峰值波长与器件结温的关系式确定子模块,用于采用控温热沉的实验方法确定荧光粉光谱的峰值波长λpeak_phosphor与器件结温Tj的关系式:
λpeak_phosphor=kpeak_phosphor(Tj-To)+βpeak_phosphor (2)
其中,kpeak_phosphor为荧光粉光谱峰值波长的器件结温变化系数,βpeak_phosphor是在器件结温T0情况下荧光粉光谱峰值波长值;
蓝光光谱的半高宽与器件结温的关系式确定子模块,用于采用控温热沉的实验方法确定蓝光光谱的半高宽σ_b与器件结温Tj的关系式:
σ_b=k_b(Tj-T0)+β_b (3)
k_b为蓝光光谱的半高宽的器件结温变化系数,β_b是在器件结温T0情况下蓝光光谱的半高宽;
荧光粉光谱的半高宽与器件结温的关系式确定子模块,用于采用控温热沉的实验方法确定荧光粉光谱的半高宽σ_phosphor与器件结温Tj的关系式:
σ_phosphor=k_phosphor(Tj-T0)+β_phosphor (4)
k_phosphor为荧光粉光谱的半高宽的器件温度变化系数,β_phosphor是在器件结温 T0情况下荧光粉光谱的半高宽。
可选的,所述第二关系式确定模块包括:
白光光谱中的荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式确定子模块,用于采用控温热沉的实验方法确定白光光谱中的荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式:
其中,kopt为荧光粉光谱光功率与蓝光光谱光功率比例的器件结温变化系数,βopt是在器件结温在T0情况下荧光粉光谱光功率与蓝光光谱光功率的比例值。
可选的,所述光功率确定模块包括:
光功率比例确定子模块,用于根据获取的所述待合成白光工作的器件结温,利用荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式,确定所述待合成白光的LED光谱中荧光粉光谱光功率和蓝光光谱光功率的比例;
光功率确定子模块,用于根据待合成白光的LED光谱中荧光粉光谱光功率和蓝光光谱光功率的比例和获取的待合成白光LED光谱、待合成白光工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载电功率的关系式,确定合成所述待合成白光的LED光谱的荧光粉光谱的光功率和蓝光光谱的光功率。
根据本发明提供的具体实施例,本发明公开了以下技术效果:
发明公开了一种白光的合成方法及系统,首先,确定白光光谱与器件结温和负载电功率的关系式;确定白光光谱中的蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式;然后利用所述白光光谱与器件结温和负载功率的关系式和所述蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式,确定待合成白光的LED光谱中的蓝光光谱的光功率和荧光粉光谱的光功率,完成白光的合成;充分考虑了白光的LED光谱与负载电功率和器件结温的关系,实现了一定负载电功率和器件结温下的白光的准确合成。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种白光的合成方法的流程图;
图2为本发明提供的一种白光的合成系统的结构框图;
图3为本发明提供的光功率为0.68W固定情况下不同相关色温的白光 LED光谱分布图;
图4为本发明提供的相关色温为6600K固定情况下不同光功率的白光 LED光谱分布图。
具体实施方式
本发明的目的是提供一种白光的合成方法及系统,以实现一定负载电功率和器件结温下的白光的准确合成。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
如图1所示,一种白光的合成方法,包括如下步骤:
S1确定白光光谱与器件结温和负载电功率的关系式;
S2确定白光光谱中的蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式;
S3获取待合成白光的LED光谱,及待合成白光工作的器件结温和负载电功率;
S4根据获取的待合成白光LED光谱,及待合成白光工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载功率的关系式和所述蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式,确定待合成白光的LED光谱中的蓝光光谱的光功率和荧光粉光谱的光功率;
S5根据所述蓝光光谱的光功率和荧光粉的光功率合成待合成白光。
可选的,步骤S1所述确定白光光谱与外部因素的关系式的具体步骤包括:
采用实验的方法确定蓝光光谱的峰值波长λpeak_b与负载电功率Pd的关系式:
其中,a,b为蓝光光谱峰值波长的相关物理特性系数,βpeak_b是在室温25 度情况下蓝光光谱峰值波长值;
采用控温热沉的实验方法确定荧光粉光谱的峰值波长λpeak_phosphor与器件结温Tj的关系式:
λpeak_phosphor=kpeak_phosphor(Tj-To)+βpeak_phosphor (2)
其中,kpeak_phosphor为荧光粉光谱峰值波长的器件结温变化系数,βpeak_phosphor是在器件结温T0情况下荧光粉光谱峰值波长值;
采用控温热沉的实验方法确定蓝光光谱的半高宽σ_b与器件结温Tj的关系式:
σ_b=k_b(Tj-T0)+β_b (3)
k_b为蓝光光谱的半高宽的器件结温变化系数,β_b是在器件结温T0情况下蓝光光谱的半高宽;
采用控温热沉的实验方法确定荧光粉光谱的半高宽σ_phosphor与器件结温Tj的关系式:
σ_phosphor=k_phosphor(Tj-T0)+β_phosphor (4)
k_phosphor为荧光粉光谱的半高宽的器件温度变化系数,β_phosphor是在器件结温 T0情况下荧光粉光谱的半高宽;
采用高斯函数,构建包括蓝光光谱和荧光粉光谱的白光光谱P(λ),
其中,Popt_b,Popt_phosphor分别为蓝光光谱、荧光粉光谱的光功率;λpeak_b,λpeak_phosphor分别为蓝光光谱、荧光粉光谱的峰值波长;σ_b,σ_phosphor分别为蓝光光谱、荧光粉光谱的半高宽。
可选的,步骤S2所述确定白光光谱中的荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式的具体步骤包括:
采用控温热沉的实验方法确定白光光谱中的荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式:
其中,kopt为荧光粉光谱光功率与蓝光光谱光功率比例的器件结温变化系数,βopt是在器件结温在T0情况下荧光粉光谱光功率与蓝光光谱光功率的比例值。
可选的,步骤S4所述确定待合成白光LED光谱中的蓝光光谱的光功率和荧光粉光谱的光功率的具体步骤包括:
根据获取的所述待合成白光工作的器件结温,利用荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式,确定所述待合成LED白光光谱中荧光粉光谱光功率和蓝光光谱光功率的比例;
根据待合成LED白光中荧光粉光谱光功率和蓝光光谱光功率的比例和获取的待合成白光LED光谱、待合成白光LED光谱工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载电功率的关系式,确定合成所述待合成LED白光光谱的荧光粉光谱的光功率和蓝光光谱的光功率。
如图2所示,发明还提供了一种白光的合成系统,所述系统包括:
第一关系式确定模块1,用于确定白光光谱与器件结温和负载电功率的关系式;
第二关系式确定模块2,用于确定白光光谱中的蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式;
参数获取模块3,用于获取待合成白光LED光谱,及待合成白光LED光谱工作的器件结温和负载电功率;
光功率确定模块4,用于根据获取的待合成白光LED光谱,及待合成白光LED光谱工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载功率的关系式和所述蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式,确定待合成白光LED光谱中的蓝光光谱的光功率和荧光粉光谱的光功率;
白光合成模块5,用于根据所述蓝光光谱的光功率和荧光粉光谱的光功率合成待合成白光。
可选的,所述第一关系式确定模块1包括:
蓝光光谱的峰值波长与负载电功率的关系式确定子模块,用于采用实验的方法确定蓝光光谱的峰值波长λpeak_b与负载电功率Pd的关系式:
其中,a,b为蓝光光谱峰值波长的相关物理特性系数,βpeak_b是在室温25 度情况下蓝光光谱峰值波长值;
荧光粉光谱的峰值波长与器件结温的关系式确定子模块,用于采用控温热沉的实验方法确定荧光粉光谱的峰值波长λpeak_phosphor与器件结温Tj的关系式:
λpeak_phosphor=kpeak_phosphor(Tj-To)+βpeak_phosphor (2)
其中,kpeak_phosphor为荧光粉光谱峰值波长的器件结温变化系数,βpeak_phosphor是在器件结温T0情况下荧光粉光谱峰值波长值;
蓝光光谱的半高宽与器件结温的关系式确定子模块,用于采用控温热沉的实验方法确定蓝光光谱的半高宽σ_b与器件结温Tj的关系式:
σ_b=k_b(Tj-T0)+β_b (3)
k_b为蓝光光谱的半高宽的器件结温变化系数,β_b是在器件结温T0情况下蓝光光谱的半高宽;
荧光粉光谱的半高宽与器件结温的关系式确定子模块,用于采用控温热沉的实验方法确定荧光粉光谱的半高宽σ_phosphor与器件结温Tj的关系式:
σ_phosphor=k_phosphor(Tj-T0)+β_phosphor (4)
k_phosphor为荧光粉光谱的半高宽的器件温度变化系数,β_phosphor是在器件结温 T0情况下荧光粉光谱的半高宽。
可选的,所述第二关系式确定模块2包括:
白光光谱中的荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式确定子模块,用于采用控温热沉的实验方法确定白光光谱中的荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式:
其中,kopt为荧光粉光谱光功率与蓝光光谱光功率比例的器件结温变化系数,βopt是在器件结温在T0情况下荧光粉光谱光功率与蓝光光谱光功率的比例值。
可选的,所述光功率确定模块4包括:
光功率比例确定子模块,用于根据获取的所述待合成白光工作的器件结温,利用荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式,确定所述待合成白光的LED光谱中荧光粉光谱光功率和蓝光光谱光功率的比例;
光功率确定子模块,用于根据待合成白光的LED光谱中荧光粉光谱光功率和蓝光光谱光功率的比例和获取的待合成白光LED光谱、待合成白光工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载电功率的关系式,确定合成所述待合成白光的LED光谱的荧光粉光谱的光功率和蓝光光谱的光功率。
发明还提供了一种白光LED光谱分析的方法,包括如下步骤:
采用实验的方法确定白光LED光谱光功率与负载电功率和器件结温的关系式,
其中,Tj为器件结温,Pd为负载电功率,Popt为白光光谱的光功率,α、β、δ、γ和μ均为常数。
根据关系式(7)分析负载电功率和器件结温对白光LED光谱光功率的影响;
根据关系式(5)分析负载电功率和器件结温对白光LED光谱的特性参数的影响;
所述特性参数包括三刺激值、色坐标值和相关色温,分析负载电功率和器件结温对白光LED光谱的特性参数的影响的具体步骤包括:
计算受负载电功率和器件结温影响下的白光LED光谱的三刺激值(X,Y, Z)为:
其中,为1931CIE-XYZ系统标准色度观察者光谱三刺激值,k为比例系数,P(λ)为受外部因素影响下的白光LED光谱;
计算受负载电功率和器件结温影响下的白光LED光谱的色坐标值(x,y):
基于所述受外部因素影响下的白光LED光谱的色坐标值,依据McCamy 近似公式法计算受外部因素影响下的白光LED光谱的相关色温:
具体的,根据LED器件结温Tj和散热器热阻Rhs之间关系式(式(11)) 确定LED器件结温;
Tj=Ta+(Rjc+Rhs)Pdkh=Ta+(Rjc+Rhs)(Pd-Popt) (11)
其中,Rjc为LED器件热阻,Rhs为散热器热阻,Ta为环境温度,kh为LED 器件热功耗系数,Pd为LED器件负载电功率,Popt为白光光谱的光功率。
例如,通过产品规格书,LED器件的热阻Rjc为8.2K/W,散热器的热阻 Rjc为3.2K/W,环境温度为25℃,LED器件热功耗系数kh为0.76。
根据式(11)确定器件结温,在所设定的负载电功率和器件结温下,通过公式(5)和公式(8)-(10)计算出的白光LED光谱相关色温,根据公式(7) 计算白光LED光谱的光功率的范围,即首先给定一个相关色温(T)和光功率 (F),然后根据等式(6)和(8)用迭代电功率和热阻值的方法计算出目标相关色温 (T’)和目标光功率(F’),用目标函数()得出相关色温和光功率的误差率均在5%以下的电功率和热阻值。求出了目标函数和选择一组新的用于更新的不确定的电功率和热阻值的参数值,这个变化的不确定的参数通过优化后被代入所要解决的问题中来建立一个更新的目标函数。当目标函数值接近3%时就可以得到这个优化的结果。
例如,在固定光功率为0.68W情况下,相关色温分别为6000K、6500K 和7000K时,通过LED器件的电功率和散热片热阻值分别为(2.2W,2.0℃/W); (2.6W,9.5℃/W);(3.1W,18.3℃/W),白光LED光谱如图3所示。
例如,在固定相关色温为6600K情况下,光功率分别为0.25W、0.38W和 0.62W时,通过LED器件的电功率和散热片热阻值分别为(1.1W,17.8℃/W); (1.8W,9.5℃/W);(3.9W,3.6℃/W),白光LED光谱如图4所示。
发明公开了一种白光的合成方法及系统,首先,确定白光光谱与器件结温和负载电功率的关系式;确定白光光谱中的蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式;然后利用所述白光光谱与器件结温和负载功率的关系式和所述蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式,确定待合成白光的LED光谱中的蓝光光谱的光功率和荧光粉光谱的光功率,完成白光的合成;充分考虑了白光的LED光谱与负载电功率和器件结温的关系,实现了一定负载电功率和器件结温下的白光的准确合成,还实现了白光LED光谱在不同负载电功率和器件结温条件下的分析。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想,所描述的实施例仅仅是本发明的一部分实施例,而不是全部的实施例,基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。

Claims (8)

1.一种白光的合成方法,其特征在于,包括如下步骤:
确定白光光谱与器件结温和负载电功率的关系式;
确定白光光谱中的蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式;
获取待合成白光的LED光谱,及待合成白光工作的器件结温和负载电功率;
根据获取的待合成白光LED光谱,及待合成白光工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载功率的关系式和所述蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式,确定待合成白光的LED光谱中的蓝光光谱的光功率和荧光粉光谱的光功率;
根据所述蓝光光谱的光功率和荧光粉的光功率合成待合成白光。
2.根据权利要求1所述的一种白光的合成方法,其特征在于,确定白光光谱与外部因素的关系式的具体步骤包括:
采用实验的方法确定蓝光光谱的峰值波长λpeak_b与负载电功率Pd的关系式:
<mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> <mo>_</mo> <mi>b</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>aP</mi> <mi>d</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msub> <mi>bP</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> <mo>_</mo> <mi>b</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中,a,b为蓝光光谱峰值波长的相关物理特性系数,βpeak_b是在室温25度情况下蓝光光谱峰值波长值;
采用控温热沉的实验方法确定荧光粉光谱的峰值波长λpeak_phosphor与器件结温Tj的关系式:
λpeak_phosphor=kpeak_phosphor(Tj-To)+βpeak_phosphor (2)
其中,kpeak_phosphor为荧光粉光谱峰值波长的器件结温变化系数,βpeak_phosphor是在器件结温T0情况下荧光粉光谱峰值波长值;
采用控温热沉的实验方法确定蓝光光谱的半高宽σ_b与器件结温Tj的关系式:
σ_b=k_b(Tj-T0)+β_b (3)
k_b为蓝光光谱的半高宽的器件结温变化系数,β_b是在器件结温T0情况下蓝光光谱的半高宽;
采用控温热沉的实验方法确定荧光粉光谱的半高宽σ_phosphor与器件结温Tj的关系式:
σ_phosphor=k_phosphor(Tj-T0)+β_phosphor (4)
k_phosphor为荧光粉光谱的半高宽的器件温度变化系数,β_phosphor是在器件结温T0情况下荧光粉光谱的半高宽;
采用高斯函数,构建包括蓝光光谱和荧光粉光谱的白光光谱P(λ),
<mrow> <mi>P</mi> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>)</mo> </mrow> <mo>=</mo> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mo>_</mo> <mi>b</mi> </mrow> </msub> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;sigma;</mi> <mi>b</mi> </msub> <msqrt> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </msqrt> </mrow> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mn>0.5</mn> <mo>*</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> <mo>_</mo> <mi>b</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <msup> <msub> <mi>&amp;sigma;</mi> <mi>b</mi> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>+</mo> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mo>_</mo> <mi>p</mi> <mi>h</mi> <mi>o</mi> <mi>s</mi> <mi>p</mi> <mi>h</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mfrac> <mn>1</mn> <mrow> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>p</mi> <mi>h</mi> <mi>o</mi> <mi>s</mi> <mi>p</mi> <mi>h</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <msqrt> <mrow> <mn>2</mn> <mi>&amp;pi;</mi> </mrow> </msqrt> </mrow> </mfrac> <mi>exp</mi> <mo>&amp;lsqb;</mo> <mo>-</mo> <mn>0.5</mn> <mo>*</mo> <mfrac> <msup> <mrow> <mo>(</mo> <mi>&amp;lambda;</mi> <mo>-</mo> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>p</mi> <mi>r</mi> <mi>a</mi> <mi>k</mi> <mo>_</mo> <mi>p</mi> <mi>h</mi> <mi>o</mi> <mi>s</mi> <mi>p</mi> <mi>h</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mo>)</mo> </mrow> <mn>2</mn> </msup> <mrow> <msup> <msub> <mi>&amp;sigma;</mi> <mrow> <mi>p</mi> <mi>h</mi> <mi>o</mi> <mi>s</mi> <mi>p</mi> <mi>h</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <mn>2</mn> </msup> </mrow> </mfrac> <mo>&amp;rsqb;</mo> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>5</mn> <mo>)</mo> </mrow> </mrow>
其中,Popt_b,Popt_phosphor分别为蓝光光谱、荧光粉光谱的光功率;λpeak_b,λpeak_phosphor分别为蓝光光谱、荧光粉光谱的峰值波长;σ_b,σ_phosphor分别为蓝光光谱、荧光粉光谱的半高宽。
3.根据权利要求1所述的一种白光的合成方法,其特征在于,确定白光光谱中的荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式的具体步骤包括:
采用控温热沉的实验方法确定白光光谱中的荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式:
<mrow> <mfrac> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mo>_</mo> <mi>p</mi> <mi>h</mi> <mi>o</mi> <mi>s</mi> <mi>p</mi> <mi>h</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mo>_</mo> <mi>b</mi> </mrow> </msub> </mfrac> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
其中,kopt为荧光粉光谱光功率与蓝光光谱光功率比例的器件结温变化系数,βopt是在器件结温在T0情况下荧光粉光谱光功率与蓝光光谱光功率的比例值。
4.根据权利要求1所述的一种白光的合成方法,其特征在于,所述确定待合成白光LED光谱中的蓝光光谱的光功率和荧光粉光谱的光功率的具体步骤包括:
根据获取的所述待合成白光工作的器件结温,利用荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式,确定所述待合成LED白光光谱中荧光粉光谱光功率和蓝光光谱光功率的比例;
根据待合成LED白光中荧光粉光谱光功率和蓝光光谱光功率的比例和获取的待合成白光LED光谱、待合成白光LED光谱工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载电功率的关系式,确定合成所述待合成LED白光光谱的荧光粉光谱的光功率和蓝光光谱的光功率。
5.一种白光的合成系统,其特征在于,所述系统包括:
第一关系式确定模块,用于确定白光光谱与器件结温和负载电功率的关系式;
第二关系式确定模块,用于确定白光光谱中的蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式;
参数获取模块,用于获取待合成白光LED光谱,及待合成白光LED光谱工作的器件结温和负载电功率;
光功率确定模块,用于根据获取的待合成白光LED光谱,及待合成白光LED光谱工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载功率的关系式和所述蓝光光谱的光功率和荧光粉光谱的光功率的比例与器件结温的关系式,确定待合成白光LED光谱中的蓝光光谱的光功率和荧光粉光谱的光功率;
白光合成模块,用于根据所述蓝光光谱的光功率和荧光粉的光功率合成待合成白光。
6.根据权利要求5所述的一种白光的合成系统,其特征在于,所述第一关系式确定模块包括:
蓝光光谱的峰值波长与负载电功率的关系式确定子模块,用于采用实验的方法确定蓝光光粉的峰值波长λpeak_b与负载电功率Pd的关系式:
<mrow> <msub> <mi>&amp;lambda;</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> <mo>_</mo> <mi>b</mi> </mrow> </msub> <mo>=</mo> <msubsup> <mi>aP</mi> <mi>d</mi> <mn>2</mn> </msubsup> <mo>-</mo> <msub> <mi>bP</mi> <mi>d</mi> </msub> <mo>+</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>p</mi> <mi>e</mi> <mi>a</mi> <mi>k</mi> <mo>_</mo> <mi>b</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>1</mn> <mo>)</mo> </mrow> </mrow>
其中,a,b为蓝光光谱峰值波长的相关物理特性系数,βpeak_b是在室温25度情况下蓝光光谱峰值波长值;
荧光粉光谱的峰值波长与器件结温的关系式确定子模块,用于采用控温热沉的实验方法确定荧光粉光谱的峰值波长λpeak_phosphor与器件结温Tj的关系式:
λpeak_phosphor=kpeak_phosphor(Tj-To)+βpeak_phosphor (2)
其中,kpeak_phosphor为荧光粉光谱峰值波长的器件结温变化系数,βpeak_phosphor是在器件结温T0情况下荧光粉光谱峰值波长值;
蓝光光谱的半高宽与器件结温的关系式确定子模块,用于采用控温热沉的实验方法确定蓝光光谱的半高宽σ_b与器件结温Tj的关系式:
σ_b=k_b(Tj-T0)+β_b (3)
k_b为蓝光光谱的半高宽的器件结温变化系数,β_b是在器件结温T0情况下蓝光光谱的半高宽;
荧光粉光谱的半高宽与器件结温的关系式确定子模块,用于采用控温热沉的实验方法确定荧光粉光谱的半高宽σ_phosphor与器件结温Tj的关系式:
σ_phosphor=k_phosphor(Tj-T0)+β_phosphor (4)
k_phosphor为荧光粉光谱的半高宽的器件温度变化系数,β_phosphor是在器件结温T0情况下荧光粉光谱的半高宽。
7.根据权利要求5所述的一种白光的合成系统,其特征在于,所述第二关系式确定模块包括:
白光光谱中的荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式确定子模块,用于采用控温热沉的实验方法确定白光光谱中的荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式:
<mrow> <mfrac> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mo>_</mo> <mi>p</mi> <mi>h</mi> <mi>o</mi> <mi>s</mi> <mi>p</mi> <mi>h</mi> <mi>o</mi> <mi>r</mi> </mrow> </msub> <msub> <mi>P</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> <mo>_</mo> <mi>b</mi> </mrow> </msub> </mfrac> <mo>=</mo> <msub> <mi>k</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mrow> <mo>(</mo> <msub> <mi>T</mi> <mi>j</mi> </msub> <mo>-</mo> <msub> <mi>T</mi> <mn>0</mn> </msub> <mo>)</mo> </mrow> <mo>+</mo> <msub> <mi>&amp;beta;</mi> <mrow> <mi>o</mi> <mi>p</mi> <mi>t</mi> </mrow> </msub> <mo>-</mo> <mo>-</mo> <mo>-</mo> <mrow> <mo>(</mo> <mn>6</mn> <mo>)</mo> </mrow> </mrow>
其中,kopt为荧光粉光谱光功率与蓝光光谱光功率比例的器件结温变化系数,βopt是在器件结温在T0情况下荧光粉光谱光功率与蓝光光谱光功率的比例值。
8.根据权利要求5所述的一种白光的合成系统,其特征在于,所述光功率确定模块包括:
光功率比例确定子模块,用于根据获取的所述待合成白光工作的器件结温,利用荧光粉光谱的光功率和蓝光光谱的光功率的比例与器件结温的关系式,确定所述待合成白光的LED光谱中荧光粉光谱光功率和蓝光光谱光功率的比例;
光功率确定子模块,用于根据待合成白光的LED光谱中荧光粉光谱光功率和蓝光光谱光功率的比例和获取的待合成白光LED光谱、待合成白光工作的器件结温和负载电功率,利用所述白光光谱与器件结温和负载电功率的关系式,确定合成所述待合成白光的LED光谱的荧光粉光谱的光功率和蓝光光谱的光功率。
CN201710398466.5A 2017-05-31 2017-05-31 一种白光的合成方法及系统 Expired - Fee Related CN107191793B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201710398466.5A CN107191793B (zh) 2017-05-31 2017-05-31 一种白光的合成方法及系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201710398466.5A CN107191793B (zh) 2017-05-31 2017-05-31 一种白光的合成方法及系统

Publications (2)

Publication Number Publication Date
CN107191793A true CN107191793A (zh) 2017-09-22
CN107191793B CN107191793B (zh) 2019-07-16

Family

ID=59876262

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201710398466.5A Expired - Fee Related CN107191793B (zh) 2017-05-31 2017-05-31 一种白光的合成方法及系统

Country Status (1)

Country Link
CN (1) CN107191793B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108954041A (zh) * 2018-07-23 2018-12-07 浙江智彩科技有限公司 一种led混光合成标准光源的方法
CN110274691A (zh) * 2019-06-25 2019-09-24 闽南师范大学 一种白光led的输出光功率确定方法及系统

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120010861A1 (en) * 2010-07-08 2012-01-12 National Taiwan University Of Science And Technology Method for optimal selecting LED light sources and implementing full spectrum light
TW201314264A (zh) * 2011-09-29 2013-04-01 Univ Nat Chiao Tung 一種發光二極體陣列的混光方法
CN103942414A (zh) * 2014-03-24 2014-07-23 闽南师范大学 Led集成模组的热功耗系数、结温和光功率的计算方法
CN104504267A (zh) * 2014-12-24 2015-04-08 苏州大学 Led器件光功率的预测方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120010861A1 (en) * 2010-07-08 2012-01-12 National Taiwan University Of Science And Technology Method for optimal selecting LED light sources and implementing full spectrum light
TW201314264A (zh) * 2011-09-29 2013-04-01 Univ Nat Chiao Tung 一種發光二極體陣列的混光方法
CN103942414A (zh) * 2014-03-24 2014-07-23 闽南师范大学 Led集成模组的热功耗系数、结温和光功率的计算方法
CN104504267A (zh) * 2014-12-24 2015-04-08 苏州大学 Led器件光功率的预测方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
黄马连等: "利用相关色温和光通量优化白光LED光谱(英文)", 《光子学报》 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108954041A (zh) * 2018-07-23 2018-12-07 浙江智彩科技有限公司 一种led混光合成标准光源的方法
CN110274691A (zh) * 2019-06-25 2019-09-24 闽南师范大学 一种白光led的输出光功率确定方法及系统
CN110274691B (zh) * 2019-06-25 2021-04-06 闽南师范大学 一种白光led的输出光功率确定方法及系统

Also Published As

Publication number Publication date
CN107191793B (zh) 2019-07-16

Similar Documents

Publication Publication Date Title
CN103270550B (zh) 用于控制固态照明装置的系统和方法以及结合这样的系统和/或方法的照明设备
US7990045B2 (en) Solid-state lamps with partial conversion in phosphors for rendering an enhanced number of colors
Chen et al. Nonlinear dimming and correlated color temperature control of bicolor white LED systems
Lin et al. Color temperature tunable white LED cluster with color rendering index above 98
LT5918B (lt) Daugiaspalviai kietakūniai šaltiniai, skirti apšviečiamų paviršių spalvos sodrio valdymui
JP2010093237A (ja) 高い色再現性を備えた発光ダイオードバックライトユニットを製造するシステムと方法
CN103329293A (zh) Led模块以及照明装置
US9370072B2 (en) Solid-state sources of light for preferential colour rendition
CN104540269A (zh) 一种混合白光led照明系统及其照度及色温的控制方法
CN104979436A (zh) 高性能四芯片led光谱优化技术方法
CN107191793A (zh) 一种白光的合成方法及系统
CN206708776U (zh) 一种光源模组及包括该光源模组的照明装置
CN106931332A (zh) 一种光源模组及包括该光源模组的照明装置
CN207146291U (zh) 一种光源模组及包括该光源模组的照明装置
CN106441570B (zh) 一种实现白平衡量子点光源光谱的构建方法
Liu et al. Model prediction on the correlated color temperature of white LED based on chromaticity coordinate
Ren et al. Study on LED Color Mixing for Stage Lighting Based on Locus Fitting of Blackbody
Zhao et al. Determination of driving current of RGB LEDs for white light illumination
Manabe et al. Improvement of color rendering index of BGYR laser illuminants
CN206708775U (zh) 一种光源模组及包括该光源模组的照明装置
CN105517226A (zh) 一种led白光灯的调温调色方法
Fan et al. A design and qualification of LED flip Chip-on-Board module with tunable color temperatures
CN104765907B (zh) Led器件的结温温度和热功率的预测方法
CN106287293A (zh) 一种彩光led加多颗白光led合成白光方法
CN103839935A (zh) 一种具有高色彩表现能力的集成式白光led光源

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20190716

Termination date: 20210531

CF01 Termination of patent right due to non-payment of annual fee